
Guide to segmentation of tissue images using

MATLAB script with Fiji and Weka

Zhang Chuheng
zhangchuheng123@live.com

September 3, 2015

1 Overview

This guide demonstrates a machine learning approach to do segmentation on
biological images. Here, we use mainly ssTEM images of neural tissue, but this
approach is easy to transform into segmenting other biological images. This is
a guide showing how to select training points from labeled image, gather feature
stack of the training points, train the classifier and apply the classifier to
images utilizing open-source package Fiji with Weka. Post-processing is always
needed after pixel classification. Hence, a little about post-processing is
also mentioned in this guide.

As is shown in figure 1, the whole process involves three parts. The first part
is the training of pixel classifier which includes selecting training points,
obtaining features of training points and the the training of classifier. .arff
files can be produced after the feature stack of selected training points is
created which can be used as an input of training classifier. .model files can
be produced to store the information of classifier and can be applied directed
to test images. The second part is applying the classifier to test images.
The third part involves some post-processing which takes more knowledge about
different parts of neural tissue, in this case, into account. Here, I considered
the neighbors of each pixel, the connectivity of the intercellular substance/
membranes. Additionally, smoothing of edges are also applied to the segmented
images.

1

mailto:zhangchuheng123@live.com

Figure 1: The process of biological image segmentation

2

2 Details of the process

2.1 Configuration

The relevant softwares/packages that I use are MATLAB 8.3.0.532 (R2014a),
ImageJ 2.0.0-rc-34/1.50a and Java 1.8.0-25(64-bit).

Fiji provided an interface for MATLAB. In order to use it, steps below should
be followed.

1. Add the path of Fiji-MATLAB interface (Miji.m) to MATLAB working path.

execute in MATLAB command window (Mac OS),
or in MATLAB command window
(All platform), whereas <Fiji.app> represent for the root of Fiji on your
computer. Both relative or absolute root are valid here.

2. In order to utilize the java packages that Fiji provides, should be
executed in MATLAB command window. A Fiji UI will prompt up and DO NOT
close that window and leave it there.

3. In order to utilize the java packages that Trainable Weka Segmentation
provides, should be executed in
MATLAB command window. The UI of Trainable Weka Segmentation will prompt
up and DO NOT close that window and leave it there.

One thing should be noticed is that you can put the three commands above in
your script, but make sure those three commands should be ONLY executed ONCE on
each launch of your MATLAB. Hence, to execute them in MATLAB command window is
recommended.

Now, your computer is well-prepared for image segmentation with Fiji and
Weka.

In some cases during the running of your program, errors like
will occur. You may increase the java heap

space allowed in MALAB by performing following operations on your computer. Set
up an ASCII file, write , save the file as and put the file
to or the directory that is shown when you execute
in the command window of MATLAB. For more information on how to increase the
java heap space in MATLAB, click here.

2.2 Preparation of image files

All the images and segmented labels of the images are downloaded from here
which are Segmented anisotropic ssTEM dataset of neural tissue by Stephan Gerhard,
et al.

3

http://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-r12-and-later-versions
http://dx.doi.org/10.6084/m9.figshare.856713

Put the MATLAB scripts you have written and the images files in the MATLAB
working directory as shown in figure 2.

Figure 2: Directory structure

There are different ways in which images can be store. The labeled images can
be stored as floating-point number between 0 and 1 where 0 represents background
pixels and 1 represents foreground pixels. However, image reader of ImageJ
(java method ij.IJ.openImage) can only recognize, from my point of view, images
stored in another way in which unsigned integers are used to represent pixels. 0
represents background pixels and 1 represents foreground pixels (8-bit image).
Hence, following script can be used to make sure that the images are in correct
formats. The script will not change anything if the label images are already in
a correct encoding format.

Listing 1: preparation of label images

4

2.3 Training of classifier and pixel classification of images

Here, the classifier is trained in three steps. First, several training
points of each class are randomly selected and the feature stack of these points
are created and saved to .arff files. Second, several .arff files are selected
as the training input and merged into one. Third, that one .arff file is used for
training and a classifier will be trained. You can either save that classifier
to a .model file or apply that classifier to other images.

2.3.1 Point selection and feature extracting

ImageJ class () are used to read images and the images will be store as
an instance of ImagePlus. An instance of WekaSegmentation will be created from
this ImagePlus object by

which equals to

in java. You can always translate Java into MATLAB like this. Pleas click here for
more information on how to call Java libraries in MATLAB. can
be used to set features that should be extracted from the image and

5

http://au.mathworks.com/help/matlab/using-java-libraries-in-matlab.html

can be used to set the maximum window size in feature extracting.
is used to randomly select points on the white pixels of label images and extract
features of those points. This function, in general, will take a long time.
Please click here to look up all the methods of WekaSegmentation you can use.

The code is listed below.

Listing 2: Select points and create feature stack of those points

6

http://javadoc.imagej.net/Fiji/trainableSegmentation/WekaSegmentation.html

7

2.3.2 Training data selection and merging

Several .arff files are selected as training input and put into the folder
named ArffFolder. This folder is of the same level and place as folder raw, mem,
etc. that we used just now to store images. An output file named data.arff will
be produced by the script. There are also methods to merge several .arff files
by using Weka Trainable Segmentation API.

This code is listed below.

Listing 3: Merge .arff files in ArffFolder into one

8

9

2.3.3 Classifier training

Here, the features of training points are loaded from an .arff file and are
used for training. Later, the trained classifier is stored in a .model file.
You can later load the .model file and apply the classifier to images or you can
do these two things together.

The code is listed below.

Listing 4: Train the classifier from .arff file and save trained classifier
into a .model file

10

2.3.4 Pixel classification of test images

.model file is loaded and applied to each image from the image stack. A file
saver is instantiated to save the result as image files. Before loading training
data we have to use to ensure that the number and the name of the
classes are corresponding to those in the training data(.arff file). However,
you do not need to do that before you load a classifier(.model file).

Listing 5: Load the classifier from .model file and apply it to images

11

2.4 Post-processing

The output image from pixel classifier is ragged. It looks not so good and
can hardly be applied for further utilization. Generally, the output image looks
like what is shown in figure 3. It is ragged and some isolated spots exist. That
is because the process is just pixel classification. Hence, the classifier will
not consider much about the connectivity of the pixel as well as the final labels
of the neighborhoods. However, we can apply our knowledge about the tissue to

12

the images to reduce the error rate. That the mitochondria are round shape and
that the membranes are always connected to each other can be used to refine the
segmented images.

Figure 3: The image from pixel classification

2.4.1 Post-processing to reduce error rate

Here presented the procedure that I used to do post-processing. First,
I removed the isolated small spots in the cytoplasm which makes the image
clean. Then I corrected some obvious errors of misclassification of membranes as
mitochondria or mitochondria as membranes utilizing connectivity and roundness.
The image after the post processing looks like what is shown in figure 4.

However, the thresholds and even the methods of post-processing in this
special case may not be effective in other cases. Hence, the script below is
hard to apply directly to other cases. Although it varies from case to case the
script below is a good example to illustrate how to do post-processing.

Listing 6: Post-processing

13

Figure 4: The image after post-processing

14

15

2.4.2 Smoothing

Although the different parts of the biological images are correctly segmented
after post-processing listed above, the edges of each parts are ragged. Here
presents the way that can be used to smooth the edges. The method of polynomial
fitting is adopted to smooth the edge.

Firstly, is called to find the point series of boundaries.
Next, x and y coordinates of the point series are regarded as one-dimensional
data series separately for polynomial fitting. One thing worth mention is that

16

is written to put more points between the start and end points to make sure that
boundaries after smoothing are all closed.

Listing 7: Smoothing

17

18

3 Possible future improvement on segmentation of images

There are some deficiencies of the final image of the segmentation. The out
of bag error of pixel classification reaches up to 18%. Some of the misclassified
pixels are causing big trouble for post-processing. Here proposed some possible
ways to improve the quality of the segmented image.

3.1 Increase the window size

By increasing the window size in the process of feature extraction, more sur-
rounding pixels will be considered and the classification will be more accurate.
You use the method in the class wekasegmentation to
set the window size. Bigger the window is, more accurate the results will
be. Nevertheless, bigger window size leads to more features extracted and more
features leads to more memory and time in calculation. In the shown case, the
window size, also known as sigma, is 64.0 which reaches the limit of my laptop.
However, larger window size is preferred if computing capability allowed.

Increasing the window size has its basis. By increasing the window size from
16.0 to 64.0, bigger mitochondria of the size around 50 pixels are recognized.
Some big mitochondria whose sizes are more than 70 pixels are missing and they
are expected to be recognized by increasing the window size.

3.2 Select more representative points

In this example, we use the method provided by wekasegmen-
tation to select point randomly. This method, however, is not a efficient way
of selecting points. Selecting points that are near the boundaries of different
parts is proposed.

The reason is as follows. The points that are on the center of each part
is obviously the most typical points. However, including large number of such
points to training data is a kind of consuming computing power since those points
have little help in deciding the decision boundary in machine learning. (Shown
in figure 5 a.) If points near the boundary is more intensely selected, better
result will be obtained followed by more accurate decision boundary. (Shown in
figure 5 b.) That will also reduce the number of training point needed to find out
similar decision boundary. Admittedly, selecting points near the boundary will
increase the out of bag error rate, but the result will improve. Additionally,
in this way, the points on the boundaries will be better classified which helps
a lot for later post-processing.

I have tried manually selecting the points near the edges, and apparent
improvement was observed, which verified the effectiveness of the proposed

19

method. Furthermore, selecting points near the edges is feasible. The points
can be picked up on the parts which are the original parts subtracted be the
eroded parts.

Figure 5: Two ways of selecting training points.
a. randomly select point. b. select points near the boundaries

3.3 Select features more carefully

Definitely, some features have more power to distinguish one class from the
other than other features. It is suggested that this kind of features should be
selected or produced, whereas the features help little in telling the parts apart
should be eliminated. The features should be better understood and selected to
promote the efficiency of the the classifier.

3.4 Increase the scale of training data

In the region of machine learning, the bigger the training data, the better
the results. Do not do that, however, unless you have no more space improving
accuracy and efficiency of the classifier. Nevertheless, in this special case,
there are plenty space increasing the scale of training data. The number of
total points in the 20 test figures is 1024× 1024× 20(images) = 2× 107, whereas
4 figures (00.tif, 05.tif, 10.tif, 15.tif) are selected as training image but
only 400 points are selected as training data. Hence, the number of the points
in training data is 400× 4 = 1600.

3.5 Improve post-processing

The post-processing is the most trivial part but also a indispensable compo-
nent. Consideration on connectivity, the expected shape and the size, etc. is
always helpful.

20

4 Afterword

This approach involves little about specific characters of the given tissue,
so it is easy to be transformed into segmenting other types of tissue that OBEL
may encounter in the future. I hope it may be helpful in your future research.

Words cannot express how much I appreciate to be with you, especially fruitful
discussions with Philip and Andrea, insightful suggestions from David, valuable
advice from Robert, generous and all-round help from Peijun, powerful technical
support from Rodney and wonderful time with the two other Chinese interns Jingjie
and Guxin. Thank you all so much and I really enjoy to be with you.

21

	Overview
	Details of the process
	Configuration
	Preparation of image files
	Training of classifier and pixel classification of images
	Point selection and feature extracting
	Training data selection and merging
	Classifier training
	Pixel classification of test images

	Post-processing
	Post-processing to reduce error rate
	Smoothing

	Possible future improvement on segmentation of images
	Increase the window size
	Select more representative points
	Select features more carefully
	Increase the scale of training data
	Improve post-processing

	Afterword

