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Abstract 

In this problem, we are required to analysis on a four-legged animal on 

the equator of an earth-like planet. To solve the problem, we set up a 

model based on invariable foundations of organism – the fixed scale of 

primary biochemical molecules and the common pattern of locomotion of 

four-legged animals. The result predicts the maximum speed of 

locomotion and size of the animal on the earth-like planet with twice the 

gravity of earth and temperature of 250K. After calculating our model, we 

give our conclusion: animals on that planet tends to have a mass of 80-

600kg and maximum speed of locomotion of 100m/s. The strengths and 

weaknesses of our model are also discussed at the end of the article. 
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1 Introduction 
Recently, scientist have found many earth-like planet orbiting around other 

stars – some of them are believed to satisfy the conditions of evolving life 

such as a relatively stable celestial environment and existence of liquid 

water.  

We are interested in the characteristics of a four-legged animal if such a 

life form exists on a planet slightly different from earth. We consider a 

specific case that the planet has a mass which is eight times that of earth 

and a radius which twice that of earth. Also, the average temperature of the 

planet is 250K which is much lower than earth. 

To specify the question of what the animals look like, we choose some 

characteristic physical quantities to judge the animals’ appearance. First of 

all, we choose the average mass of the animal to indicate the size of the 

animal. Mass is one of the most credible quantities to indicate the level of 

metabolism and biological activity and it is a fundamental quantity that 

constrain the size and function of the organs, the efficiency of circulatory 

system and behavior of animals. Whereas other quantities relating to size, 

such as shoulder height and whole body length, are not as objective as mass. 

Secondly, we analysis the intake of oxygen which indicates the rate of 

metabolism of the creature and helps us further study the behaviorism the 

creature. Finally, we are specifically interested in the speed limit of the 

creature. 

To roughly estimate the scale of body mass of the four-legged animal 

qualitatively, we find out upper and lower limits of body mass. The body 

mass can’t be too small, for too small a size means the animal cannot 

produce enough heat equivalent to the heat that losses. It’s because volume 

diminish faster than the surface area when the size of the animal decreases. 

Ratio of volume to surface area is crucial to the equilibrium of heat, in that 

volume and surface area is proportional to heat production and heat loss 

respectively. On the other hand, the body mass cannot be too large, for the 

skeleton of the animal cannot bear the heavy body of the animal as well as 

afford the acceleration and deceleration during locomotion. For example, 

the mass of Baluchitherium which is 80 tons is almost the ultimate of body 

mass of terrestrial animal. 

The activity of metabolism of the creature as well as the consumption rate 

of oxygen is constrained by the body mass, thus limiting the capacity of 

locomotion. The rate of chemical reaction inside the organism is constant, 

for the structure of biological molecules and the mechanism of organism 
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do not vary much from planet to planet which will be proved later in the 

article.  

In a word, the body mass, the consumption rate of oxygen and the capacity 

of locomotion have a range which is determined by the innate mechanism 

of organism and the environment. 

 

2 Model 

2.1 Assumptions 

In this problem, we assume the earth-like planet has a chemical 

environment quite resembles the earth which is rich in carbon, oxygen, 

nitrogen, phosphorus and sulfur which are the six key elements for life on 

earth. Abundance of these key elements lays a solid foundation for us to 

believe that composition of the animals on this planet is also C-O-N-P-S 

and this enables the life form on this planet shares quite similar mechanism 

of that on the earth. Therefore, this drives us to assume that the animals on 

this planet also use respiration process to produce energy, i.e. chemical 

energy released in the oxidation reaction is utilized and the oxygen plays 

an important role in the supply of the energy. 

We are limited to study the four-legged animal and nearly all of the four-

legged animal on earth belongs to Mammalia which are all homothermal 

animals. Mammals exchange oxygen and other nutrients in water phase 

(blood) unlike some arthropods exchange oxygen in gas phase through 

Hence, we assume that the four-legged animals on that planet is also warm 

blooded and use vascular system to undertake the exchange of  material 

and energy. 

2.2 Model Overview 

Our model can be divided into four parts.  

 A tunnel model is established to resemble the network that animals use 

to transport oxygen to all parts of its body. Heat production depends on 

oxygen consumption and the rate of oxygen consumption is confined 

by the mechanism of the tunnels. 

 Equilibrium of heat production and heat loss and the animal’s capacity 

of regulation confines the lower limit of body mass. 

 A mechanic model based on the common pattern of four legged animals’ 

locomotion gives the maximum force the animal exerts on the bones of 

the limbs, thus confining the upper limits of the body mass. 
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 The above mechanic model which gives the function of maximum 

speed of locomotion with respect to maximum oxygen consumption, 

combining with outcome of the tunnel model, can give the ultimate 

speed of the animal. Meanwhile, the mechanic model illustrates a 

possible and visualized graphics of the moving style of extraterrestrial 

life. 

 

2.3 Model in Detail 

2.3.1 Tunnel Model 
Tunnels are needed for living animals to transport oxygen, such as aorta, 

arteries, arterioles, and capillaries, to supply all parts of the organism. And 

they can be assumed as a fractal system, which should be finitely self-

similar for the constraint set by the size of capillaries.[1] There are three 

unifying principles or assumptions: First, a space filling fractal-like 

branching pattern is required. Second, terminals of branches are size-

invariant because it’s constrained by the size of atoms and molecules. And 

third, the energy required to distribute resources is minimized. By Geoffrey 

B. West’s WBE model[2], a highly approximate equation as follow could be 

derived. 

𝑅 = (𝑀𝑏/𝑀0)
3
4          (1) 

Where R means the rate of metabolism of the mammal, 𝑀𝑏 is the mass 

of its body and 𝑀0 is a normalization scale for 𝑀0.  

On the basis of WBE model, we could say that the rate of metabolism is 

independent of the temperature of environment and the acceleration of 

gravity. 

Then we find some data about the metabolic rate of different mammals 

 
 Monotreme Marsupial Eutherian 

Body temperature(℃) 30 35.5 38 

Metabolic rate(W) 1.65Mb
0.75 2.36Mb

0.737 3.35Mb
0.75 

Metabolic rate, recalculated 

to 38(℃) 

2.99Mb
0.75 2.97Mb

0.737 3.35Mb
0.75 

Table 1. Energy metabolic rates of higher vertebrates, recalculated to a uniform body temperature of 38 

(body mass, Mb, in kg, metabolic rate in watts) (from Dawson and Hulbert, 1970). 

 

For the animal on the earth-like planet, we use the equation 

𝑅 = 3.34𝑀𝑏
3/4          (2) 
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As we have assumed the animal as a eutherian to calculate its rate of 

metabolism. 

We’ve also build another model which gives the similar result. 

The animal can be regarded as the combination of several columns. For 

each infinitesimal unit we can do approximate calculations on the rate of 

energy it consumes. We use the column as the infinitesimal unit.  

We have, 

The work it does in a movement of ∆ℓ, W ∝ σAΔℓ          (3) 

The power, P ∝ σAΔℓ/∆t           (4) 

σ andΔℓ/∆t can be considered independent of size,so P ∝ A ∝ d2       (5)  

On the other hand, the mass of the body, 𝑀𝑏 ∝ ℓ d2          (6) 

The mathematician Greenhill showed that when the force due to weight is 

distributed over the total extent of the column, the critical length becomes: 

ℓ 𝑐𝑟 = 0.792 |
𝐸

𝜌
|
1/3

𝑑2/3          (7) 

Where E is the elastic modulus of the material, 𝜌 is the density of the 

material. It’s obvious that ℓ 3 ∝ 𝑟2          (8) 

Combining the (6) and (8), we have 𝑑 ∝ 𝑀𝑏

3

8          (9)  

At last, with the equation (5), the rate of work 𝑃 ∝ 𝑀𝑏

3

4          (10) 

This is of the same form of (2). 

 

2.3.2 Equilibrium of heat  
On Earth, mammals have to maintain their body temperature relatively 

constant to guarantee the basic biological functions of enzymes. So their 

body temperature is independent of the environmental temperature. It is 

obvious that all homothermal mammals have to maintain a balance 

between the rate of heat production and heat loss. As a result, the rate of 

metabolism is surely higher than the rate of heat loss to insure the stability 

of core temperature, for part of metabolism is utilized for basic activity of 

the animal. 

Here are some mammal’s core temperature: 

 
Body mass(kg) Number of species Body temperature(℃) 

Rang Mean 

0.001-0.01 2 37.8-38.0 37.9 

0.01-0.1 11 35.8-40.4 37.8 
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0.1-1.0 12 35.8-39.5 37.8 

1.0-10 17 36.4-39.5 38.0 

10-100 8 36.0-39.5 37.9 

100-1000 6 36.4-39.5 37.8 

1000-10000 2 35.9-36.1 36.0 

10000-100000 4 36.5-37.5 37.1 

Table 2. Body temperatures of eutherian mammals arranged according to body size (Morrison and Ryser, 

1952) 

 

As we can see, core temperature of mammals is stable around 38℃ and 

independent of the size - namely their body mass. The table indicates that 

suitable and optimal temperature for the mammals is about 38℃. The 

animal on the earth-like planet, as assumed above, have the same 

biochemical reactions as mammals on earth. So we could can say that the 

core temperature of animals on that earth-like planet is also about 38℃. 

Thus, Tb=38℃. 

However, heat loss is size-dependent, as larger mammals are easier to lose 

heat for they have larger surface area. So the consideration of heat 

conduction is needed. We assume the total conductance of the animal is C. 

According to Newton cooling law, we have 

𝐻 = 𝐶(𝑇𝑏 − 𝑇0)         (11) 

Where H is the rate of heat loss, 𝑇𝑏  is temperature of body and 

𝑇0=250K is temperature of environment. 

It is not hard to know that the thermal conductance C can be affected by 

the surface area exposed in the air, subcutaneous fat thickness, etc. It’s not 

easy to get a specific value even for a single animal, because the 

conductance changes a lot when it rolls or stretches. Animals tend to roll 

themselves when it is cold, whereas they are stretched in hot days. 

However the efforts to minimize the surface exposed to the air to decrease 

the loss of heat is limited, so we have the minimized conductance at a low 

critical temperature. And at this low critical temperature, the only way to 

maintain stable core temperature is to product more heat. The following 

conductance we care about is the minimized conductance. 

For the convenience to compare the conductance and the rate of heat 

production (metabolism rate), we express both in relation to body size (Mb). 

That is to the compare the C* (conductance per unit body mass) and 

H*(heat loss per unit body mass). 

A considerable amount of data is accumulated by Herreid and Kessel (1967) 

that thermal conductance in relation to body size for mammals and birds, 
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is given by the equation 

𝐶∗ = 30𝑀𝑏
−0.5         (12) 

where C* is specific thermal conductance[ml O2 (kg·hr·℃)-1]and 𝑀𝑏 

is body mass(kg)]. And the coefficient can readily be recalculated to other 

units by equating 1 liter of oxygen per hour with 5.579W. 

Then, we can derive from equation (2) and (11) that： 

𝑅∗ = 3.34𝑀𝑏
−

1
4         (13) 

𝐻∗ = 𝐶∗(𝑇𝑏 − 𝑇0)           (14) 

As is stated above, we can get R*>H*. With equations (12), (13), (14), we 

can work out that 𝑀𝑏 > 81.7𝑘𝑔, ie. 𝑀𝑏 𝑚𝑖𝑛 = 81.7𝑘𝑔, which is the lower 

limit of the body mass of the animal. 

2.3.3 Upper Limit of body mass 

First, let’s take a look on the situation that the animal stand still. We 

consider the four legs of the animal as columns which support the weight 

of the animal. So we have  

𝑀𝑏𝑚𝑎𝑥
𝑔 = 4𝑃𝑚𝑎𝑥𝐴          (15) 

 Where 𝑀𝑏𝑚𝑎𝑥
 is the upper limit of body mass, 𝑔 is gravity,  𝑃𝑚𝑎𝑥 

is the maximum pressure the bone can bear and A is the cross section area 

of the bones.  

Consider the mass of the bones of limbs,  

𝑀𝑏𝑜𝑛𝑒 = 𝜌𝐴𝐿          (16) 

 Where 𝑀𝑏𝑜𝑛𝑒 is the mass of the bone of one limb, 𝜌 is density of 

bones, and 𝐿 is the length of the bones which is proportional to 𝑀1/3. 

Increase in the mass of bones results in loss in mobility of the animal, thus 

causing the animal hard to survive. So we assume the ratio of the mass of 

bones and body mass is a constant and does not change among different 

planets. Also we assume 𝜌, 𝑃𝑚𝑎𝑥  are invariable quantities in different 

planets. We get  

constant =  
𝑀𝑏𝑜𝑛𝑒

𝑀𝑏𝑚𝑎𝑥

∝ 𝑔𝑀𝑏𝑚𝑎𝑥

1
3      ie. 𝑀𝑏𝑚𝑎𝑥

∝ 𝑔−3          (17) 
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Numerically, comparing with the heaviest four-legged terrestrial animal 

on the earth which is Loxodonta africana weighing 4800kg, the largest 

body weight of the animal on the planet mentioned in the problem is 

probably 600kg. 

 

2.3.4 Spring-mass model 
To analyze the locomotion of the ‘extraterrestrial’ animal, we are 

supposed to construct a physical model of motion. In some scholars’ 

research [3][4], the simple spring-mass model, which employs a single 

linear leg spring and a mass, accurately predict the mechanics of running 

gaits. The body’s complex system of active muscles, tendons and 

ligaments therefore behaves much like the single linear spring employed 

in the models. We will begin our construction with the simple vertical 

motion, consider a 2-Dimensional oscillation afterwards and obtain some 

useful information finally. 
 

 Assumptions and equivalences 

To expand our discussion, there are some assumptions and equivalences 

we have to make: 

1. The stiffness of the leg spring k is defined as the ratio of the peak 

force and the peak displacement: 

k =
𝐹

∆𝑦
          (18) 

2. The length of the leg L0 spring in the model is defined as the distance 

from the point of ground contact to the center of mass. 

3. The mass of animal is abstracted as to concentrate into the mass point. 
 

 Hop occasion 

To begin our construction, let us consider a simple oscillation system 

(Figure 1) which vibrates in vertical direction—the ‘hop’ condition. To 

simulate the occasion in which animal has just landed in the ground, we 

set the initial displacement y0=0, initial velocity: yȧ  which is downward. 

After simple analysis we can know that the motion can be divided into 

two phases: the contact phase (in which the string contacts to the ground) 

and the aerial phase (in which the oscillator leaves the ground). [4] 
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1. Contact phase 

We can easily obtain the motion 

equation: 

mÿ + 𝑘𝑦 = −𝑚𝑔          (19) 

The general solution is: 

y = a sin 𝜔𝑡 + 𝑏 cos 𝜔𝑡

−
𝑔

𝜔2
    (𝜔2

=
𝑘

𝑚
)          (20) 

The initial values are: (�̇�𝑎 is the absolute value of initial velocity)  

y(t = 0) = 0;  ẏ(𝑡 = 0) = −�̇�𝑎          (21) 

Therefore  

b =
𝑔

𝜔2
;    𝑎 = −

�̇�𝑎

𝜔
          (22) 

The result solution should be: 

y = −
�̇�𝑎

𝜔
sin 𝜔𝑡 +

𝑔

𝜔2
cos 𝜔𝑡 −

𝑔

𝜔2
          (23) 

 

Which is equivalent to: 

y = −�̇�𝑎 (
𝑚

𝑘
)

1
2

sin 𝜔𝑡 + 𝑔(
𝑚

𝑘
) cos 𝜔𝑡

− 𝑔(
𝑚

𝑘
)          (24) 

Thus 

F𝑠𝑡𝑟𝑖𝑛𝑔 = −𝑘𝑦

= �̇�𝑎(𝑘𝑚)
1
2 sin 𝜔𝑡 − 𝑚𝑔 cos 𝜔𝑡

+ 𝑚𝑔          (25) 

2. The contact time and the critical moment 

As is shown in Figure 2, in the middle of the 

total contact time, the string attain a maximal 

Figure 1 A simple oscillation system 

Figure 2  
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compression, and the velocity is exactly 0, in other words,  ẏ (𝑡 =
𝑡𝑐

2
) =

0. (Where tc is the total contact time), thus we get: 

�̇�𝑎 cos
𝜔𝑡𝑐

2
+

𝑔

𝜔
sin

𝜔𝑡𝑐

2
= 0          (26) 

Therefore: 

tan
𝜔𝑡𝑐

2
= �̇�𝑎

𝑔

𝜔
  ⟺  𝑡𝑐 =

2

𝜔
tan−1(�̇�𝑎

𝑔

𝜔
)          (27)   

So we get the expression of the contact time tc. 

When t=tc, it’s obvious that  

ẏ(𝑡 = 𝑡𝑐) = �̇�𝑎          (28) 

3. Aerial phase 

The motion equation is: 

mÿ = mg          (29) 

Then we get: (notate ta: the aerial time) 

�̇�𝑎 =
𝑔𝑡𝑎

2
;   𝑡𝑎 =

2�̇�𝑎

𝑔
          (30)  

The total period: 

T = 𝑡𝑎 + 𝑡𝑐 =
2�̇�𝑎

𝑔
 +

2

𝜔
tan−1(�̇�𝑎

𝑔

𝜔
)          (31) 

Now we can plot the relationship between F, v, y and t, which could give 

us a visualized motion process during the hop. 

 

 First-try of Gallop (Running) Model 

We assume that the locomotion of the extraterrestrial animal appears like 

the ‘gallop’ (jump), just like most of the earth animal - horse, kangaroo, 

wolf and so on. 
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We still use the spring-mass model to describe the motion. As the Figure 

3 shows, there are also two phase of motion - contact motion and aerial 

motion. 

Firstly, the aerial motion is easy to do research on: it’s an oblique 

projectile motion, where the horizontal velocity is a constant, and vertical 

motion is the same as the aerial of hop occasion.  

Then our main task is to research the contact 

phase, which is a 2-Dimensional Oscillation. 

We assume that the contact end of the spring 

will not move during a contact phase, and the 

mass point rotates around the contact point. 

The research is done in a polar coordinate. Set 

the origin on the contact point, the 

parameters—l, l,̇ 𝜃, �̇� are shown in Figure 4. 

The motion equations are: 

{
−𝑘(𝑙 − 𝑙0) − 𝑚𝑔 cos 𝜃 = 𝑙̈ − 𝑙�̇�2

𝑚𝑔 sin 𝜃 = 𝑙�̈� + 2𝑙�̇̇�
          (32) 

And the initial value: 

l(t = 0) = 𝑙0;  l̇(t = 0) = 𝑙0̇; θ(t = 0) = 𝜃0;  θ̇(t = 0) = �̇�0           (33) 

While this ODE group is too difficult to obtain an analytic solution! 

While the numerical solution is neither convenient for the analysis 

afterwards nor intuitive to illustrate the relationship that we want to know 

we will try to simplify the 2D model. 

  

 Simplification for Gallop Model 

1. Assumptions 

Figure 3 Two phase of motion 

Figure 4In a polar coordinate 
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We just need to simplify the contact phase. Now we have to make some 

new assumptions: 

1) The horizontal speed vx is almost constant during the contact phase. 

This assumption is proved by Farley and associates (1993) [3] in earth 

mammals. Now we extend this assumption to extraterrestrial life. 

2) Let’s introduce a new parameter: the effective vertical stiffness—kvert, 

which is defined as the ratio of the peak vertical force and the peak 

vertical displacement3: 

kvert =
𝐹𝑚𝑎𝑥

∆𝑦
          (34) 

This parameter can be used equivalently to describe the stiffness in 

vertical direction. 

While the real stiffness kreal is: 

kreal =
𝐹𝑚𝑎𝑥

∆𝐿
          (35) 

ΔL,Δy are shown in the Figure 5. 

 

2. Simplified Model 

As is illustrates in Figure 5, 6, there are some geometrical relationship 

among the parameters. 

Then we can get: 

∆L = ∆y + L0(1 − cos 𝜃)          (36) 

Thus  

Figure 5 
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k𝑣𝑒𝑟𝑡 =
𝐹𝑚𝑎𝑥

∆𝑦
=

𝐹𝑚𝑎𝑥

∆𝐿
∙

∆𝐿

∆𝑦
= kreal ∙

∆y + L0(1 − cos 𝜃)

∆𝑦
          (37) 

k𝑣𝑒𝑟𝑡 = kreal ∙ [1 +
L0(1 − cos 𝜃)

∆𝑦
]

= kreal ∙ [
∆L

∆𝐿 − L0(1 − cos 𝜃)
]          (38) 

On the other hand, 

PP′ ≈ v𝑥𝑡𝑐       (by assumption 1)          (39) 

Therefore  

sin 𝜃 =
v𝑥𝑡𝑐 

2L0
          (40) 

3. Analogy to Hop Condition 

As a result of assumptions and the model above, now we can simplify the 

vertical motion as a kind of hop motion, if only we replace the stiffness k 

by the effective vertical stiffness kvert. 

Now the conclusion of hop occasion can be similarly deduced: 

ẋ0 = 𝑣𝑥, �̇�0 = �̇�𝑎;      𝑘 = 𝑘𝑣𝑒𝑟𝑡, 𝜔2 =
𝑘𝑣𝑒𝑟𝑡

𝑚
          (41) 

Figure 6 
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{
𝑚�̈� + 𝑘𝑣𝑒𝑟𝑡𝑦 = −𝑚𝑔

𝑦(𝑡 = 0) = 0; �̇�(𝑡 = 0) = �̇�𝑎
          (42) 

All above are the same equations. So the solution: 

y = −
�̇�𝑎

𝜔
sin 𝜔𝑡 +

𝑔

𝜔2
cos 𝜔𝑡 −

𝑔

𝜔2
          (43) 

F𝑠𝑡𝑟𝑖𝑛𝑔 = −𝑘𝑦 = �̇�𝑎(𝑘𝑚)
1
2 sin 𝜔𝑡 − 𝑚𝑔 cos 𝜔𝑡 + 𝑚𝑔          (44) 

𝑡𝑐 =
2

𝜔
tan−1(�̇�𝑎

𝑔

𝜔
)          (45) 

 Applications and discussion 

1. The maximal force and its relationship with v, M 

By energy conservation, we can get: 

1

2
𝑀�̇�0

2 + 𝑀𝑔𝑦 =
1

2
𝑘𝑣𝑒𝑟𝑡𝑦2          （46） 

Thus we get 

∆y =
1

𝑘𝑣𝑒𝑟𝑡
[𝑀𝑔 + √𝑀2𝑔2 + 𝑀�̇�𝑎

2𝑘𝑣𝑒𝑟𝑡]           （47） 

And then 

F = 𝑘𝑣𝑒𝑟𝑡 ∙ ∆𝑦 = 𝑀𝑔 + √𝑀2𝑔2 + 𝑀�̇�𝑎
2𝑘𝑣𝑒𝑟𝑡          （48） 

Now we attain an expression of maximal force and M, �̇�𝑎, and we 

know the force is proportional to  

2. The rate of work and its relationship with v. 

From the dynamic equation of contact phase, we can easily get the 

expression of the rate of work: 

P𝑠𝑝𝑟𝑖𝑛𝑔 =
0.5𝐹2𝑓

𝑘𝑟𝑒𝑎𝑙 ∗ 𝑀
          （49） 

After deformation, we can get 
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P𝑠𝑝𝑟𝑖𝑛𝑔 =
√𝑘𝑣𝑒𝑟𝑡[√𝑀𝑔 + √𝑀𝑔2 + �̇�𝑎

2𝑘𝑣𝑒𝑟𝑡]

4𝜋𝑘𝑟𝑒𝑎𝑙 ∗ 𝑀

≈

[√𝑀𝑔 + √𝑀𝑔2 + �̇�𝑎
2𝑘𝑟𝑒𝑎𝑙]

4𝜋√𝑘𝑟𝑒𝑎𝑙 ∗ 𝑀
          （50） 

From the discussion in former pattern, we’ve got these information 

that the rate of work in metabolism is: 

P𝑚𝑒𝑡𝑎 = 3.34M𝑏

3
4          （51） 

And researches on biology show the efficiency in transformation from 

chemical energy to useful energy is nearly 10%; and the output rate of 

work is a part of them. To estimate the extreme velocity, now we set: 

P𝑠𝑝𝑟𝑖𝑛𝑔 < 0.01𝑃𝑚𝑒𝑡𝑎          （52） 

And we assume the Mb is 100Kg; g=18.6m/s2; kreal is set to be 

50000N/m; then we got a rough answer: 

�̇�𝑎 < 100m/s           （53） 

This rough number can testify our intuition that animal cannot run too 

fast to spill over the metabolism extreme however condition it is. 

3 Results 
After establishing two models concerning the metabolism rate and the 

pattern of locomotion respectively, we found out the relationship between 

physiological parameters of the animal and the parameters of the 

environment. Also, we find out specific value of the animals’ 

physiological parameters on a specific planet, which, in detail, shows that 

a four-legged animal is tend to have a body mass between 80kg and 

600kg and have an exhaust speed of no more than 100m/s, on a planet 

with twice the gravity on the earth and much lower temperature of the 

earth. 

4 Discussion 

4.1 Strengths 

First, the equation we used to calculate the animal’s rate of metabolism is 

very simple, which dependent on its size (mass). And it is strongly 

supported by a large amount of animals on earth, whether in equatorial 

regions or polar region and no matter what the size they are. What’s 
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more, the result we got is highly in agreement with another fancy model, 

which using fractal to prove the rate of metabolism increasing with three 

fourths power of body mass.  

Second, the balance between the rate of heat loss and metabolism is 

considered to calculate the minimized mass of the animal on the earth-

like planet, which is a requirement for all warm-blooded animals. After 

this, we could have a rough idea about the minimized size of the animal. 

Third, the idea is profound and far-reaching to find the invariable and 

variable quantities that affect the physical process of the animal when the 

environment changes and when the animal are scaled, which reveals a 

ubiquitous rule of organism when transferred and scaled. And we’ve 

based our model on the homogenous part of biological mechanism, which 

is reasonable. 

4.2 Weaknesses 

First, the model is trivial and contains too much details. For example, the 

spring-mass model is too complicated and takes a lot into consideration. 

The outcome of the model shows a relationship of key parameters of 

animals and parameters of the environment, but it’s hard for us to 

eliminate the impact of other irrelevant parameters. 

Second, there are too much assumptions though most of them are 

reasonable and based on solid fact of nature. We assume the animals on 

that planet are quite similar to mammals on the earth, but in fact, it’s hard 

to predict that. 

Third, the model is just a rough case. For example, we can derive from 

our model that M𝑏𝑜𝑛𝑒 ∝ M𝑏
−4/3, but experiment[5] shows that the 

exponent deviates from four thirds but a little smaller than that. 
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