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Chapter One

1. AC{D,B} = ACDB + ACBD, A{C, B}YD = ACBD + ABCD, C{D, A}B = CDAB +
CADB, and {C, AADB = CADB+ACDB. Therefore —AC{D, B}+A{C, BYD—C{D, A} B+
{C,A}DB = —ACDB + ABCD — CDAB + ACDB = ABCD — CDAB = [AB,CD]

In preparing this solution manual, I have realized that problems 2 and 3 in are misplaced
in this chapter. They belong in Chapter Three. The Pauli matrices are not even defined in
Chapter One, nor is the math used in previous solution manual. — Jim Napolitano

2. (a) Tr(X) =aoTr(1) + >, Tr(or)ar = 2aq since Tr(o,) = 0. Also

Tr(akX) = aOTr(ak) + ZE Tr(O'kO'g)ag = %ZZ Tr(O'kO'g + O'gO'k)ag = ZE 5MTF(1)0,[ = Q(Ik. SO,
ap = iTr(X) and ap = 3Tr(0xX). (b) Just do the algebra to find ap = (X11 + X22)/2,
a; = (X2 + X21)/2, as = i(—X21 + X12)/2, and az = (X117 — X22)/2.

3. Since det(o - a) = —aZ — (a2 + a;) = —|al*, the cognoscenti realize that this problem
really has to do with rotation operators. From this result, and (3.2.44), we write

det {exp (iia- : ﬁ¢)] = cos (f) + isin <?)
2 2 2

and multiplying out determinants makes it clear that det(o -a’) = det(o - a). Similarly, use
(3.2.44) to explicitly write out the matrix o - a’ and equate the elements to those of o - a.
With n in the z-direction, it is clear that we have just performed a rotation (of the spin
vector) through the angle ¢.

4. (a) Tr(XY) = > (a|XY]a) = >, >, {a|X|b)(b]Y|a) by inserting the identity operator.
Then commute and reverse, so Tr(XY) = >, > (b|Y|a)(a|X|b) = >, (b|Y X|b) = Tr(Y X).
(b) XY|a) = X[Y]a)] is dual to {a|(XY)T, but Y|a) = |5) is dual to (a|YT = (8| and X|5)
is dual to (3| XT so that X[Y|a)] is dual to {a|YTXT. Therefore (XY)! = YTXT.

(¢) explif (4)] = 3, explif (A)]la)a] = 3, explif(a)]|a) (al

(d) 220 Ya(x)Pa(x") = 2., (X|a)"(x"|a) = 3, (x"]a) (ax') = (x"[x') = 0 (x" — )

5. For basis kets |a;), matrix elements of X = |a) (8| are X;; = (a;|a)(Bla;) = (aila)(a;|B)*.

|
For spin-1/2 in the | £ z) basis, (+|S, = h/2) =1, (—|S, = 1/2) = 0, and, using (1.4.17a),
(]S, = h/2) = 1/+/2. Therefore

5. = /s =nizl == o )

6. Alli) +|7)] = a;|i) +a;|7) # [|i) +|7)] so in general it is not an eigenvector, unless a; = a;.
That is, |i) + |j) is not an eigenvector of A unless the eigenvalues are degenerate.
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7. Since the product is over a complete set, the operator [],,(A — a) will always encounter
a state |a;) such that @’ = a; in which case the result is zero. Hence for any state |«)

[[(A=a)la) = T[(A-d)D |ai){aile) = E:H:—w\%aﬁx zp_o
If the product instead is over all a’ # a; then the only surviving term in the sum is

[(a; = a)lai)(aila)

a/

and dividing by the factors (a; —a’) just gives the projection of |«) on the direction |a’). For
the operator A = S, and {|a’)} = {|+),|—)}, we have

[J(a-da) = (g—g)(&+g>

a/

A—d S, +h/2 h

and H o CCLL/ = +h / fOI' CL// = "‘5
a'#a’

or = 5= —h/2 h/2 for o’ = _h

—h 2

It is trivial to see that the first operator is the null operator. For the second and third, you
can work these out explicitly using (1.3.35) and (1.3.36), for example

SR Lsw Ba] = 1) — (0 + (6 + (2D = e

which is just the projection operator for the state |+).

8. I don’t see any way to do this problem other than by brute force, and neither did the
previous solutions manual. So, make use of (+|+) =1 = (—|—) and(+|—) = 0 = (—|+) and
carry through six independent calculations of [S;,S;] (along with [S;, S;] = —[S;,5:]) and
the six for {S;,S;} (along with {S;, S;} = +{S;, Si}).

9. From the figure n = icosasinﬂ —l—jsin&sinﬁ + Rcosﬁ so we need to find the matrix
representation of the operator S-n = S, cos asin 4.5, sin acsin B+ S, cos 3. This means we
need the matrix representations of S, S,, and S,. Get these from the prescription (1.3.19)
and the operators represented as outer products in (1.4.18) and (1.3.36), along with the
association (1.3.39a) to define which element is which. Thus

R0 1 R0 —i R 1 0
&_5(10) %_§<¢ 0) &_5(0-4)

We therefore need to find the (normalized) eigenvector for the matrix

( cos 8 cosasin f — ¢sinasin 3 ) - ( cosB e “sinf )

cosasin 8 + isin asin 5 —cos f3 e“sinf8  —cosf3
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with eigenvalue +1. If the upper and lower elements of the eigenvector are a and b, respec-
tively, then we have the equations |a|? + |b]*> = 1 and
acos B+ be “sinf =
ae“sin B —bcos = b

Choose the phase so that a is real and positive. Work with the first equation. (The two
equations should be equivalent, since we picked a valid eigenvalue. You should check.) Then

a*(1 —cos B)? = |b|?sin®3 = (1 — a?)sin? B

4a*sin*(B8/2) = (1 —a*)4sin?(3/2) cos*(3/2)

a?[sin?(8/2) + cos*(B/2)] = cos*(3/2)

a = cos(f/2)
 al—cosp o 25i0°(8/2)
and so b = ae W = cos(3/2)e 2sin(3/2) cos(8/2)
= ¢“sin(3/2)

which agrees with the answer given in the problem.

10. Use simple matrix techniques for this problem. The matrix representation for H is

=[]

Eigenvalues E satisfy (a — F)(—a — E) —a* = —2a®> + E> = 0 or E = +a+/2. Let x; and 25
be the two elements of the eigenvector. For E = +av2 = EW, (1 — \/5):1551) + wgl) =0, and
for E = —ayv/2 = EW@, (1+ \/5)3:?) + xéQ) = 0. So the eigenstates are represented by

1 -1
My = @ @y = @)
where NO* = 1/(4 — 2v/2) and N®* = 1/(4 + 2v/2).

11. It is of course possible to solve this using simple matrix techniques. For example, the
characteristic equation and eigenvalues are

You can go ahead and solve for the eigenvectors, but it is tedious and messy. However, there
is a strong hint given that you can make use of spin algebra to solve this problem, another
two-state system. The Hamiltonian can be rewritten as

H H
N = 11; 2 4

H = A1+ Bo, + Co,
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where A = (Hyy + Ha2)/2, B = (Hy1 — Hap)/2, and C' = Hyp. The eigenvalues of the first
term are both A, and the eigenvalues for the sum of the second and third terms are those
of £(2/h) times a spin vector multiplied by v/ B? 4+ C?2. In other words, the eigenvalues of
the full Hamiltonian are just A ++/B? + C? in full agreement with what we got with usual
matrix techniques, above. From the hint (or Problem 9) the eigenvectors must be

IAL) :COS§|1>+SHI§|2> and IA) :—Sin§|1>+cos§|2)

where a =0, tan 8 = C/B = 2H15/(Hy1 — Hs), and we do 8 — m — 3 to “flip the spin.”

2

12. Using the result of Problem 9, the probability of measuring +h/2 is
2
1 1 v .Y } \/1+005”y \/1—COS’7 ~ l+siny
H\/?H—H_ﬂ( |} [0082|+)—|—Sln2| ) 5 T 5 =—

The results for v =0 (i.e. [+)), v = /2 (i.e. [Sy+)), and v =7 (i.e. |—)) are 1/2, 1, and
1/2, as expected. Now ((S, — (S,))?) = (S?) — (S,)?, but S? = h?/4 from Problem 8 and

1
2

_ 7 " = J in L—

(Sy) = [0082(+|+sm2< |]2[|+>< | 4+ |—=)(+1] [cos2|+>+sm2| >]
L P J in L1-y] = Tan) 2y
= 2[COSQ< |+sm ][COS2|—|—>+SID2| >}—hCOS2SIDQ—281n’y

0 {(Sy — (S))?) = h*(1 —sin? ) /4 = h*cos® /4 = h*/4,0,h*4 for v = 0,7/2,

13. All atoms are in the state |+) after emerging from the first apparatus. The second
apparatus projects out the state |S,+). That is, it acts as the projection operator

|Sn+) (S + | = [COS§\+>+Sin§|—)} [cos§<+|+sm (— |}

and the third apparatus projects out |—). Therefore, the probability of measuring —h/2
after the third apparatus is

2P 2B

1
2 5 = sm 23

P(B) = [{(+]Sn+)(Sn + |=)|* = cos
The maximum transmission is for 5 = 90°, when 25% of the atoms make it through.

14. The characteristic equation is —A% — 2(=X)(1/v/2)? = A(1 — A?) = 0 so the eigenvalues
are A = 0, =1 and there is no degeneracy. The eigenvectors corresponding to these are

1 1 1
1 1 1

— | o L G Sl 5
V2| 2 \/; 2 \/;

The matrix algebra is not hard, but I did this with MATLAB using
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M=[[0 1 0];[1 0 1];[0 1 0]]1/sqrt(2)
[V,D]=eig (M)

These are the eigenvectors corresponding to the a spin-one system, for a measurement in
the z-direction in terms of a basis defined in the z-direction. I’'m not sure if there is enough
information in Chapter One, though, in order to deduce this.

15. The answer is yes. The identity operator is 1 =3, [a’,')(d’, V'] so

AB = AB1=AB) | V)(d V| =AY V|d V){d V|=> Vala V){a V| =BA

a’ b a’ b a’ b

Completeness is powerful. It is important to note that the sum must be over both a’ and
in order to span the complete set of sets.

16. Since AB = —BA and ABl|a,b) = abla,b) = BAla,b), we must have ab = —ba where
both a and b are real numbers. This can only be satisfied if a = 0 or b = 0 or both.

17. Assume there is no degeneracy and look for an inconsistency with our assumptions. If
|n) is a nondegenerate energy eigenstate with eigenvalue F,,, then it is the only state with this
energy. Since [H.A;] = 0, we must have HA;|n) = A1 H|n) = E,A;|n). That is, A;|n) is an
eigenstate of energy with eigenvalue FE,,. Since H and A; commute, though, they may have
simultaneous eigenstates. Therefore, A;|n) = a1|n) since there is only one energy eigenstate.

Similarly, As|n) is also an eigenstate of energy with eigenvalue E,,, and As|n) = az|n). But
A1 Ag|n)y = asA1|n) = agaq|n) and AyAi|n) = ajag|n), where a; and ay are real numbers.
This cannot be true, in general, if A1 Ay # A3 Ay so our assumption of “no degeneracy” must
be wrong. There is an out, though, if a; = 0 or a; = 0, since one operator acts on zero.

The example given is from a “central forces” Hamiltonian. (See Chapter Three.) The Hamil-
tonian commutes with the orbital angular momentum operators L, and L,,, but [L,, L,] # 0.
Therefore, in general, there is a degeneracy in these problems. The degeneracy is avoided,
though for S-states, where the quantum numbers of L, and L, are both necessarily zero.

18. The positivity postulate says that (y|y) > 0, and we apply this to |y) = |a) + A|F). The
text shows how to apply this to prove the Schwarz Innequality (a|a){(8|5) > [{«|8)|?, from
which one derives the generalized uncertainty relation (1.4.53), namely

(AAP(AB)?) = S [([A, B[

A

Note that [AA,AB] = [A—(A), B—(B)] = [A, B]. Taking AA|a) = AABJa) with \* = =),
as suggested, so (a|]AA = —X(a|AB, for a particular state |a). Then

(a|[A, B]ja) = (a|AAAB — ABAA|a) = —2\{a|(AB)?|a)
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and the equality is clearly satisfied in (1.4.53). We are now asked to verify this relationship
for a state |«) that is a gaussian wave packet when expressed as a wave function (z'|ar). Use

(@Azla) = (z]a) — (@)(2|a) = (2" = (z))(z']a)

and  {|Apla) = {/|plo) — (p)r'la) = - (xla) — (p){a']o)
with  (]a) = (2md®) Y exp F@x/—(w/ ;di@)?}
gt Tabila) = |- ol - )] i)
andso (Apla) = i (o — () r'la) = M| Arla)

where A is a purely imaginary number. The conjecture is satisfied.

It is very simple to show that this condition is satisfied for the ground state of the harmonic
oscillator. Refer to (2.3.24) and (2.3.25). Clearly (z) = 0 = (p) for any eigenstate |n), and
x|0) is proportional to p|0), with a proportionality constant that is purely imaginary.

19. Note the obvious typographical error, i.e. S§ should be S2. Have S2 = h?/4 = S2 =
52, also [S;, S,] = ihS,, all from Problem 8. Now (S,) = (S,) = 0 for the |+) state.
Then ((AS,)?) = h*/4 = ((AS,)?), and ((AS,)%((AS,)? = A*/16. Also |([S., S,])|*>/4 =
h%|(S.)|?/4 = h*/16 and the generalized uncertainty principle is satisfied by the equality. On
the other hand, for the |S,+) state, ((AS,)?) = 0 and (S,) = 0, and again the generalized
uncertainty principle is satisfied with an equality.

20. Refer to Problems 8 and 9. Parameterize the state as |) = cos §\+> + €' sin g[—), SO

h ,
(Sy) = 3 [cos §<+| + e " sin = ( ]] ) (=] 4+ =) {+]] [Cos §|+> + €' sin §|—>]
= g sin g cos g(eiCY +e ) = 5 sin 8 cos a

2

((AS)?) = (S?) —(S,)* = %(1 — sin® B cos® ) (see prob 12)

T

2
h

= j—sin=cos = (% — ) = ——gin Bsin «
2 2 2( ) 2 b
2

(A8, = (82— (5,2 = (1 — sin® fsin? o)

(8 = i [cos Gt + e sin G (-] [T+ 1= 6ol [oos 51 + e sin Gl
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Therefore, the left side of the uncertainty relation is

4
(AS,)*){(AS,)?) = %(1 — sin? Bcos® @) (1 — sin? Bsin? @)
h4 ) 1. 4 .92
= E(l—sm 5+Zsm B sin 204)
= 1g {cos 7 5 Bsin®2a | = Pla,

which is clearly maximized when sin2a = 41 for any value of 8. In other words, the
uncertainty product is a maximum when the state is pointing in a direction that is 45° with
respect to the x or y axes in any quadrant, for any tilt angle [ relative to the z-axis. This
makes sense. The maximum tilt angle is derived from

(3_1’; o —2cos Bsin B + sin® B cos B(1) = cos Bsin B(—2 + sin® ) = 0

or sin8 = #1//2, that is, 45° with respect to the z-axis. It all hangs together. The
maximum uncertainty product is

(AS)H(AS5,) = (; + }&) 2y

The right side of the uncertainty relation is [{[S,, S,])|2/4 = A*|(S.)|?/4, so we also need

h
(S.) = B |:COS2 g — sin® g} =3 cos 8
so the value of the right hand side at maximum is
h? RR*1 8
S = s = et
4 4 42 256

and the uncertainty principle is indeed satisfied.

21. The wave function is (z[n) = \/Q/_asin(mm/a) forn=1,2,3,..., so we calculate
(wlat) = [ k) ol -
0
<J}|{E2|TL> = /a<n|x>x2<x|n>d;p = a_2 _ 3 +9
0 6 n27r2
’ 3 6\ a° 3 1
Ar? = 2 (- g _O)_ 4 (_ 1

G
(hin) = [ (ole) el = 0

N

() = = [ tole) s (alnlde = " = ()
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(I did these with MAPLE.) Since [z, p] = ih, we compare (Az)?(Ap)? to h*/4 with

K2 n?m? K2 [ nir?
2 2 _ _ _
(Az)“(Ap)” = 5 ( 3+ 5 ) 1 ( 3 2)

which shows that the uncertainty principle is satisfied, since nw?/3 > nx > 3 for all n.

22. We're looking for a “rough order of magnitude” estimate, so go crazy with the approx-
imations. Model the ice pick as a mass m and length L, standing vertically on the point,
i.e. and inverted pendulum. The angular acceleration is #, the moment of inertia is mL?
and the torque is mgL sin @ where 6 is the angle from the vertical. So mL20 = mgLsiné or
6 = vV g/Lsinf. Since § < 0 as the pick starts to fall, take sinf = 6 so

0(t) = Aexp (\/%t) + Bexp (— %t)

w0 =0(0)L = (A+B)L

po=mbA(0)L = m\/%(A — B)L = \/m?gL(A — B)

Let the uncertainty principle relate zg and pg, i.e. zopy = y/m2gL*(A* — B?) = h. Now
ignore B; the exponential decay will become irrelevant quickly. You can notice that the
pick is falling when it is tilting by something like 1° = 7/180, so solve for a time 7" where

6(T) = 7/180. Then
/ 7r/180 m gL3 180)
—In
T

Take L = 10 cm, so g ~ 0.1 sec, but the action is in the logarithms. (It is worth your
time to confirm that the argument of the logarithm in the first term is indeed dimensionless.)
Now In(180/7) ~ 4 but the first term appears to be much larger. This is good, since it means
that quantum mechanics is driving the result. For m = 0.1 kg, find m?¢gL?/h* = 10%*, and
so T'=0.1 sec x (147/4 — 4) ~ 3 sec. I'd say that’s a surprising and interesting result.

23. The eigenvalues of A are obviously +a, with —a twice. The characteristic equation for
Bis (b—MX\)(=X)? = (b= \)(ib)(—ib) = (b— X\)(A\? — b?) = 0, so its eigenvalues are +b with b
twice. (Yes, B has degenerate eigenvalues.) It is easy enough to show that

ab 0 0
AB = 0 0 dab | = BA
0 —iab O

so A and B commute, and therefore must have simultaneous eigenvectors. To find these,
write the eigenvector components as w;, i = 1,2, 3. Clearly, the basis states |1), |2), and |3)
are eigenvectors of A with eigenvalues a, —a, and —a respectively. So, do the math to find
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the eigenvectors for B in this basis. Presumably, some freedom will appear that allows us
to linear combinations that are also eigenvectors of A. One of these is obviously |1) = |a, b),
so just work with the reduced 2 x 2 basis of states |2) and |3). Indeed, both of these states
have eigenvalues a for A, so one linear combinations should have eigenvalue +b for B, and
orthogonal combination with eigenvalue —b.
Let the eigenvector components be uy and uz. Then, for eigenvalue +b,

—ibus = +buy and tbuy = +bug
both of which imply ug = iuy. For eigenvalue —b,

—ibug = —busg and 1bus = —bus

both of which imply us = —iuy. Choosing us to be real, then (“No, the eigenvalue alone
does not completely characterize the eigenket.”) we have the set of simultaneous eigenstates

Eigenvalue of

A B Eigenstate
a b 1)
b (2 +)
—a —b L (2)—i3)

24. This problem also appears to belong in Chapter Three. The Pauli matrices are not
defined in Chapter One, but perhaps one could simply define these matrices, here and in
Problems 2 and 3.

Operating on the spinor representation of |4) with (1v/2)(1 + io,) gives

HIG D DIG)-5C D)5

So, for an operator U such that U = (1v/2)(1+i0,), we observe that U|+) = |S,; +), defined
in (1.4.17b). Similarly operating on the spinor representation of |—) gives

SO0 ()55

that is, U|—) = i|S,; —). This is what we would mean by a “rotation” about the z-axis by
90°. The sense of the rotation is about the +z direction vector, so this would actually be
a rotation of —7/2. (See the diagram following Problem Nine.) The phase factor i = /2
does not affect this conclusions, and in fact leads to observable quantum mechanical effects.
(This is all discussed in Chapter Three.) The matrix elements of S, in the S, basis are then

(Sy; +1S.1Sy; +) = (HUTS.UJ+)

(Sy; +15:1Sy; =) = —i(+|UTS.U|-)
(Sy; —|S:|Sy; +) = i(—|U'S.U|+)
<Sy5_|SZ|Sy§_> = <_|UTSZU|_>
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Note that ¢f = o, and 02 = 1, so UTU = (1v/2)(1 —i0, ) (1v/2)(1 +io,) = (1/2)(1 +02) =1
and U is therefore unitary. (This is no accident, as will be discussed when rotation operators
are presented in Chapter Three.) Furthermore 0,0, = —0,0,, so

1 hoo1 , hl : h

Uls,u = —2(1 — iam)aazﬁ(l +io,) = 55(1 —i0,)%0, = —ZE%UZ

A0 ) A% )

h I
SO Szi—([)l):—ax

2\1 0 2
in the |Sy; £) basis. This can be easily checked directly with (1.4.17b), that is
h h
5.1, = 5 s[14) F =) = 515, %

There seems to be a mistake in the old solution manual, finding S, = (%/2)o, instead of ;.

25. Transforming to another representation, say the basis |c), we carry out the calculation
‘A’C” ZZ |b/ b/‘A’b// <b//| //>
l b/l

There is no principle which says that the (¢’|b') need to be real, so (¢| A|¢”) is not necessarily
real if (b'|A|b") is real. The problem alludes to Problem 24 as an example, but not that
specific question (assuming my solution is correct.) Still, it is obvious, for example, that the
operator S, is “real” in the |S,; ) basis, but is not in the |+) basis.

For another example, also suggested in the text, if you calculate
1 ; 7/ / !
(p'lzlp") = / (p'|x]a) (@' |p")da = / (') (@ |p") e’ = 5= / e AL
i

and then define ¢ = p” — p’ and y = 2/ /R, then

d - hd

A
— = [ gy == —5(q
(p'|z]p") = omidg ] © W qu()

so you can also see that although x is real in the |2’) basis, it is not so in the |p’) basis.
26. From (1.4.17a), |S,; £) = (|4) £ |-))/V2, so clearly

T T I R I el

- [ ]

— = S ) H S =) =D )
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27. The idea here is simple. Just insert a complete set of states. Firstly,

OFAW) =D @I f(A)d) (d']p) = Zf )(b'|a')(a'|V)

a’

The numbers (a’|0') (and (b”|a’)) constitute the “transformation matrix” between the two
sets of basis states. Similarly for the continuum case,

(p"IF(r)p) = / (p"|F(r)|x') (X' |p)d?z’ = / F(r')(p"|x) (x|p) 3z’
- (27r—1h)3/ F(r)e'® =) /hgsy/

The angular parts of the integral can be done explicitly. Let q = p’ — p” define the “z
direction. Then

27

™ 1 1 o
"g / _ dr' F(r' 0do iqr’ cos0/h __ /d "F(r / d iqr'u/h
WO = s [ a6 [ swoaser =t - [arre) [ ane

1 oo 1 sin(qr /h)
T /dT/F(T/)WZZ sin(qr'/h) = 2252 /dT/F(r')T

28. For functions f(q,p) and g(g, p), where ¢ and p are conjugate position and momentum,
respectively, the Poisson bracket from classical physics is

af o af o oF
[f? g]classical f_g - _f_g 50 ['Ta F(px)]classical = ap

Using (1.6.47), then, we have

{x,exp (%ﬂ =1h {x,exp (ipgaﬂ = ihaa exp (ipga> = —aexp (ipga>
classical Dz

To show that exp(ip,a/h)|z') is an eigenstate of position, act on it with z. So

Texp <ip;:“> o) = {eXp (%) T — aexp (ip;:a)} ) = (+/ — @) exp (ﬁ;“) 1)

In other words, exp(ipya/h)|z’) is an eigenstate of z with eigenvalue 2’ — a. That is
exp(ipga/h)|z’) is the translation operator with Az’ = —a, but we knew that. See (1.6.36).

29. T wouldn’t say this is “easily derived”, but it is straightforward. Expressing G(p) as a
power series means G(p) = Y, GnmeD; P} Py, Now
[23, p}] = wapip) ™" — pla; = it 4 paipl Tt — pia
2ihpy ™" + plaipy 7 — pla

n—1

= mhp

S S
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The procedure is essentially identical to prove that [p;, F'(x)] = —ihdF/Jz;. As for

2.2

[22,p%] = 2%p* — p?a? = 2%p® — wpPax + ap’v — p*a? = 2z, p?| + [z, P02

make use of [z, p?] = thd(p?)/Op = 2ihp so that [z?, p?| = 2ili(xp+pz). The classical Poisson
bracket is [22, p?]dassical = (27)(2p) — 0 = 4xp and so [22, p?] = th[2?, p?*]classical When we let
the (classical quantities) z and p commute.

30. This is very similar to problem 28. Using problem 29,

25, T(1)] = [az‘i,exp (”;"ﬂ - maii exp (_ig'l> = I, exp (_i2'1> — 1,J()

We can use this result to calculate the expectation value of x;. First note that

T W[z, TV = T'Oz50) - T )T Dz = T T (1) —
T LT =1;

Therefore, under translation,
(2:) = {alzila) = (| T W)z T (V]e) = (| T V)T D)]a) = (al(z; + 1)) = (z:) +1;

which is exactly what you expect from a translation operator.

31. This is a continued rehash of the last few problems. Since [x, J(dx')] = dx’ by (1.6.25),
and since J'[x, J] = J'xJ —x, we have J'(dx")xJ (dx') = x+J1(dx')dx’ = x+dx’ since
we only keep the lowest order in dx’. Therefore (x) — (x) + dx’. Similarly, from (1.6.45),
p, J(dx)] =0, s0 J'[p,J] = T pJ —p =0. That is 7'pJ = p and (p) — (p).

32. These are all straightforward. In the following, all integrals are taken with limits from
—o0 to 0o. One thing to keep in mind is that odd integrands give zero for the integral, so
the right change of variables can be very useful. Also recall that [ exp(—az?)dz = \/7/a,
and [ 22 exp(—ax?)dx = —(d/da) [ exp(—az?)dz = \/7/2a*?. So, for the z-space case,

X

(p)y = /(a|x’><x'|p|oz)dx’ = /(a|x’>?dix/<x'|a)dm' = #/hkexp <_d_/2) dx' = hk
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Using instead the momentum space wave function (1.7.42), we have

0 = [l Wla)as = [ 5161
d , hk)2d2] ¢
= ﬁ/pexp{ h—}dp h\/_/q+h/<: exp{ h2]dq—hk
d ¢>d? d Jah? h?
2y — k)2 % _ ¢ vt 2 _ v 272
W) = o [ e |- L] dg= 2T (=

33. I can’t help but think this problem can be done by creating a “momentum translation”
operator, but instead I will follow the original solution manual. This approach uses the
position space representation and Fourier transform to arrive the answer. Start with

<mmw:=/wmwwwwf=/ﬂmw@wwf

_ 1 : ' =p)-a) 01 (' =p)-2]
= 5.7 xexp[z . dx —82—/6Xp ZT dx

0
= ihg 80 — )

Now find (p'|z|a) by inserting a complete set of states |p”), that is

/ _ / /! /! (/A i r N /! 8 /
Wala) = [ Wlelp )y = itz [ 667 =)o/} = iy (o)

Given this, the next expression is simple to prove, namely

wmwz/wwmwmw:/@%<> "
using the standard definition ¢ (p’) = (p'|7).

Certainly the operator T (Z) = exp(izZ=/h) looks like a momentum translation operator. So,
we should try to work out p7 (Z)[p’) = pexp(izZ/h)|p’) and see if we get |p’ + Z). Take a
lesson from problem 28, and make use of the result from problem 29, and we have

TEIW) ={TEp+p, TEI}H) = {p’T(E) - iﬁa%T(E)} ) =@ +ETE)Y)

and, indeed, T(Z)[p’) is an eigenstate of p with eigenvalue p’ + Z. In fact, this could have
been done first, and then write down the translation operator for infinitesimal momenta, and
derive the expression for (p/|x|a) the same way as done in the text for infinitesimal spacial
translations. (I like this way of wording the problem, and maybe it will be changed in the
next edition.)
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Chapter Two

1. The equation of motion for an operator in the Heisenberg picture is given by (2.2.19), so

. 1 1 eB eB . eB .
Sy = —|9:, H| = ———|5,,5.]| = —8 S, =——85, S.=0
zh[ ] ih mc[ ] me Y Y mc
and Sxy = —w25x7y for w = eB/me. Thus S, and S, are sinusoidal with frequency w and S,

is a constant.

2. The Hamiltonian is not Hermitian, so the time evolution operator will not be unitary, and
probability will not be conserved as a state evolves in time. As suggested, set Hy; = Hyy = 0.
Then H = a|1)(2| in which case H? = a?|1)(2]1)(1| = 0. Since H is time-independent,

U(t) = exp (—%Ht) =1- %Ht =1- %at|1><2|

even for finite times t. Thus a state |, t) = U(t)|2) = |2) — (iat/h)|1) has a time-dependent
norm. Indeed (a|a) = 1 + a®t?/h* which is nonsense. In words, it says that if you start out
in the state |2), then the probability of finding the system in this state is unity at ¢ = 0 and
then grows with time. You can be more formal, and talk about an initial state c;|1) + c2|2),
but the bottom line is the same; probability is no longer conserved in time.

3. We have n = sin fx + cos fz and S = (h/2)o, so S - n = (h/2)(sin fo, + cos fo,) and
we want to solve the matrix equation S -niy = (h/2)1 in order to find the initial state
column vector 1. This is, once again, a problem whose solution best makes use of the Pauli
matrices, which are not introduced until Section 3.2. On the other hand, we can also make
use of Problem 1.9 to write down the initial state. Either way, we find

la,t =0) = cos (g) [4) + sin <§> -) 50,
|, t) = exp [—%;—BctSz] lo,t =0) = e~ t/2 (g <§> +) + o /2 gin (g) -)

for w = eB/mc. From (1.4.17a), the state |S,; +) = (1/v2)|+) + (1/v/2)|-), so

[(Se; He, )P = '%eiwt/2 cos (g) + %em/z sin (g)
= %cos2 (g) + % (ei“’t + e_i“’t) cos (g) sin (g) + %sin2 (g)

1 1 1
= 3 + §Cos(wt) sin 8 = 5(1 + sin 3 cos wt)

2

which makes sense. For 8 = 0, the initial state is a z-eigenket, and there is no precession,
so you just get 1/2 for the probability of measuring S, in the positive direction. The same
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works out for § = 7. For = m/2, the initial state is |S,; +) so the probabilty is +1 at ¢t =0
and 0 at t = 7/w = T/2. Now from (1.4.18a), S, = (A/2)[|+) (=] + |=){+]], so

(o, 1|Splast) = {e“t/%os (g) (+] + 7“2 sin (§) <—!1

g {ei‘”t/Q sin (g) [+) + e %2 cos <§> |—>]

_ h : ﬁ 5 iwt —wt _h :
= QSID(2>COS<2)[€ +e ]—QSlnBcoswt

Again, this makes perfect sense. The expectation value is zero for § = 0 and § = m, but for
f = m/2, you get the classical precession of a vector that lies in the zy-plane.

4. First, restating equations from the textbook,

|ve) = cosf|vy) — sinf|vy)
lv,) = sinf|vy) + cosf|vy)
2.2
and E = pc (1 + Tgpz )

Now, let the initial state |v.) evolve in time to become a state |a,t) in the usual fashion

|a,t) _ 6—th/h|Ve>
= cosfe B ) — sin B E2t/R )

— e—ipct/h [e—im%CSt/2ph coS 0|V1> . e—imgc?’t/Qph sin 6)’1/2>:|
The probability that this state is observed to be a |v,) is
2 —im2c3t/2ph 2 —im3c3t/2ph ;2 2
Pve = ve) = |(Ve|la, )" = ‘e 1CY P cos® 0 4 e M2 M P sin 6"

f 2
. 2.3 .
= ‘COS2 0 + A et/ 2k 2 0‘

Am?2c3t
= 00849+Sin49+2COS26’SiIl29COS{ me 1

2ph

Am?2c3t
= 1—sin22081n2{ me }

4ph

Writing the nominal neutrino energy as E = pc and the flight distance L = ¢t we have

L
P(v. — v.) = 1 — sin® 26 sin? {Am2644Ehc}

It is quite customary to ignore the factor of ¢* and agree to measure mass in units of energy,
typically eV.



Copyright, Pearson Education. 17

The neutrino oscillation probability from KamLAND is plotted here:

" e Data-BG-GeoV,
- — Expectation based on osci. parameters
I + determined by KamLLAND
o B
Z 081
<
3 B
8 -
E 0.6__+ + =
< L [
2 L —A
;)E 0.4 +
02F
OI_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
20 30 40 50 60 70 80 90 100

Ly/E, (km/MeV)

The minimum in the oscillation probability directly gives us sin® 26, that is

1 —sin?20 ~ 0.4 SO 0 ~ 25°

The wavelength gives the mass difference parameter. We have

km 5 4he 81 x 200 MeV fm
ﬂ' pr—

4 —
0 MeV Am? Am?

where we explicitly agree to measure Am? in eV2. Therefore

Am? = 40m x 10%eV? x 107%/10° = 1.2 x 107* eV?

The results from a detailed analysis by the collaboration, in Phys.Rev.Lett.100(2008)221803,
are tan?0 = 0.56 (6 = 37°) and Am? = 7.6 x 107° eV2. The full analysis not only includes
the fact that the source reactors are at varying distances (although clustered at a nominal
distance), but also that neutrino oscillations are over three generations.

5. Note: This problem is worked through rather thoroughly in the text. See page 85.
First, © = (1/ih)[z, H] = (1/ih)[z,p*/2m| = p/m (using Problem 1.29). However p =
(1/ih)[p,p?/2m] = 0 so p(t) = p(0), a constant. Therefore z(t) = x(0) + p(0)t/m, and
[z(t),2(0)] = [2(0) 4+ p(0)t/m,x(0)] = [p(0),z(0)]t/m = —iht/m. By the generalized uncer-
tainty principle(1.4.53), this means that the uncertainty in position grows with time. This
conclusion is also a consequence of a study of “wave packets.”
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6. This is the proof of the so-called “dipole sum rule.” Using Problem 1.29,

2 2
_ |2 ) __"
(H,z] = {Qm + V(x), } = zhm SO [[H,z],z] = -
Now [[H,z],z] = [H,z]x — z[H,z] = Ha? — xHx — vHx + 2*H = Ha* + 2*H — 2xHx,
and so (a"|[[H, z], z]|a") = 2E"{a"|2>|a") — 2(a"|zHz|a") = —h*/m from above. Inserting a
complete set of states |a’) into each of the two terms on the left, we come up with

h2

2_ — <CLH|ZEHZE‘GN>—E”<6L”|I2|6L”>
m

= 3 e H|a ) fela”) — B falaya'fola")] = SO (' = B)](a” ]’}

a’ a’

7. We solve this in the Heisenberg picture, letting the operators be time dependent. Then

d 1 1 1
a _ H — — 2 2 2
ZXP 7 —[x-p, H] = | wPe Hypy + 2Dz 5 (py +p, +p2) + V(X)}
1 2 2 2 1
= 57— {lz,03]pe + . v)lpy + 2, P2Ip: } + =% [p,V(x)]

1 ov ov 6V p?
= FPR AP — e — Yy — =< —x-VV
(px pi+pi) - o Yoy Yo T m
using (2.2.23). What does this mean if dx-p/dt = 07 The original solution manual is elusive,
so I'm not sure what Sakurai was getting at. In Chapter Three, we show that for the orbital
angular momentum operator L, one has L? = x’p? — (x - p)? + ihix - p, so it appears that
there is a link between this quantity and conservation of angular momentum. So,...7

8. Firstly, ((Az)?) = (2?) — (2)? and (from Problem 5 above) x(t) = z(0) + (p(0)/m)t, so
(z(t)) = (x(0)) + ((p(0))/m)t = 0 and ((Ax)?) = (2?) at all times. Therefore we want

t t°
(D)) = (@2(1)) = (%(0)) + — (2(0)p(0) + p(0)(0)) + —{(p*(0))
where the expectation value can be calculated for the state at ¢ = 0. For this (minimum
uncertainty) state, we have Az = 2(0) — (z(0)) = x(0) and Ap = p(0) — (p(0)) = p(0), so
from Problem 1.18(b) we have Ap(0)|) = iaAx(0)|) where a is real. Therefore

t2

(A2)?) = (2%(0)) + — [ia(2*(0)) — ia(z*(0))] + —(~ia)(ia){z*(0)) = (+*(0)) [1 + _t]

t
m
where h? /4 = ((Az)?)((Ap)?) = a?(2(0)) sets a®> = h?/4((Ax)?)|,—o. San Fu Tuan’s original
solution manual states that this agrees with the expansion of wave packets calculated using
wave mechanics. This point should probably be investigated further.
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9. The matrix representation of H in the |a’), |a”) basis is H = [ (5) 0 } , so the characteristic

equation for the eigenvalues is (—F)?—§? = 0 and E = +0 = F. with eigenstates \/Li [ jil } :

This gives |a/) = (|Ey) +|E_))/v2 and |a”) = (|E,) — |E_))/+/2. Since the Hamiltonian is
time-independent, the time evolved state is exp(—iHt/h)|a’) = (e M E, ) +eP/"| E_))/V/2.
The probability to find this state at time ¢ in the state |a”) is |(a”| exp(—iHt/h)|a’)|?, or

1 , . 1, _, . . ot
Z ’(<E+‘ o <E,) ‘ (e—zét/h’E+> + 616t/h|E7>) ‘2 _ Z |6—z6t/h o ezét/h‘Q _ SIH2 (%)

This is the classic two-state problem. Spin-1/2 is one example. Another is ammonia.

10. This problem is nearly identical to Problem 9, only instead speciying two ways to de-
termine the time-evolved state, plus Problem 2 tossed in at the end. Perhaps it should be
removed from the next edition.

(a) The energy eigenvalues are Ey = £A with normalized eigenstates |Ey) = (|R)%|L))/V/2.
(b) We have |R) = (|E,) + |E_))/v/2 and |L) = (|E}) — |E_))/V?2, so, with w = A/,
ja.t) = e Ma,t =0) = e R)(Rla) + e L)(L|a)

= [ + € EL)] (Rla) + —= [ L) — L)) (Lla)

1
_I._ JR—
% vl
(¢) The initial condition means that (R|a) = 1 and (L]a) = 0, so we calculate

> 1

(Ll ) = 7 [(Bs] = () | (1 B) + e BL) [ = |

i wtl2
!e m—e“’t‘ = sin® wt

(d) This is the only part of the problem that is “new.” Indeed, Problem 9 could have been
done this way, instead of using the time propagation operator. Using (2.1.27) we write

m%(}gm,t) = (R|H|a,t)  and ih%(ﬂa,t) = (L|H|a,t)

Let ¥g(t) = (R|a, t) and ¥y (t) = (L|a, t). These coupled equations become

i = (ML = ME)fouf) = Ay, and iy, = Ay

or thp = —iwy, and 1, = —iwg, so Yr(t) = Ae™' + B! and 1 (t) = Ce™' + D™t
These are just (b) where A = (R|E,), B=(R|E_), C = (L|E,), and D = (L|E_).

(e) See Problem 2. It can be embellished by in fact solving the most general time-evolution
problem, but in the end, the point will still be that probability is not conserved.
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11. Restating this problem: Using the one-dimensional simple harmonic oscillator as an
example, illustrate the difference between the Heisenberg picture and the Schrodinger picture.
Discuss in particular how (a) the dynamic variables x and p and (b) the most general state
vector evolve with time in each of the two pictures.

This problem, namely 2.10 in the previous edition, is rather open ended, atypical for most
of the problems in the book. Perhaps it should be revised. Most of the problem is in fact
covered on pages 94 to 96. Anyway, we start from the Hamiltonian

1 1 1
H = %pQ + émwaQ = (N + 5) hw

(a) In the Schrédinger picture,  and p do not evolve in time. In the Heisenberg picture

dx 1 1 1 P

— = —|z,Hl= —— 2 = h(2p) = —

dt ih [z, H] 2imh 7] 2@'th (2p) m

dp 1 mw? w?

— = —|p,Hl = —— 2l = —ih)(22) = —mw?

using Problem 1.29. These are just the classical Hamilton’s equations, with a force —w?x.
Solving these coupled equations are simple, yielding sinusoidal motion at frequency w for
x and p. One can also recognize that the two pictures coincide at ¢ = 0, and then get
Heisenberg from Schrédinger using xzpy(t) = exp(iHt/h)z(0) exp(—iHt/h) and expanding
the exponentials. Similarly for momentum.

(b) In the Heisenberg picture, state vectors are stationary. For the Schrédinger picture, it is
easiest to expand in terms of eigenstates of N, that is |a,t) = > ¢, (t)|n), so (2.1.27) gives

ihy " én(t)n) = Hlot) = <n + %) hwen (1) |n)

in which case ¢, (t) = exp[—i(n + 1/2)wt], using orthonormality of the |n).

12. Not enough information is given in the problem statement. The state |0) is one for
which (x) =0 = (p). As described in the solution to Problem 11, in the Heisenberg picture,
the position operator is x(t) = z(0) cos(wt) + (p(0)/m) sin(wt), and (z) = (t = 0]z(t)|t = 0).
Since e/ ye P/l = /M [ e=Pa/P] 4 empalhyp) = /Pih(—ja/h)e” P + ¥ = x + a, using

Problem 1.29, the expectation value of position is

() = (0]e™"2(0)e~ "0 cos(wt) + (0|e®/p(0)e~P/"|0) sin(wt)
= (0][z(0) + a]|0) cos(wt) + (0]p(0)|0) sin(wt) = a cos(wt)

Since the state e~?%/"|0) represents a position displaced by a distance a (See Problem 1.28),
we have the classical motion of a harmonic oscillator starting from rest with amplitude a.



Copyright, Pearson Education. 21

13. Making use of (1.6.36), we recognize T (a) = exp(—ipa/h) as the operator that translates
in = by a distance a. Therefore (z/|T(a) = (2’ — a| and

| 11 L (2 —a)’
/| —ipa/h _ r_
(z'|e |0) = (2" — al0) = Tl/4 (1)/2 P [ 2 ( Lo ) ]

The probability to find the state e=7*/?|0) in the ground state |0) is the square of

. : 1 1 2
<O|e—zpa/h|0> :/dx/<0|x/><xl|6—zpa/h|0> - - dl‘, —l(z'—a)?+2""] /223

7T1/2£B0

The integral is simple to do by completing the square. Write

2 2
! 2 /2_ [2 / a o (, a/) a
— 9 _ Zl=9 _Z bl
(' —a)*+x {x a$+2} |:£L' 5 }—1—2

and shift the integration variable by a/2. You end up with

—iva 1 1 _a2 2:2 & 22 fEQ _a2 2:2
(Ole p/h|0>:ma7_06 /40/_ dye V%0 = =@ /4%

so the probability is just e~*/275 This is indeed time-independent.

14. Rearranging, we have z = \/hi/2mw(a + a') and p = i\/hmw/2(a’ — a), therefore

zln) = ,/% [\/ﬁ|n— 1) +\/n—+1|n+1)]

pln) = M/MT""[Jn—H\n+1>—\/mn_1>]

(m|zln) = 4/ %(m](a +a')|n) = 4/ % [\/ﬁém,n,l +vn+ 15m.n+1]

mlpl) = i/ "2 (at — )} = i/ [V Tir — ViG]

(m{z,p}n) = (m|[(zp+px)ln) = (m|xpn) + (n|zp|m)”
= 1 hmTw [\/n + 1{m|z|n + 1) — v/n(m|z|n — 1)

—Vm ¥ Unjzm + 1) + Vm(n|zlm — 1)}
h
— i [0+ Do+ V/F D0+ 20ns2m — V(0 = Dnzn — 1

2

—(m 4 D)Om — /(e + D) (m+ 2)8nmse + /(M — D)onm_s + mdnm]
— ih [\/(n+1)(n+2 v — /(1 — 1)d,_ Qm}
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(mla®|n) = % [\/ﬁ<m|x|n — 1) +Vn+ L{m|z|n + 1>]
- % V= D)z + (20 4+ D + /(0 + D0+ 2)0012.m)

mlp?ln) = i/ [V Tomlpln + 1) — viatmlpln — 1]

hmw

— 5 [\/(n +1)(n+ 2)6n+2,m — (2n + 1)6pm + V/n(n — 1)571*2:”1}

Now, the virial theorem in three dimensions is quoted as

B)-wen o (2)-05)

in one dimension. For the harmonic oscillator, zdV/dx = mw?z?. So, evaluating the expec-
tation value in the state |n) using the calculations above, we have

2
P hw 1 dV hw 1
—)=—0n+1) = + = —)=—7@2n+1)= 5

<m> 5 (2n+1) =hw (n 2) and <xd:r; 5 2n+1) =hw n+2

and the virial theorem is indeed satisfied.

15. Turning around what is given, (p/|2') = (27h)~/2e~#'*'/" Then
Whela) = [ ') lalo) = [ do'a' o))
0 0 0
— . /_ / / / —ih / / / / — h_ /
i [ o' e le) = iy [ o'l ') = in 9])

For the Hamiltonian H = p?/2m + mw?z?/2 with eigenvalues F, the wave equation in
momentum space is (p'|H|a) = E(p'|a) = Eua(p’), and the second term in (p'|H|«) is

2 2 2,2 92 2,2 2
mw 9 mw? .. 0 mh w* 0 mh w® d“u,
= latla) = i lela) = ~T S la) =~

With a little rearranging, the wave equation becomes

mhw? d?u, 1
5 g+t telt) = Bulr)

which is the same as (2.5.13) but with mw? replaced with 1/m. Inserting this same substi-
tution into (2.5.28) therefore gives the wave functions in momentum space.
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16. From (2.3.45a), x(t) = x(0) coswt + [p(0)/mw] sin wt, so
C(t) = (0]x(t)x(0)|0) = (0]x(0)x(0)|0) coswt + (1/mw)(0|p(0)z(0)|0) sin wt

The matrix elements can be calculated by the techniques in Problem 14. You find that
(0]2(0)x(0)|0) = h/2mw and (0|p(0)x(0)|0) = 0. Therefore C(t) = (h/2mw) cos wt.

17. Write |a) = a|0) + b|1), with a, b real and a® + b* = 1. Using Problem 14,

h
(alz]a) = a®(0]z|0) + ab{0]z|1) + ab(1|z|0) + b*(1]|z|1) = 2ab/ S

The maximum is obtained when a = b= 1/v/2 so (z) = \/h/2mw.

The state vector in the Schrédinger picture is |, t) = e=/%|a) = \/Li [e7t/2|0) + e=3!/2|1)]
and the expectation value (o, t|z|a, t), again using Problem 14, is
h

1 —iwt 1, 1 —i ;
= e ™0l et (1210} = iwt iwt
() 2°¢ (Ol[1) + 2°¢ (1]10) 2 Qm(ﬂ(e ) mw

cos wt

In the Heisenberg picture, use z(t) from (2.3.45a), and again Problem 14. In this case, we
note that (O|p|1) = (1|p|0) = 0, so we read off (x) = \/h/2mw coswt.

To evaluate ((Ax)?) = (2?) — (z)?, we just need to calculate (x?). Use the state vector in
the Schrodinger picture, and read off matrix elements of 22 from Problem 14, to get

1 1 _. 1 . 1 1 h h
<LE2> = §<0|$2|0> -+ ie*’“t<0|x2|1> + §€Mt<1|£€2|0> —+ §<1’5L’2|1> = ——[1 + 3] = —

2 2mw mw
o ((Az)?) = (h/mw)(1 — 5 cos® wt).

18. Somehow, it seems this problem should be worked by considering (0|z*"|0), but T don’t
see it. So, instead, work the left and right sides separately. For the right side, from Problem
14, exp[—k*(0]z?|0) /2] = exp[—k?*h/4mw]. For the left side, use position space to write

<O|ez’km‘0>_/dw/<0|eika:’x/><x/|0>_/dxlezkx 1"0 /mw/dx/ezkm —mwz’ /h

Put 2’ = uy/h/mw and write —u? +ikuy/h/mw = —(u —ik\/h/mw/2)? — lik? /4mw. Then,
putting w = u — iky/h/mw/2, we have

mw 2 2 2 2
Olezkx|0 —hk /4mw dwe V" = —hk /4mw\/_ —hk /4dmw
V 77V omw \/_

and the two sides are indeed equal.
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19. Tt will be useful to note that, from (2.3.21), (a")"|0) = v/n!|n). So

a[&“WO)} — a[ijﬂ( )|O]—a[2\/_| ] Z a|n

B ; (n—l Z\/_’m —)\[e*‘”]o}]

so e’ |0) is an eigenvector of a with eigenvalue A. For the normalization, we need the inner
produce of e*'|0) with itself. However, (0]e* *e**'[0) = (0e*"*|0) = el*” since e*'|0) is an
eigenvector of a with eigenvalue A. Thus |\) = e~ MP/2ghal |0) is the normalized eigenvector.

Now we have al\) = AA) and (Aaf = (A|N*, so (\|(aT £ a)|A) = X £ X (M(a)?]\) = N2
(@A) = (A% (MaTa] Ay = M X; and (Maa®|X\) = (M\(1 + a’a)|\) = 1 + A*\. Therefore

(1) = ) =\ 5 (A4 )

@) = % A2+ (V)2 + XA+ (14 A™N)]
2 2 2 _ h
(Ao = ()~ (o) = 5
W = Ol =i/ T - )
(p*) = _m_hw [)\2 ()\*)2—)\*)\—(1—1—)\*)\)]
() = <p2>—<p>2:m7m”

so AzAp = h/2 and the minimum uncertainty relation is indeed satisfied. Now, from above,

25 A - 2 [A[*"
N = MY S =3 fl)so [ = e
n=0 : n=0 ’

which is a Poisson distribution P,(u) = e #u"/n! with mean p = |A|?. Note that the mean
value of n is not the same as the most probable value, which is an integer, although they
approach the same value for large u, when the Poisson distribution approaches a Gaussian.
However, P,(u)/P,—1(n) = p/n > 1 only if n < p, so the most probable value of n is the
largest integer n,, less than |A?|, and the energy is (n,, + 1)hw. To evaluate e~?*/"|0) =

elVme/ 2t =a)|0) yge eATB = eAeBemABl/2 where A and B each commute with [A, B]. (See
Gottfried, 1966, page 262; Gottfried, 2003, problem 2.13; or R. J. Glauber, Phys. Rev.
84(1951)399, equation 39.) With A = ¢y/mw/2h, we then easily prove the last part, as

6—ip€/h|0> _ 6&/mw/?haTe—E\/mw/2hae—€2mw/4ﬁ|0> _ e—mﬁzw/élﬁeﬂg/mw/QhaT |0> _ €_>\2/26>\aT |O>
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20. Note the entry in the errata; J* is not yet defined at this point in the text. The solution
is straightforward. We have [ax,al] = 1 and [a, aIF] =0 = [al, aiF] = [a4,az]. Then

2

[, Jy] = % (aiaJraLa, —ata_alay —a a_ala + ala,aia,)
= %2 <a1a+aia_ —ata_(ayal —1)—d a_ala_ + aia_aT_a_>
= %2 <aﬁra_ - aia_aia_ + ala_at _> = %26& <a_ —ala_a_ + a_aT,a_>
= %Qai <a, —dla_a_+(1+d a)a ) = hala_ = +hJ,

and similarly for [J,, J_]. Put Ny = al,a. so Jz = (h/2)(N —N,) with [Ny, N_] =0. From
(3.5.24), J2 JoJ 4+J2—hJ,, s0 J.J_=h*aa_aa, =h N+(1 +ala_)=HmN,(1+N_),
so J? = (N2 +2N,N_+N2+2N, +2N_) = e “(N?+2N) = N ( + 1) Finally, noting
that we can write both J? and J, in terms of Ny, Wthh commute we clearly have [J?, J,] = 0.

21. Starting with (2.5.17a), namely g(x,t) = exp(—t?+2tz), carry out the suggested integral
g

/ g(w,t)g(m,s)6_$2dx = :/ 625t—(t+8)2+2x(t+s)—x2dx

—00 —0o0

o 2
_ BQSt/ 6—[x—(t+s)] dr — 7T1/2628t

[ [ 2 1 > 2"
ZZ{ [ @)@ dx} TS S
n=0 m=0 -/~ : n=0 "

The sum on the right only includes terms where ¢ and s have the same power, so the
normalization integral on the left must be zero if n # m. When n = m this gives

/ H’2 e~ dr = 7l/29np)

which is (2.5.29). In order to normalize the wave function (2.5.28), we compute

/ ( )un d$ _ |Cn| / H2 ( /%) _mwz2/hdl‘ _ |C | / 1/22nn'

so that ¢, = (mw/mh)/4(2"n!)~1/2, taking c, to be real. Compare to (B.4.3).
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22. This is a harmonic oscillator with w = \/k/m for = > 0, with (z|n) = 0 at z = 0, that
is, solutions with odd n. So, the ground state has energy 3iw/2. The wave function is given
by (B.4.3), times v/2 for normalization, that is u(z) = 2(mw/7h)4e~ ™2z /mw [h, for
x>0, and u(z) =0 for x < 0. We than calculate the expectation value

22) 4mw mw/ dg—men?/h g dmw w3 ( h ? mh _ 3 h
mh h 7rh mw  2mw
23. From (B.2.4), u,(z) = (z|n) = \/2/Lsin(nnz/L) and E, = n*7?h*/2mL?, so

U(z,t) = (x|o, t) = (x|e Y a,0) = Z(l’le_im/hln (n]a, 0) ch =iBut/hy (1)

n

where ¢, = (n|a,0). Now, I take a hint from the previous solutions manual, that “known
to be exactly at x = L/2 with certainty” and “You need not Worry about normalizations”
mean that (z|a,0) = ¥ (z,0) = §(x — L/2), so ¢, = fo (2,0)up, (v)dx = \/2/Lsin(nm/2). T
don’t like this; it seems that 1 (z,0) = 1/d(x — L/2) is a better choice, but how well defined
is “known with certainty”? Anyway, ¢, = 0 if n is even, and ¢, = \/T (—=1)=1/2 if n is
odd, and |¢,|? =0 or |c,|* = 2/L, i.e. independent of n, for n odd. Then, insert in above.

24. Write the energy eigenvalue as —FE < 0 for a bound state, so the Schrodinger Equation
is (—h*/2m)d*u/dz® — vod(z)u(r) = —Eu(z). Thus u(z) = Aexp(—zv2mE/h) for z > 0,
and u(x) = Aexp(+xv2mE/h) for < 0, and du/dx = F(v2mE /h)u(x). Now integrate
the Schrodiner Equation from —e to +¢, and then take ¢ — 0. You end up with

! { h? V/2mE W2 VomE
1

- [—u<a>—u<—s>1}—uOu<o>—— u(0) — vou(0) = 0

2m  h m h

which gives E = mu?/ 2h*. This is unique, so there is only the ground state.

25. For this problem, I just reproduce the solution from the manual for the revised edition.
(Note that “problem 22” means “problem 24” here.) See the errata for some comments.
Using the result of problem 22, where 2mE/KZ = A%w“/K* in our notation, we have

p(x,c=0) = Aup[-nl[:])‘lzl. The mormalization is then 24° z exp[-2mix/W?]dx =
1 or 2a2[¥2/2m1] = 1 and hence A = (m\/K2)%. From (2.5.7) and (2.5.16), we have

$(x,t20) = ] dax'9(x',0)K(x,x";t)

= (@ /K25 (m/2viKe)® T expl-mi|x'| /M) exp[1(x-x")%n/2ht)dx"
where we have used %(x',0) = (nlfl(z)l’up[-lﬂx’fﬂzls
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26. With V(z) = Az, A > 0 and —oo < x < o0, the eigenvalues E are continuous. The
wave function is oscillatory for x < a and decaying for > a, where a = E/\ is the classical
turning point. Indeed, the wave function is proportional to the Airy function Ai(z) where
z x (z — a). See Figure 2.3. On the other hand, for V(x) = A|z|, there are now quantized
bound states. This parity-symmetric potential has even and odd wave functions. The even
wave functions have Ai'(z) = 0 at z = 0, and the odd wave functions have Ai(z) = 0 at
x = 0. These conditions lead to quantized energies through (2.5.34) and (2.5.35). As shown
in Figure 2.4, the odd energy levels have been confirmed by “bouncing neutrons.”

27. Note: This was Problem 36 in Chapter Five in the Revised FEdition. It was moved to this
chapter because “density of states” is explicitly worked out now in this chapter. It seems,
though, that I should have reworded the problem a bit. See the errata.

Refer back to the discussion in Section 2.5. The wave function is

1, 2 2
ug(x) = Zelk'x where ky, = %nw and k, = %ny
and n, and n, are integers, with p = hik. The energy is
2 2 242 242

p =, 9 2 h” 9 2r°h”

om ~ am e TR = S () = T

Am2K?
SO dE = " ndn

The number of states with |n| between n and n + dn, and ¢ and ¢ + d¢, is

2
dN = ndnd¢ = m (%) dEd¢o

™

so the density of states is just m(L/27h)%. Remarkably, this result is independent of energy.

28. We want to solve (2.5.1) in cylindrical coordinates, that is find u(p, ¢, z) where

10 ( 8u) 1 0*u  O*u 2m.E 5
—— | p=— = — u=—k"u
pOp \" Op

T rog T o ®
subject to u(pa; ¢, 2) = ulpe, ¢, 2) = u(p, 9,0) = u(p, ¢, L) = 0. For u(p, ¢, z) = w(p, 2)®(¢),

1] 0 [ ow o, 0*w 2,0, Ld*®
a{pa—p(pa—p)”w}”’“ TFag Y

The first two terms are independent of ¢, and the third term is independent of p and z, so they
both must equal some constant but with opposite sign. Write (1/®)9*®/0¢* = —m?, giving
d(¢p) = eF™? with m an integer so that ®(¢ + 2m) = ®(¢). Now with w(p, z) = R(p)Z(2),

p O ([ OR p>0*Z 5, ) 1 0 ( OR m*  , 10°Z
R Op <pap)+ Tr " i pR Op p(?p p? * +Z@zz 0
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and similarly put (1/2)9*Z/9z* = —a® so that Z(a) = e***. Enforcing Z(0) = 0 = Z(L)
leads to Z(z) = sin ayz where ay = ¢w/L and £ = 1,2,3.... The p equation is therefore

1d [ dR m?
Ld (diey kQ—aQ——>R:0
pdp <pdp) ( Cop

Now define k% = k* — a2 and x = kp. Multiply through by 2% and this becomes

i.e., Bessel’s equation, with solution R(p) = A, Jm(kp) + BnNm(kp), where J,(z) and
N,,(z) are Bessel functions of the first and second kind, respectively. The cylinder wall
boundary conditions tell us that for each m we must have A,,J,,(kps) + B Nm(kpa) = 0
and Ay, JJo(kpp) + B Now(kpp) = 0. Set the determinant to zero, and so we would solve

S (KPa) Nin(Kpp) = Jin(155) Nin(Kpa)

for k. Denote with k,,,, the nth solution for  for a given m. Then

2 2 2 2
E= f K? = f (K% + ] or Evpn = h [k:2 +(€_7r>

-~ 2m, 2m. 2me | ™ L

In the presence of a magnetic field, the Hamiltonian becomes (2.7.20), with ¢ = 0. We
recover the problem already solved, essentially, using the gauge transformation (2.7.36), but
we need to multiply the wave function by the phase factor explieA(x)/hic] as in (2.7.55). In
this case, A = VA = ¢(1/p)9A /D¢ is given by (2.7.62), so A(x) = Bp2¢/2 = hegd/e, and

1 20 1 120 2igdd

___>719¢>__ 1g¢q) _ = sy 2:_ 2 ) _2:_ + 2

saz " aE ) = gun T o g Y T T F Mo g = ()
for ®(¢p) = e*™?. Consequently, the solution is the same, but with (integer) m replaced by
v =m =+ g. (The solutions to Bessel’s equation are perfectly valid for non-integral indices.)
The ground state is £ = 1 and n = 1, so Ey = (h*/2m.)(koy + n%/L?) for B = 0, and
Ey = (h*/2m.) (ks + w2/ L?) for B # 0. For these to be equal, m 4 g = 0 for integer m, so

he

Bp? h
= & PP _ +m or B x 7Tp(21 = j:27r—cm =+—m
e e

g:hc 2

which is the “flux quantization” condition.

The history of flux quantization is quite fascinating. The original discovery can be found in
B. S. Deaver and W. M. Fairbank, “Experimental Evidence for Quantized Flux in Supercon-
ducting Cylinders”, Phys. Rev. Lett. 7(1961)43. The flux quantum worked out to be hc/2e,
but it was later appreciated that the charge carriers were Cooper pairs of electrons. See also
articles by Deaver and others in “Near Zero: new frontiers of physics”, by Fairbank, J. D.;
Deaver, B. S., Jr.; Everitt, C. W. F.; Michelson, P. F.. Freeman, 1988.



Copyright, Pearson Education. 29

29. The hardest part of this problem is to identify the Hamilton-Jacobi Equation. See
Chapter 10 in Goldstein, Poole, and Safko. With one spacial dimension, this equation is
H(z,08/0z,t) + 05/0t = 0 to be solved for S(x,t), called Hamilton’s Principle Function.
So, Hyp = —(h?/2m)0% /0t* + V (2) = ihoy /Ot with o (x,t) = exp[iS(x,t)/h] becomes

1028 (i9S\?
hor * (ﬁa_)

If A is “small” then the second term in square brackets dominates. Dividing out v then leaves
us with the Hamilton-Jacobi Equation. Putting V(z) = 0 and trying S(z,t) = X(z) +T'(t),
find (X”)* /2m = —T" = o (a constant). Thus T(t) = a — ot and X (z) = +v2max + b,
where a and b are constants that can be discarded when forming ¢ (x,t) = exp[i(X + T)/h].
Hence ¢(x,t) = expli(v2max — at)/h], a plane wave. This exact solution comes about

because S is linear in x, so 92S/dz* = 0 and the first term in the Schrodinger Equation,
above, is manifestly zero.

h2

oS

Y+ V() = o

30. You could argue this should be in Chapter 3, but what you need to know about
the hydrogen atom is so basic, it would surely be covered in an undergraduate quantum
physics class. (See, for example, Appendix B.5.) The wave function for the atom looks like
W(r,0,¢0) = Ry(r)Y,"(0,¢) = ClmRnl( )P (cos B)e mé where Cyp, Ru(r), and P (cos ) are
all real. Since V = #9/0r + 0(1/r)0/00 + ¢(1/r sin 0)8/d¢, we have from (2.4.16)

= [ VY] = ¢

2
Me MeT Sln¢9|w|

so j = 0if m =0, and is in the positive (negative) ¢ direction if m is positive (negative).

31. Write ibp’ — iap” = —ia(p” — bp'/a + b2/4a ) +ib%*/4a = —ia(p’ — b/2a)? + ib*/4a,
translate p’ in the integral, and use f_oo e~ dr = /7 7/c. Then

1 [~ ip(x” — ') ip(t —to)
K 1] t: / t — d / _
('T y U T 0) 27k . P €Xp |: A omh
1 21hm m(z" — 2')? m m(z" —1')?
= , exp |i—— | =/ m—————€exp |i—
21h ’L(t — to) 2h(t — to) 27Th2(t — to) 2h(t — to)

To generalize to three dimensions, just realize that the length along the z-axis is invariant
under rotations. Therefore, we have

" \2
K (" t:x 1) = m m(x" —x) }

omhi(t —to) ¥ {Z 2h(t — to)
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32. From (2.6.22), Z =), exp [~ Ey], so, defining E, to be the ground state energy,

107 , By —BE, . , By —B(Ey — E

i {192y (D Boonl 0B (5 B Ay B,
> exp BB | i\ S exp [<B(Ba — Eo)

where we multiply top and bottom by exp(5Ep) in the penultimate step. The limit is easy

to take because for all terms in which E, # Ej, the exponent is negative as § — oo and the
term vanishes. For the term E, = Ej, the numerator is £ and the denominator is unity.

B—o00

To “illustrate this for a particle in a one-dimensional box” is trivial. Just replace E, with
E, = h*n®n?/2mL? for n = 1,2,3... (B.2.4) and the work above carries through. The
old solution manual has a peculiar approach, though, replacing the sum by an integral,
presumably valid as § — oo, but I don’t really get the point.

33. Recall that, in the treatment (2.6.26) for the propagator, position (or momentum) bras
and kets are taken to be in the Heisenberg picture. So, one should recall the discussion on
pages 86-88, regarding the time dependence of base kets. In particular, |a’,t)y = UT(t)|d’),
that is, base kets are time dependent and evolve “backwards” relative to state kets in the
Schrodinger picture. So, for a free particle with H = p?/2m, we have

72

_iHUh i p
(PP, to) = (p[e™ /e 0/ pf) = exp [_ﬁ%(t B to>] 5% (p" = p')

The solution in the old manual confuses me.

34. The classical action is S(t4,ty) = tib dt (3mi? — Imw?a2?). Approximating this for the
time interval At = t, — t,, defining Az = z, — x,, and writing z, + x, = 22, — Az, we have
1 Ax

1 (Az\? 1 Az\? 1
“m(=2) -2 20 [ om [ 52) Az — cmw?a2A
2m( t) me <$b 2) 2m< t) X 2mw Ty, t

keeping only lowest order terms. Combine this with (2.6.46) (and sum over all paths) to get
the Feynman propagator. Now the problem says to show this is the same as (2.6.26), but
(2.6.18) is the solution for the harmonic oscillator. Taking this limit for At — 0, one gets

m m W2 At?
K(xp, ty; Tayta) = 4/ SinAg P [{ 2hAt} {(:U% + 22) (1 -~ ) - Qxaxb}]
B m i (1 (Az)?2 1, o,
=\ amina: P [ﬁ {5m A g A

Taking the limit Ax — 0 clearly gives the same expression as inserting our classical action,
above, into (2.6.46).

S(ta, tb) ~ At

I’'m not sure I understand the point of this problem.
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35. The “Schwinger action principle” does not seem to be treated in modern references, and
also not in (this version of) this textbook. So, I just reprint here San Fu Tuan’s old solution.

The Schwinger action principle states that the following condition determines the
transformation funcrion qzczixltf in terms of a given quantum mechanical La-
grangian L

}-2

6a2t2|xltl> = (iﬂ)f-xztzlét Ldt|x; t,>.

1
To obtain <xzt2}xlt1>,le: S<xat, |x 8> = (ifﬂ)ﬁztziﬁwﬂlxltf vhere W;; is action
in going from initial state Xt to final state XoL,. Also, let 5‘"21 = 5”?_1

where 6“21 is the well-ordered form (c.f. Finkelstein (1973), p.164) of 6&!21-

i _ i
Then 8<x,t,|x;t,> = i-:xztz] Sy Iy 8,> = i 6m51<x2t2|x1:1> and thus élm<x,t,|x,t,>

(:thlxltl) - e:p[iuil]. (1)
The corresponding Feynman expression for «:xztzixl:l:» [c.f. Finkelstein (1573),
p.-144] is
= l z 1
ﬂ:ztz]xlt.l:» & paths exp[(i/K)S,,]. (2)
The classical limit of (2) is such that as K/S - small, the probability amplitude

“2‘2"1‘1’ will be important only for those varied paths which lie in a narrow

tube between x,t; and X,t, enclosing the classical path. On the other hand, to
describe the classical limit for (1) (which has a well-ordered expoment instead

of a sum over paths), is to comsider first the operator Hamilton-Jacobi equation

(c.f. Finkelstein (1973), p.166)

B(:—:-...-.x....} + w/3t = 0. (3)

Since w,, satisfies (3), which arises from a variation of the final state
(and is similar to the Schr8dinger picture), it is seen that the correspondence
limit of uil is S, i.e. the probability amplitude (1) approaches the considera-
tion of all possible paths as in the Feymman path integral case (2). Thus in
the classical limit, (1) and (2) become equal provided they both are modulated
by the factor 1/N (N = total number of individual steps in going frem 3t *

lztz)-
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36. Wave mechanically, the phase difference comes about because, approximating the neu-
tron by a plane wave, the factor exp[—i(wt — px/h)] (where x is the direction AC or BD
in Figure 2.9) is different because p (and v = p/m,) will depend on the height. That is,
PEp/2my, = pio/2m, — mygz where z = lysind. The accumulated phase difference is

¢BD—¢Ac:{w_w<___)}l1:p&jhlmc [1+ W }ll

UBD Vac mpvBpUAC

The experiment in Figure 2.10 was performed with A = 1.445A neutrons. (The book has
A = 1.42A?) So p = h/\ = 27he/ch = 27(200 x 10% x 10° eV — A)/eX = 8.7 keV/c and
E = hw = p*/2m,, = 4.05x1072 eV, whereas m,,gh = (m,c*)gh/c* ~ 107" eV for h = 10 cm.
Thus the change in momentum is very small and fiw /m,vgpvac = m, E/p? = 1/2. Therefore

bnp — & _pBD—pAcﬁl szBD—Pi(j%l _ 2m 923l _ §mig(/\/27r)llz
pp e hoo2 2hp 2 2hp 2 2

This differs from (2.7.17) by the factor 3/2, which comes from the wt contribution to the
phase. San Fu Tuan’s solution starts with the same expression as I do, but ignores the wt
term when calculating the phase. My thought is that this is in fact a more complicated
problem than meets the eye, and I need to think about it more.

37. Since A = A(x), write p; = (h/i)0/0x; and work in position space. Then

iy z@a:j c
he [0A; 0A; ihe ithe
- —zz{a; Ty 909 = o (7 x At = TWBW(X)
? J
d*z; dl; 1 1 1
i II; H2 I, 13| + — [pi
mE = S — I H) = m{ + cb] QZMZ : [p,e¢]

Now from Problem 1.29(a), (1/ih)[p;, e¢] = —ed¢/0x; = eE;. Also [I1;, IT5] = [IL;, IL;]IT; +
IT; [I1;, IL] so (1/2imh)[1L;, II7] = (e/2mc)(e4x Bipj + pj€ijiBi). This amounts to
d*x e 1 [dx
— =cE+ —[-B B—E——BB—
g = Bt g TBxp X B e[ " (dtx th)}
As for showing that (2.7.30) follows from (2.7.29) with j defined as in (2.7.31), just follow
the same steps used to prove (2.4.15) with the definition (2.4.16). That is, multiply the
Schrodinger equation by ¢*, and then multiply its complex conjugate by v, and subtract
the two equations. You just need to use some extra care when writing out (2.7.29) to make
sure the A(x') is appropriately differentiated. Indeed, the Schrodinger equation becomes
n? g,
“om Y+ epp = zh—d)

The remainder of the proof is simple from here.

. i n
V’w+5A V’¢+ﬂ(v’ A)
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38. The vector potential A = —3ByX + 3 Bxy gives B = Bz in a gauge where V - A = 0.
Reading the Hamiltonian from the previous problem solution, we are led to an interaction

the e? e 1 1 e?B? eB e? B2
—A-V A= —— (—=Byx + =By |- 242 = L, 212
me +2m02 me ( 2 . 2 :L'y) p+8mc2 (") 2me +8m62 (@)
where L = r x p. The first term is just p - B for p = (e/2mc)L, the magnetic moment of

an orbiting electron. The second term gives rise to the quadratic Zeeman effect. See pages
328-330 and Problems 5.18 and 5.19 in the textbook.

39. See the solution to Prob.37. We find [IL,,Il,] = (ihe/c)B, = iheB/c or [Y,I1,] = ih for
Y = cll,/eB. As in the solution to Prob.38; A, = 0. So, as in Prob.37, the Hamiltonian is

H:_525_|_H_32/ é—p_z H_?24+1m€232

— Y2
2m  2m  2m  2m  2m 2 m?2c?

The second two terms constitute the one dimensional harmonic oscillator Hamiltonian, by
virtue of the commutation relation [Y,II,] = ik, with w replaced by eB/mec.

40. One requires that the phase change uBT/h be 27 after traversing a field B of length
= vT. The speed v = p/m = h/Am. Since u = g,(eh/2mc), we have

uBT —  eh BlmA 5 o B 4dmthe
o Tomen n "t = gl

See also (3.2.25). San Fu Tuan’s solution is much more complicated. I may be misunder-
standing something.
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Chapter Three

1. Note: The original solution manual does not answer this problem correctly. The eigenvalues
A satisfy A2 —i(—i) = A2 =1 =0, i.e. A = £1, as they must be, since S, = (h/2)o, has
eigenvalues +h/2. The eigenvectors are well known by now, namely

1 1 1 o
Sy = — and Sy —) = — , so, for =
504 = 75 1 500 = 75 5 =)
where |a|?+|8|? = 1, the probability of finding S, = +1/2 is |({S,; +|¥)|* = [(a —iB)/V2|? =
(14 Im(a*B))/2. Clearly this gives the right answer for |¢)) = |S,; £). It might have been
more interesting, though, to ask for the expectation value of S,, namely

1
l

wisf =5 Lo 51| ]| 5] = 5ea-an = jms

2. Since S = (h/2)o, the matrix representation of the Hamiltonian is

N ~B.  —B,+iB,
H_M(—Bm—iBy B. )

Therefore, the characteristic equation for the eigenvalues \ is
(—uB. = X)(uB. — \) — p*(—By — iBy) (=B, +iB,) = —p*(B2 + Bi + B2) + A* =0
so the eigenvalues are A = £uB where B* = B. + B} 4+ BZ. Of course.
3. We have U = A(A")™! where A = g+ io - a and AA" = a2 + (o - a)> = af + a* = o?,

using (3.2.41). So UUT = A(AT)TTATTAT = A(AAT) AT = A(1/a®)AT = a?/a* = 1 and U
is unitary. Now det U = det A/det AT, so writing these out as

A:(ao+ia3 ia1+a2) and AT:< ag — tas —ial—ag)

i(ll — Qa2 Qg — iag —i&l + as ag + iag
we see that det A = o? = det AT, so det U = a?/a? =1 and U is unimodular.

See (3.3.7) and (3.3.10). We want to find expressions for the complex numbers a and b in
terms of our real parameters ag, a1, as, and as. To do this, write

_ _ _ 1 1 [ ag—a®+2iagas 2apay + 2iapa
_ LoAty=1 — A2(at -1 — =42 L [ ao 003 002 001
U=AAAT (AN = A%(ATA)" = azA o ( agay + 2iapa; ag — a® — Ziagas )
so cos(¢/2) = Re(a) = (ag — a?)/a? which gives sin(¢/2) = /1 — cos?(¢/2) = 2ag|a|/a?,
and n, = —Im(b)/sin(¢/2) = —ay/|al; n, = —Re(b)/sin(¢/2) = —ay/|al; and

n, = —Im(a)/sin(¢/2) = —as/|al.
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4. In principle, this could be solved by diagonalizing the Hamiltonian for A # 0 and
eB/mc # 0, and then taking limits. However, the problem is not posed that way, so work it
the way we are led. Write the “spin function” as | + —). Then for A =0, eB/mc # 0,

B - B |h h Bh
i)+ -y = L s s 140 = L2 (D) 140 = Ly

mc | 2 2 mc
and this is an eigenstate, with eigenvalue eBh/mec. For A # 0, B = 0, see (3.8.19) to write

1 e e 1 e e
N S8EsED 4 oSt )Sf)} [+ -)

H = AS(e_)-S(€+)|+—>:A[S(e_)s( 5

_ A(g) (—Z) !+—)+0+A%hh\—+>:Ahz2[—\+—>+2|—+)]

using (3.5.39) and (3.5.40). So, | + —) is not an eigenvector. In this case, the expectation
value is (+ — |H| + —) = —AR?/4.

5. The answer is zero in both cases. For S,(S, 4+ hI)(S, — hl) = S.(S? — h*I), use the
basis states | + 1), |0) with quantization in the z-direction. Then (S? — A*I)| £ 1) = 0 and
S.|0) = 0 and any expectation value works out to be zero. The case is the same for S,.

6. Start with dK/dt = (i/h)[H,K] = (i/2h)[K}/I} + K3/ + K3 /13, K1x + Koy + K37
and first consider dK/dt = (i/2h)[K3/Iy + K3/I3, K;]. Before we make use of the relation
(A% B] = A?B — BA%? = A’B — ABA + ABA — BA? = A[A, B] + A, B|A, realize that for
a system in which the axes rotate, [Kj, Ko| = —ihKj3. (Other than the brief mention of
“active” versus “passive” rotations on page 158, I don’t think this is discussed in the book.
I see this point in San Fu Tuan’s original solution manual.) Therefore

dK (1 1
d_tl - ;—h{l—z(ihKQK3+ihK3K2)—I—g(ithK2+ihK2K3)}

1 11 11 I~ Iy
= KK ==+ KK [=———=)'= K. K.
2{ 2 3([3 [2)+ 3 2(13 12)} 2[2[3{ )

and similarly for the other components. In the “correspondence limit”, the operators are
just observed variables, so K;K; = K, K; and, for example,

dK, I, — Iy
dt Ly

K2K3 = ([2 — 13)w2w3

which is, in fact, the Euler equation (for K7) for rotational motion.
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7. For this problem, I just reprint San Fu Tuan’s solution from the manual for the previous
edition. I don’t understand it, however. It refers, for example, to G;, i = 1,2, 3, but the
problem only refers to G and G5. Indeed, comparison with (3.3.19) and (3.1.15) & (3.1.16)
argues that Gy = —J,/h and G3 = —J,/h. Either it is trivial, or I misunderstand the point.

If U represents the rotation with Euler angles a,8,y», then U must satisfy for

‘ 2
jnfinitesimal rotation angle e(c.f. (3.1.7)) Ux(e)Uy(s) - Uy(s)Ux(s) = Uz(a )
i i : iG.€
-1 Obviously U_(g) = emle, Uy(a) = e‘cz‘;, and Uz (e) = e 3 , and represent
. x :

ipnfinitesimal rotations arcund Xx,Yy,z axes respectively. In terms of Enler ang-

le rotation T (e) = e'1G3'/ zeiGzeeiG31r/ 2, etc. where we have used (3.3.19). Ex-
x : :
2
pand eiGle’ ei‘;ze, and 363" in terms of Taylor series in Ux(e}Uy(e)-Uy(e)Ux(e)

2 :
= Uz(t-:z) ~ 1, and compare coefficients of €~ on both sides. We have [Gl,Gzl =

iG,, and similarly [GZ’G3] = iGl and [G3,Gll = iGZ, i.e. IGi’Gj] = 1£ijkck'

3’
Compare with commtation relatioms for 3, viz:- [Ji,Jjj = ﬂgiijk’ we find

Gi = Jim.

8. A, are unrotated operators while U~'A,U are operators under rotation. So, U 1A,U =
> ¢ RieAy is the connecting equation between unrotated operators and operators obtained af-
ter rotation. The operators after rotation are just combinations of unrotated operators. From
U tAU = A}, = >, Ry Ay we obtain for matrix elements (m|Aj|n) = >, Rye(m|A|n). But
this is the same as the vector transformation V| = >, Ry/V;, hence (m|A,|n) transforms like
a vector. (I just copied this from the old solutions manual.)

9. This problem amounts to equating (3.3.21) and (3.2.45), using € for ¢. So,

[ e 2 o8 (g) —e~ =1/ 2gip (g)
| e/ 2g0n (g) e @t)/2 ¢og (g)

l cos (g) — in, sin (g) (—ing —ny)sin (g)

(—ing +ny)sin (§)  cos (§) +in. sin ()

<

This could be used to determine n as well as #, but the problem only asks for the angle. So,
equate the traces of these two matrices.

6 —i(a (v 6 Oé—l-’)/ 6
2 cos (5) = [e (aty)/2 4 i ﬂ)/Q] CoS (E) = 2cos ( 5 ) CoS <§>
§ = 2cos! [cos <a + 7) coS (é)]
2 2
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10. A pure ensemble consists of spin-1/2 systems, all in the same state. We have seen
the general expression for a spin-1/2 state many times. For example, see Problem 1.11 or
(3.2.52). In the latter case, we have, making use of (1.3.38) and (1.4.19),

) = s (§) e (F) 1)

9 - Hot () - ()] -t

(Sy) = g(em + ") cos (g) sin (g) = gcosozsinﬁ

_ h et —iq ﬂ : 6 _ h : 3
(Sy) = 2—( e 4+ e ') cos (2) sin <2> =3 sin asin 3
Note that 0 < f < 7 and 0 < «a < 27, so ( is determined directly from (S.), and
(h/2) cosa = £+/(S.)2/[(h/2)? — (S.)?]. The sign ambiguity is between a and 7 — a, both
of which have the same value of sin «, and hence is resolved by measuring (.5,).

For a mixed ensemble, use (3.4.10), i.e [A] = Tr(pA) with A = S,, Sy, S., and 1. Let
o a b _h
p—[c d]anduseS—Qatoﬁnd

Tr(pr):gTr({CCL fl} H éD:g(bﬂ) N

(2 [ 500 -

sy =5 (|4 0] [0 V]) =5 = s
Tr(p):gTr({CCL Z]):(aﬂi) =1

1 .
b= (8] ilS,)
b= 3 (8] +ilS,)
d = %(1_%[52])
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11. Start with the definition (3.4.27) of the density operator, and use (2.1.5). Then

p(t) = D wila t)(a t\—Zwl (., to)| D to) (@D to|UdT (¢, o)
= Ut t) Zwi|@(i)ato><0¢(i)io| U (t, to) = UL, to) pold ' (L, o)

A pure ensemble is one for which p? = 1. Therefore
pA(t) = UL, to) pold (t, L) U(t, To) pold (¢, to) = U(t, to) o (¢, t0) = U(t, to)U' (2, t0) = 1

This of course makes perfect sense. If all the particles are in the same state, then whatever
I do to one of them, I do identically to them all, and result is still a pure ensemble.

12. Since there are three basis states, the density matrix is 3 x 3. See (3.4.9). It is also
Hermitian, and has zero trace. The most general form is therefore

x Yy
¢ b z

y* 2z 1—a—>

where a and b are real. That is, two real numbers and three complex numbers, in other
words eight real numbers. In addition to the [S;], we would also use various combinations
[9:5;], for example [S?], [S2], [SuS,], [S2S:], [SyS:]. (Recall that [S?] = 27 for an ensemble
of spin-1 particles.) We can interpret [S] as the average spin vector of the ensemble, and the
other five as elements of the quadrupole tensor.

13. The rotated state is D, (¢)|jj) = exp(—iJye/h)|jj), so with J, = (J4 — J_)/2i, get

i, J2 2 g2
. . D .. —_ . . 1 _ y _ .. — 1 o .. J J_ ..
(771Dy(e)l77) (JJ\[ - 252 + - ]b]) o (41J+JI-155)

1 (V) () 1

so the probability is |(jj|D,(£)|jj)|* = 1 — €%j/2. You can instead consider all of the states,
to order ¢, which can mix into the rotates states. This is clearly just the state |j,7 —1). So,
from above, this amplitude is (j, j — 1|(—iJye/h)|j7) = (e/2R)(j, j — 1|J_|jj) = ev/27/2, and
the probability to be in all states other than |jj) is €25 /2.
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14. It is easy enough to prove the commutation relations using the algebras of d;; and €,y

[Gia Gj]ln = (Gsz - GjGi)ln = (Gl)lm<Gj)mn - (Gj>lm<Gz)mn
- _hz(gilmgjmn - ejlmgimn) - h2(€ilm5jnm - 6jlmginm)
= 732(5@5171 — 0in01j — 030 + 0n05) = h2(5jn6il — 0in0i;)

2 2 . . .
h €ijkEink = h Eijk€kin = Zh&ijk(—lh%?kzn) = 2h€¢jk(Gk)zn

As for the rest of the problem, the intent is not clear to me, and I do not find the old
solutions manual enlightening. However, I think the point is more or less the following.
Since we can write a vector cross product, as (A x B); = ¢;;,A; By, write the infinitesimal
rotation V; — V,; + (009 x V); as V; + d¢e;ijngV; = (0;; — dpeiiny)V; which leads to a spin-
one representation of the rotation operator as 1 — ¢ e;xn, = 1 — idp(G;) jxni/h. However,
the G; are not representations of the J; in a basis where any of them are diagonal. (All of
the G; are antisymmetric.) The eigenvectors which diagonalize, for example, G5 are ry = z
and ry = x +¢y. Thus, it appears that there are generators for circular polarization states.

I would welcome feedback on this problem and the solution.

15. First, JJ_ = (Jo+iJy)(Jo —iJy) = JZ+ Jp —i[Je, Jy| = T2+ T} +hJ, = I = J2+ hJ..

Why the second part is written as a wave function, I don’t know, but famous or otherwise,

* =

Gym| T (J-|j.m)) = G,m| T J-|jm) = (G,m|(I* — T2 + hJ,)|j.m)

|c— (
= j(j+ D> —=m’m> +mh® = [ —m® + j + mh® = [(j + m)(j — m + 1)]A°

and, by convention, we choose c_ = fin/(j +m)(j — m +1).

16. These proofs are straightforward. Just work with separate components. For example

(L., P%] = [xpy — ype, 2 + D2+ 03] = [apy, 3] — [yps, 1))
0 0
_ 7 2 . h— 2 :
(Z apxpx) py (Z apypy> p

where I have made use of problem 1.29, although it is easy enough just to write it out. It
works similarly for L, and L,. The commutator with x? is done the same way, that is

[L.,x*] = [xpy — ypo, 2+ ¥+ 2°] = [2py, 7] — [Yps, 2]

B 0, o,
= m(—zhayy>—y(—zhaxaj)

= —2ihlx,y] =0
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17. The key here is to write ¥ (x) in terms of spherical harmonics. Using (B.5.7), we have

Y(x) = r[cospsinh + singsind + 3cosb|f(r)

\/% {Yl 0.0+ ¥ (00) , KO-V 0.0) % vo0.0)| rf(r)

So, yes, this is an eigenstate of L? with [ = 1. It is a mixture of m = 1,0 states, with
probabilities (1/2) = (1 +9/2) = 1/11, (9/2) + (1 + 9/2) = 9/11 respectively. Given ¥ (x)
and the energy eigenvalue E, you can find the potential V' (r) from the Schrédinger equation
easily enough. Write ¢(x) = Fy(0, ¢)rf(r) where F}(6, ¢) is a linear combination of Y"*(6, ¢).
Then, substitute this into (3.7.7) with { = 1 and Rg(r) = rf(r) and solve for V(r).

18. We are looking for expectation values of L, = (Ly + L_)/2 and L, = (Ly — L_)/2i in
eigenstates |lm). Since Ly|lm) o |l,m % 1), it is obvious that (L,) = 0= (L,). Now

1 1
L2 = Z(Li +LL_+L L,+L?) and L= —Z(Li ~L,L_—L_L,+1L*)

so (L2) = (LyL_+L_Ly)/4=(L>—L?/2—[I(1+1)—m?h*/2 = (L2) using (3.6.14). This
is fine, semiclassically. The x- and y-components of L are as much positive as negative, and

(L) = (L3) + (L}) + (L2) = (L2) + (L]) + m*h* with (AL,)? = (L2) — (L.)* = (AL,)".

19. From (3.6.13), we take Ly = —ihe**(4i0/00 — cot 00/D¢) as an operator in coordinate
space. The prescription (3.6.34) gives Yf/; (0, ¢) = ce'®?\/sin @ which works. That is

| 0 ' 0
LYY2(0,6) = —iheice®?= S 4 ihe® "o cL e/ /5inf = 0
/ sin 0 sinf 2
From (3.5.40) we would expect LY,;(66) = /ID(DY;3/%(6.0) = ¥,3/(6.0). so try it

- j /21 0 , 0 i ‘ 0
Yi,/2(6,0) = —ihe™(—i)ee'?/?s —= - ihe ™ ez ce'?/?VsinG = —che ™~

So far, so good, but now check that we have L,YJ;/Q(H, ¢) = 0:

: inf 1 cos®f : cosf (i :
LY M2 0, = ich*e % {—i (— Y2 ) e <——) e"%/2\/sin 9]
1/2 ( ¢) \/ Sin 6 2 \/ Sin3 9 S11 9 2
o 1
= h?e 32— [cos@sin® — 2sin® 0 — cos? 0] % 0
2V/sin® 0 | }
for all 6. (Just examine § = m/2, for example.) So, there is an internal inconsistency for
half-integer [ spherical harmonics.
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20. The rotated state is D(R)|l = 2,m = 0) = D(a = 0, 8,7 = 0)|20) and the probability is
|(2m|D(R)|20)|?, for m = 0,41, +2. We use (3.6.52) and (B.5.7). Then

DR)l=2,m=0) = Y [2,m)2,m'[D(R)|l =2,m = 0)

m/

- Z |27m/>D'r(3’),O(a =0,0,7= 0) - Z |2>m/>\/¥yzml* (Ba 0)
4 .
(emD@)20)F = = (¥ (8,0

and, therefore, [(20[D(R)[20)|* = 1(3cos? B — 1)2, |(2, £1|D(R)|20)|* = 2 sin® B cos? B, and
(2, £2|D(R)[20)|* = 3sin* 8. We can do a reality check with

1 3
Z |(2m|D(R)|20)|* = 1(3 cos? B — 1)? + 3sin? B cos® B + 1 sin 3

just by using sin? 3 = 1 — cos? 8 and expanding. The algebra is simple.

21. We need to determine the quantities (n|glm). We only care about states degenerate in
energy, which is simple to see by inserting H and operating both left and right. If energies
are different, the inner product has to be zero. (Same old proof of orthogonality of states
for hermitian operators.) For degenerate energies, we get the equation

Ng +ny+mn,=2¢q+1=N

Below, we won’t distinguish between the operator N and the value N. Also, to avoid
confusion, we will always write inner products with the spherical state on the right and the
cartesian state on the left.

First, work out the form of the angular momentum operator in terms of creation and anni-
hilation operators.

Li = e€jiipy
= Z'€ijkg(a/j + a})(—ak +al)
iheijkajaL (1)
Summation of repeated indices is implied. Write this out explicitly for L., so
L. = xpy—ypa
= i [0+ al)(~ay +a}) — (0 + a})(~a. + al)]

2
= 1h [%GL — alay]
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Sandwich the left and right sides of this equation with the spherical and cartesian states,
that is

(ngnyn.|L.|glm) = mh(ngynyn|qlm)

and (ngnyn,|L.|glm) = ih(nynyn,| [axaz — alay] lglm)

which leads us to the equation

m(ngnyn;lglm) = iy/(ng, + 1)ny(n, + 1,1, — 1,n,|qlm)

— iy ng(ny + 1)(ny — 1,ny, + 1,n,|qlm) (2)

This is enough to decompose the first excited state, with N = 1, that has threefold degen-
eracy. We have

m(100|01m) = —i(010/01m)
m(010|01m) = +i(100/01m)
m(001|01m) = 0

Therefore, since

lglm) = Z |nanyns) (ngnyn.|glm)
we can write
1 i
—100) + —=|010
\/§| ) \/5\ )
|010) = |001)

011) =

01,—1) = ——100) — ——|010)
’ V2 V2

We can check that these are correct by considering the angular dependence in coordinate
space, and remembering that for Hermite polynomials Hi(w) = 2w. Thus, these three
equations say, in turn,

YHO,¢) x x+iy=re?sind
Y(0,6) o« z=rcosh
Y7 0,¢) o x—iy=resing

which are indeed correct.

For the second excited state, we need to find coefficients to find the five states |02m) plus
the one state |200) in terms of the six states |n,n,n,) = |200), [020), |002), |110), |101), and
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|011). Consider first the state |glm) = |200). Equation (2) give us

0 = (110/200) (3a)
0 = (011]200) (3b)
0 = (101]200) (3c)
0 (200[200) — (020[200) (3d)

but no information on the inner product (002|200).

For more information we have to look for an equation using L?. We will need to flip operator
order, so use
[ai aq = a,»aT- - aTai = 0,
) J J J
We will also need the “double epsilon” formula; see the derivation step in the second line of
(3.6.17). Put all this together with (1) to find

L’=1? = (- hz)ewka]akezlmalaT

= (—h?) (5j15km SimOkt) ajazalain]
= (—h?) a]aZa]aL ajalakaﬂ
= (—h?) _<akaj + (5Jk) (aL&j + 6jk> — a;al (a;ak + 5]'1@)}
= (=h?) a,ta]akaj +2N +3 — a]aLaTak ajaﬂ
= (1% aL (aka] + (5]k) aj +2N +3 — aja;azak - ajaﬂ
= (=h?) aLaka]a] +3N +3 — ajaj(N + 1)}
= (=h%) a,taka]aj +3N+3—(N+3)(N+ 1)}

or L = (r% [ (N+1)— akaLaja]] (4)

Don’t forget the implied summation of repeated indices.
Now (4) gives us information on the inner product (002|200). We know that

(002|alalaza; = (002 (alal + alal + alal) (az0. + ayay, + a.a.)
= V2(000| (apaz + aya, + a.a)
= 2((200] + (020] + (002|) (5)

and so (4) gives us

0 = 6(002/200) — 2 ((200]200) + (020/200) + (002|200))
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which combined with (3) tells us that

1200) =

1 1 1
ﬁuoo) + ﬁ]ozm + %|002>

44

Since Hy(w) = 4w?* — 2, converting this to coordinate space combines all the angular depen-
dence into x? + y? + 2% = r?, that is, no dependence on 6 or ¢. Since the spherical harmonic
here is Y(6, ¢), this is once again correct.

For second excited states |glm) =

L? = 6h*
so that application of (4) tells us that

0 = (ngnyn.| (alal + a;“; +alal) (aza, + aya, + a.a,) |02m)

|02m) we have

= N(N + 1)»?

This equation yields no information for the states (n,n,n.| = (110|, (101|, and (011|. How-
ever for states (n,n,n.| = (200, (020, and (002|, (5) gives the same result each time. So

0 = (200[02m) +

(020]02m) +

(002|02m)

(6)

We need to go back to (2) for enough information to solve for these inner products. We have

m(110[02m) = V2 ({200/02m) — (020]02m))
m(101|02m) = —i(011]02m)
m(011|02m) = -+i(101]02m)
m(200[02m) = —iv/2(110]02m)
m{020/02m) = +iv2(110]02m)
m{002/02m) = 0
Now we can consider the state |¢glm) = |020). We have
0 = (101/020) = (011]020) = (110]020)
0 = (200/020) — (020]020)
and 0 = (200[020) + (020]020) + (002]020)
which means that
1020) = —[200) + —[020) — —=002)
V6 V6 V6

and the behavior in coordinate space has angular dependence

(42% — 2) + (4y* — 2) —

2(42* — 2) = 4(sin 0 —

2 cos ) = 4(1 — 3cos® )

which is proportional to Y (6, ¢), once again, as it should be.

(Ta
(7b
(Tc
(7d
(Te
(rf

~— — ~— ~—— —
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Next, consider the state |¢glm) = ]022). From (7) we have (020]022) = —(200/022) and
(110]022) = iv/2(200[022). We also find (002[022) = (101]022) = (011]022) = 0. Therefore

1 1 2
022) = ——|200) — —=1020) + 24/ —|110
022) = 5 1200) — —=]020) + iy 751110

which gives a (relatively normalized) angular dependence in coordinate space

1, 1
2—\/5(4:5 —2)— 2—\/5(4 )+z\/_

= V2 (% = y*) + 2izy]
— Vor? [(0082 ¢ — sin® ¢) sin” § + 2i cos ¢ sin ¢ sin’ 9}
= V/2r? [cos 2¢ + i sin 2¢] sin § = v/2r2e*? sin? § o< Y,2(0, ¢)

GRR

Finally, consider the state |¢glm) = |021). From (6) and (7) we find that all inner products
are zero except for (011]021) = 4(101|021). Therefore

1021) = )

1 i
——]101) + —=1011
2\/§| ) 2\/§|

which has an angular dependence in coordinate space
x2 +iyz = r?(cos ¢ + isin @) sinf cos = %'’ sin 0 o< Y3 (0, ¢)
that is, once again, the correct answer.

22. Note: See the correction discussed at the end of this solution. For convenience, here is
reproduced the generating function of the Laguerre polynomials:

—xt/(1-t) 0 I tn
o(ot) = S = 3Ll
Therefore
[o@) . o t
9g(0.) = =D "= Lu(0)
n=0 n=0

which shows that L, (0) = n!. Also

xt
1—1¢

g(x,t)z{l— +---]x[1+t+t2+---}

which shows that the coefficient of ¥ is just unity for all z, so Ly(z) = 1. Now differentiate
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with respect to x and proceed

dg t N
- ) = .
O o) = S
o L tn-‘rl B o L/ t o L/ tn+1
YL - S nwh -y L
n=0 n=0 n=0
oo gm oo , 4 oo / g
- Z:le—l(l‘)m—' = z%Ln(‘T)m - z:le—l(m)m%

where we set m = n — 1 in two of the summations. Now, the n = 0 term in the first
summation on the right is just Ly(z) = 0 since Lo(z) = 1 for all x. Therefore all summations
can be taken from n,m = 1. So, combining this expression and equating term by term gives

Ly (z) = nLj () — nln_(z)

We now have what we need in order to calculate the L, (z) for n > 1. Proceeding

Li(x) = Ly(x) — Lo(z) = —1 SO Li(z)=1—=x
Ly(z) = 2L (z) — 2Ly (z) = —4 + 2x SO Ly(z) = 2 — 4o + 2?
Liy(x) = 3L5(x) — 3Ly(x) = —18 + 182 — 32° S0 Ly(x) = 6 — 182 + 92° — 2*

Note that mathematicians frequently define the L, (z) such that they are smaller by a factor
of n!. Now differentiate with respect to t to get dg/dt both ways, i.e.

1 T = nt" !
_ = L
[1—15 (1—t 1—49 t) ; (@)=
t o0 oo o tn
1 —t NZEEnCE Z n — = ZLn(x>n = ZLn—H(x)m
= n=0 n=0
n S 1 n n n
ZL (1 —2)t" — 1] = ZLnH(x)a[t — 2™ 4 ]
Z (1—2) —nL, 1(z)] = [Lps1(x) —2nLy(x) + n(n — 1)L, (2)] ]
n=0 : n=0 :

where we note that the first two terms in the summation for the second and third terms on
the right are explicitly zero. So, equating term by term, the recursion relation becomes

Loyi(r) = 2n+1—2)L,(x) —n’L,_ ()
Now combine the recursion relations to get a differential equation for L,(x). First, use the
two recursion relations to get different expressions for L ,(x), namely

L = (n+1)(L, — L)

n+1
and L., = (2n+1-—2)L,—L,—n’L,_,



Copyright, Pearson Education. 47

Equate these two expressions and cancel common terms to find
—nL, = (n—2)L, —n*L,_,=n(L, —nL |)—aL, =-n*L, , —aL

where we used the first recursion relation once again. Now we have a recursion relation that
just needs the function one order below, not two. Simplify, differentiate, and subtract to get

zL, = nL,— n’L, 1
el + L, = nL, —n’L _,
v+ (1 —2)L, = nL!, —nL,—n*L, ,— L, 1)=nL,—nL,—nL,=-nL,

where the first recursion relation is once again used, in the second-to-last step. This is what
we are going for, namely a differential equation for L, (x):

el (z)+ (1 —2)L,(x) + nL,(z) =0

Contrary to what is said in the problem statement, this is not Kummer’s equation. Instead,
one needs to work with the “associated” Laguerre polynomials, which can be defined as

LF(z) = (—1)’“% [Lsr(2)]

and which satisfy instead the equation
e L (2) + (k+1—a2)LF (2) + nLE(z) =0
This is easy enough to see, starting from the differential equation for L, (), namely
el + (1 =)Ly + (n+ k) Lpsx =0

and taking the derivative of the left side k times. The first term will give xd*L” Y dz* plus
k occurrences of d*L!, ., /dz*, which adds a k inside the parentheses in the second term. The
—ux inside theses parentheses will remain for half of the k derivatives, and also contribute k
terms d*L,, . /dx* with alternating signs. These alternating signs exactly cancel the factor
of k in the third term, when the (—1)* is included in the definition of the associated Laguerre
polynomial, so the associated Laguerre equation is satisfied. (Work it out for a couple of
cases like £ = 1 and k& = 2 and watch this in action.) This is Kummer’s Equation (3.7.46)
withe=2(l4+1)=k+1,ie. k=2l+1,anda=1+1—pg/2 =—n,orn=py/2—1—1=N
as defined in (3.7.50).
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23. From (3.9.5) Ky|ny,n ) = alalln,n ) = /(ny +1)(n_ + Dny +1,n_ + 1) and
K_|ng,n_) = aya_|ny,n_) = /ngn_|ng — 1,n_ — 1). Therefore, from (3.9.17), j =
(ny +n_)/2 increases (decreases) by one, and m = (ny —n_)/2 is unchanged for K, (K_).
Writing ny = j +m and n_ = j — m, we can write the action of K1 on the state [jm) as

Kiljm) =G +m+1)(G—m+Dj+1Lm) K [jm)=/(j+m)j—m)|j—1,m)

In other words, K. act as raising or lowering operators for the total angular momentum
quantum number. Since 2j is interpreted as the number of spin-1/2 “particles”, they raise
or lower the number of these quanta by two. The nonvanishing matrix elements are just

G'm'|Kilim) = VG+m+1)( —m+ 1) 410mm
and  (fm/|K_|im) = \/(j+m)(j —m)6; j—10m m

24. Our job is to express [j,m), j =0, 1,2, in terms of |y, jo;mq1, ma) = |1, 1;mq, ms), using
the notation “+£,0” for m; o = +1,0 with j; = j» = 1. Since m = m; + mq, we must have
|7,m) =12,2) = |++) and |2, —2) = | — —). From this, we can build the other j = 2 states.
Recall that J_|j,m) = \/(j + m)(j —m + 1)|j,m —1) and J_ = J;_ + Jo_. Therefore, both
J_12,2) = VA2,1) = 2|2,1) and J_|2,2) = (Ji_ + Jo_)| + +) = V2(]0+) + | + 0)), so

20 = 5104 +]+0)
J_|2,1) = V6]2,0) = % (\/§| — +) 4+ V2/00) + v2|00) + V2| + —>)
2.0) = (1 =4)+200) +|+-)
J_[2,0) = V6|2, —1) = % <\/§\ —0) +2v2| - 0) + 2v/2)0-) + \/§\O—>)
21 = (=0 +[0-)
Also  J_[2,—-1) = Vi|2,-2) = % (Val- )+ V3 - )
which just confirms that 2, —2) = | — —). For j = 1, write |1, £1) = a|0£) + b £ 0) with a

and b real, and a®>+b? = 1. Since (2, £1|1,£1) =0, a+b=0s0|1,+1) = \/Li (] £0) — |0£)).
Then, take J_[1,1) = v/2|1,0) and J_|1,1) = 7 (V2| + =) + v/2|00) — v2[00) — v2| — +))
so that |1,0) = \/LE (|+ =) —| —+)). Finally, put |0,0) = a|+—)+/3]00) +7|—+), normalize,
and use (2,0]0,0) = 0 = (1,0[0,0). Then o +28+~v =0, « —v =0, and a® + 3> +~% = 1.
Thus § = —(a+7)/2 = —a = =1/V3 and 50 [0,0) = J= (| + =) = [00) + | — +)).

These results can be easily checked using a table of Clebsch-Gordan coefficients, for example
http://en.wikipedia.org/wiki/Table_of_ClebschGordan_coefficients
http://pdg.Ibl.gov/2011 /reviews/rpp2011-rev-clebsch-gordan-coefs.pdf

Perhaps the next edition of the book should include a version of this table.
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25. Do (a) straightforwardly with angular momentum algebra, making use of (3.2.7).

J
Z [ (B =Y ([P jmymd jmle™ 2" )

m=—j m=—j

<jm/|einﬁ/hJZefin6/h|jm/>

St =

- ﬁ Z ([P0 T ) (ml e jm’) =

m,_j

= (]m’|(J cos 3 + Jpsin B)|jm’) = m' cos 8

From (3.5.52), dg%)( B) = cos (5) = (_%)

Z |d£i2n,(5)|2m = cos? (g) B] + sin? <§) [—%} = +% cos 3 for m’ = 5
= sin? (g) B} + cos? <§> [—%] = ——cosf3 for m' = —=

For part (b), we start out the same way

J J 2
Z |d%2m(6)’2m2 _ Z <jm/|€7inﬁ/h’jm>m2<jm|ein,B/h|jm/> _ <jm/lefinB/h‘]_;einﬁ/hUm”
m=—j m=—j h
Rather than finding an analog for (3.2.7), we make use of the properties of tensor oper-
ators. [The original solution manual solves Part (a) this way.] First, e s/ J2eub/h —
D'(R)J?D(R) rotates J2. (R is a rotation through —f3 about the y-axis.) As in (3.11.12),
J? is the “22” component of the Cartesian tensor J;J;. Following (3.11.13), we write

1 1 1
J2=23 (220 =224+
decomposing J? into a scalar and the ¢ = 0 component of a rank 2 spherical tensor Tq(Q).
The scalar is unchanged by rotation, and from (3.11.22), the spherical tensor rotates as
DT(R)TQ(Z)D(R) = 22/272 D(E,Q;Tq(,z). We need the expectation value in the state |jm'). From

(3.11.26), only TO(2) gives a nonzero result. Therefore, using (3.5.50), (3.5.51), and (3.6.53),

J
j .. 1 , 1 .
S (At = 3G+ 1)+ PR G| |2 - 32| im)

m=—j

= %j(j-kl)—l—Pz(cosﬂ) {m —%j(j—i—l)]
= %j(j%— 1) [1+%—3coszﬁ] +%(3coszﬁ— 1)m’2

1 1
= §j(j + 1) sin® 8 +m’2§(300826 —-1)
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26. Since J, = (J4 — J_)/2i, just use (3.5.41) to find the matrix elements

(| 1m) = 5 [T )@+ )0 r — F T — M)

Expressing this as a matrix gives (3.5.54). By multiplying this matrix by itself several times,
you can easily show that (J,/h)* = J,/h. The rotation operator is therefore, for j =1,

Jy 62 63 64 ) 55
(i) = - (R) G 5 () 5 () 5

"
B J ﬁ2 Jﬂ?’ 54 J55
- Lo (n) ‘F%§+(h)ZV‘%a+
G, BB T 2 g
= 1- h(ﬁ——-i-a-i- ) (E) (1—1—1—5—?4- >

2
= 1—1 (%) sin 8 — (%) (1 —cosf)

Now d) (8) = (1m/| exp(—iJ,8/h)|1m), so use the matrices (J,/h) and (J,/h)? to write

m'm

0 % 0 b0
d.B) = 1—i| 5 0 —Z |sinp—| 0 1 0 |(1—cosp)
0 5 0 -5 0 1
cos? g) —Sh\l/(g) sin® (g)
| m (py m

() =

sin 2 COS2 (%)

same as the problem, and (3.5.57), since 1 — cos 8 = 2sin?(3/2) and 1+ cos 8 = 2 cos?(3/2).

27. Just insert a complete set of states on both left and right. Then

(Bl S5laafim) = Z<0425272Umn><jmn’c7§|j/mln/><j/m/n’|04151’71>

- ZHZDJ (a2B272) D, (a1 Bim)

jmn

I just copied this from the old manual, and the solution is attributed to Prof. Thomas Fulton
who passed away in April, 2011. It isn’t clear to me what is meant by the state [jmn), so I
can’t be sure of the matrix element of .J3.
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28. If B makes no measurement, then his existence is irrelevant for this problem. The
probability that A measures s, = +h/2 (i.e. “spin up” in the z-direction) is 1/2. Her
probability to measure s, = +7/2 is also 1/2; one cannot distinguish z- and z-directions in
this case. Now, according to (3.8.15d), the state with total spin zero is given by

00) = = [+ =) ==+

1
V2
So, if B measures s, = +h/2, then A measures s, = +h/2 (s, = —h/2) with zero (100%)
probability. That is, [(++ | —+)|* = 0 and |[{(— + | — +)|* = 1. In, instead, she measures s,,
then the probability of measuring either s, = +h/2 is 1/2. That is |(S,; £, +| — +)|* = 0.
The explicit state construction of |S,; %) is given in (1.14.17a).

29. For a rotation V. — V' through g about the y-axis, we have V] = V, cos § + V, sin f3,
V, =V, and V] = =V, sin 8 + V, cos 8. Therefore, Vill) = F(Vycos B+ V. sin B £+ iV,) /V/2,

and Vo(l)’ = —V,sin 3+ V, cos B. Now doing >, d(l)( )Vq(,l) component by component,

1 Ve +1iV, 1 . 1 Ve +1iV,
Zd—Hq = _5(1+0085)T—ESIH5VZ+§( —cos f)——=—" NG
B _chosﬁ—l—VZSinﬁ—iVy
B V2
1 Ve +1V, 1 V, =1V,
dV. BV = ——gin =Y 1 cos BV, — —— sin f—=——Y
= —V,sinf+ V,cosf
1 Ve +1iV, 1 1 V, —1iV,
d(l) = ——(1—cosfB)———~ + —sin AV, + —(1 + cos B)——~

+V;cosﬁ+stinB—iVy
V2

and it all checks out.

30. Following (3.11.27) and forming Uél) and Vq(l) as in (3.11.16), write

1

Z Z (11; q1g2|11; k) U VLY

1=—1q2=-1

where Uél) = U,, Uill) = F(U, +iU,)/v/2, and similarly for V. (We needn’t worry about
the overall normalization.) The Clebsch-Gordan coefficients (11;¢1¢2|11; kg) (which are, of
course, zero unless ¢; + g2 = ¢) can be looked up, but also note that they were worked out
in Problem 24. At this point, both parts (a) and (b) of this problem are reduced to algebra.
For completeness, we work out this algebra below. It is a bit tedious, but there is some merit
in comparing the resulting forms with, for example, (3.11.13) and (3.11.26).
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1
Tt

2
%)

(11; 0111 10UV + (115 100115110 v

1
L luv v
1 1
5 [UZ(VEC + Z‘/y) - (Ux + ZUy)VZ] - 5 [UZV;C - Um‘/;; + Z(Uz% - vaz)]

(11; =1, 1|11; 100UV + (11;00/11; 10) U vV (115 1, 1115 10)0 ) v

1
7 [—Uﬁlfvﬁ’ n Uffv_“l)]

1 . . . , i
W [(Uz = iUy) (Ve +iVy) — (Up + iU, ) (Ve — iVy)] = 7
(11;-1,0011; 1, ~ 1)UV + (1150, -1)11; 1, ~ 1)U VY

1
E [—U(,ll)vo(l) + Uél)v,(ll)]

1 1
5 [FUe —U)V. + U(Ve = iVy)] = S [UVe = U V2 + (U, Vz = U2V

1 1
URVE = 5 [(Us +iU) (Ve + V)] = 5 UsVe = UpVy + iUV + UsVy)

Uy = U, V2]

(11;01]11; 200UV + (11; 100115 200U v
1
NG [UO(I)V-&(-? + Uill)%(l)}
1
—5 (Ve + V) + (U + U, V]

(11; —1,1[11; 200UV + (11;00111; 20) UV (1151, —1)11; 2000 ) VY
1
% [U&’VSR +20 PV + U Vfﬂ
1
2v/6

1
V6
(11;-1,0[11;2, ~ 1)UV + (1150, —1[11; 2, ~ 1)UV
1
% [U&’VO(” + UV
1 1
5 (e =iV + U(Vo = iV)] = 5 [U.Ve + UV: = i(U, V2 + UV,

1 , , 1 .
UV = 2 (U = iU) (Vo = iV,)] = 5 [UaVa = UV, = i(U,Va + UsVy)]

[ (Uz = iUy) (Ve +iVy) + 4U.Vz = (Up + iUy ) (Ve = iV,)]

U,V + UV, +2U.V,]

I’d be lucky to have gotten through all of this without any mistakes! Please email me if you

find errors.
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31. In the language of spherical tensors, F(z £ iy)/v/2 = Tj(tll) and z = To(l). According to
the Wigner-Eckart Theorem, these three operators are related by

TN T ||nl)
n'Um! | T nlm) = (11; mg|l1; I'm/ Tt
O T nim) = (1 mafat oty

where all the dependence on m, m/, and ¢ is contained in the Clebsch-Gordan Coefficient, so

(n’l’m'|Ti11)|nlm) ~(ILym, £11151'm)
<n/l/m/|Tél) |nlm> <l1; mO]ll; l’m’>

All three matrix elements are, of course, zero unless m' = m+gqand |l — 1| <I' <1+41. I've
looked around for symmetry relations among CG coefficients (not covered in the textbook)
that could simplify this expression, but nothing is apparent to me. (The old solution manual
offers some reduction based on parity, but this is not covered until Chapter Four.)

In wave mechanics, insert 1 = [ d*z|x)(x| and let the operators T, q(l) give spherical harmonics
according to (3.11.16). Defining Ti/n;l/l = fooo r3dr Ry (r) Ry (r) then gives, using (3.8.73),

4 /
T i) = 180\ [ Y000 6.6)Y:16,0)

2041

———(I1;00[11; I'0) (I1; ;0'm'

2[/ + 1 < i | ) >< ) mq| ’ m >

The second CG coefficient is the same as in the Wigner-Eckart Theorem. The rest is absorbed
into the reduced matrix element.

3
rn’n;l’l X

32. Use YJ"(x) from (B.5.7) to construct the tensor. So Y (x) = /5/167(32% — r?)/r?,
V5 (x) = F4/15/87 (2 +iy)z/r?, and Y;2(x) = /15/327 (22 —y?+2izy) /r2. So we rearrange
these to find zy = i\/27/15 [Y; *(x) — YZ(x)] 1%, xz = \/27/15 [Y; ' (x) — Y3/ (x)] 7%, and
2? — y? = /87 /15 [V;?(x) + Y£(x)] r%. Now, using the Wigner-Eckart Theorem,
. . 8r, . _ iy
elajm/|(@® —y)laji) = ey 7z (aim’| [Ya?(x) + Y5 (x)] r*[aj)
STAafIY PNd) 1 o oo L o oo i
= — " 1(J2; 7, —2|72; 2:17,2|72;
N varer  (WEH2Zgm + (525,202 5]
But (72:7,2|72;5m"y = 0 since m’ = j + 2 is not possible
167

and Q= e/ —==(ajj|Vs(x)r’|ajj)

167 (ajl|lYPlag) ,
Y 2:7,052;
‘ 5) 27 + 1 (12;7,0152; 57) S0,

Q (j2:4, 2052 jm’)
V2 (52:5.0052:77)

elagm/|(2® — y*)|ejj) =



Copyright, Pearson Education. 54

33. The trick is to group terms in the Hamiltonian so that we can put V2¢ = 0 while
replacing S and S7 with S3. First use S3 = (S, +1i5,)* = S2 — 57 +i(S,S, + 5,5,) so that
Sz — 82 = (57 +57%)/2. Also S2 + 57 =S* — S2. So, solving for S7 and S}, with s = 3/2,

eQ
Hint 2s(s — 1)h? 8
0?¢ Si+53+2(82—5'§)_ D*¢\ ST +5% —2(8*-S52) D¢ o2
oz? /, 4 0y? ), 4 * 022 ), ~°
L% i 28° — 252 —45?2) ! @) @) ST +5°
{4 [(8x2>0+(8y2>0]( ST +4[<8x2 0_<83/2 0}< + _)}
= %(353—52)+§(53+53)

Oy?
old manual, but I don’t see my error and I have trouble following their algebra.) Now,

where A = —% [(%)0 + (giyf)o} and B = % [(g%f)o - (@>0] (This differs from the

(352 —S8?)|m) = R*(3m* —15/4)
and  S2im) = RA/(sFm—1D(s+tm+2)(sFm)(stm+1)jm=2)

so, labeling the basis states m = {+3/2, —1/2, —3/2,+1/2}, the Hamiltonian matrix is

34 2BvV3 0 0

Ho = 2BV3 —3A 0 0
n 0 0 34 2BV3
0 0 2BvV3 -34

which is block-diagonal 2 x 2 with the identity matrix, so there is twofold degeneracy in all
eigenvalues. It is simple to diagonalize the 2 x 2 matrix. One finds that the eigenvalues are

A+ = £v9A? + 1282 and the (unnormalized) eigenvectors are

3 .3 3 1
M) = 2V3BB 42,42 Y+ (Ap £ 34) |[£=, 7=
2 2 2" 2
To be sure, I don’t quite understand the point of this problem, other than exercising some
of the basic matters in angular momentum theory. Perhaps I'm missing something.
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Chapter Four
1. (a) The Schrodinger equation, in coordinate space, is simple and has a separable solution:

h? h? R
H¢(X1,X27X3) = [—%V% - %Vi - %Vi} w(XhXQ,Xz) = Ew(Xsz,Xa)

Putting 1 (x1, Xa, x3) = v (x;)u? (x2)u® (x3) and E = EW + E@ 4+ EG) allows us to solve
separately —(h?/2m)V2u(x;) = E@Dul(x,), i = 1,2,3. The eigenvalues are well known,

N2 N 2
namely EO = (h?x2/2mL?) > ? (n(z)> . Therefore E = (h*n?/2mL?) 37 23:1 (ngl)) :

J=1 \""J
For the lowest energy level, all nine of the ngi) =1, s0 By = 9(h*7?/2mL?) = 9E,. For the
next level, one n is 2, so Fy = 12F),, and for the third level, two n’s are 2, so F5 = 15E).

Each level has an eight-fold degeneracy, that is the spin states |4, £+, +). Level 1 has only
one spatial wave function, so its degeneracy is 9. Level 2 has nine spatial wave function

possibilities, since any of the nine njz) can be 2, so level 2 has degeneracy 9 x 8 = 72. For
level 3, any two of the néi) can be 2, and the number of ways to take nine things two at a
time is 9!/7121 = 9 - 8/2 = 36, so the total degeracy is 36 x 8 = 288.

(b) With four electrons there is a 16-fold spin degeneracy. Schrdédinger’s Equation has
four terms, and the wave function is (X1, X, X3,%4) = v (x1)u® (x2)u® (x3)u® (x,) and
E=EY 4+ E® 4+ EG L EW  So, E, = 12Ey, Fy = 15E,, and E; = 18E,. There is a
24 = 16 fold spin degeneracy. With twelve factors in the spatial wave function, the spatial
degeneracy is 12!/k!(12 — k)! for the states with ' = Ej. So, the degeneracy is 1 x 16 = 16
for level 1, 12 x 16 = 192 for level 2, and 66 x 16 = 1056 for level 3.

2. (a) See Sec.1.6. TaTar = exp(—ip - d)exp(—ip-d’) = exp(—ip - d') exp(—ip-d) = Ta' Ta
since all components of p commute. Therefore, 7q and Tq commute. (b) See Sec.3.1.
Rotations do not commute with each other. This is what led us to commutation relations for

J. (c¢) Work in coordinate space. Using (4.2.5), we have Tqm|x') = Ta| —x') = |—x'+d) but
we also have 774|x') = 7|x’+d) = | —x'—d). In other words 74 and 7 do not commute. (d)
A rotation operator D(R) = D(n, ¢) that takes x' — x” also takes —x’ — —x". Therefore
D(R)n|x') = | — x") = #D(R)|x’), and the operators commute.

3. Write |¥) = |a,b) where a and b are eigenvalues of the operators A and B, respectively.
Then (AB + BA)l|a,b) = (ab+ ba)|a,b) = 0 implies that ab = —ba = —ab. That is, either
a=0orb=0. For A=m and B = p, which indeed anticommute, as is easily shown using
(4.2.10) and (4.2.7), we can conclude that only a p = 0 state can be a parity eigenstate.
(The parity operator can only have eigenvalues +1.)
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4. This problem is a special case of the discussion on pages 508-509. Starting with (3.8.64),

12129 4y { Yoo(g,cﬁ) } _ \/% ( (1) )

(0’ ' X) 1/2,1/2 1 z xr — Zy 1 . r cos 0 . L }/10
0 T Van | iy —z 0|  ax | €?sinf |~ /3| —V2V}
using (B.5.7). Referring to (3.8.64), then, (o - }()3)3/2’1/2 = —ryll/2’1/2. That is, j and m

are unchanged, but [ = 0 — 1. In terms of the operator TO(O)

= S - x, this is not surprising.
Since T." is a scalar under rotations, from (3.11.31) (the Wigner-Eckart Theorem), it can
only connect states with j/ = j and m’ = m. However, from (4.2.17), the operator connects

states of opposite parity. This is accomplished by changing [ by one unit.

5. From first order perturbation theory (which is not reached until Chapter 5, but which we
will take as given here) the Cyy iy = (W'U'j'm/|V|nljm) /(En; — Ewry). The symmetry of
V' is determined by TU(O) = S . p, which is a pseudoscalar, as discussed above in Problem 4.
Therefore, the matrix element needed for the Cyypjim is zero unless j' = j, m’ = m, and
I' =1+1. From (3.7.14), the radial wave functions R, (r) go like 7, so, since V(x) o §®(x),
the matrix element will only be nonzero for states with [ = 0. Consequently, this interaction
only connects S/, and P /o states.

6. First imagine that the barrier is infinitely high. Then, the lowest two energy levels are
the degenerate case of sinusoidal wave functions with A = 2b in either the a < x < a+ b or
—a — b < x < —a regions. Now invoke parity. With a finite barrier, we take the odd and
even linear combinations, tied together with exponential wave functions inside the barrier.
So, consider the solution only for z > 0. Put u(z) = Asin[k(x —a —b)] for a < z < a + b,
with h2k?/2m = E. This form satisfies u(a + b) = 0 and is valid for either the symmetric
(“s”) or antisymmetric (“a”) solution. Put us(z) = B cosh(kz) and u,(x) = Bsinh(kz) for
0 <z < a, with A%x?/2m = V; — E. Matching u(z) and u'(z) at x = a gives
Agsinkb + Bscoshksa = 0 A,sink,b+ B,sinhk,a = 0

ksAgcosksb — kBsinhksa = 0 and koA, cosk,b — keBgcoshk,a = 0
Next set the determinants to zero. Since E < Vp, write ks = k, = v/2mVy/h = k. Therefore,
(1/ks)tan ksb = —(1/k) coth ka and (1/k,) tank,b = —(1/k) tanh ka. Now, since we expect
A to be only slightly larger than 2b, put A = (1 +¢€)2b or kb =2nb/A =7/(1+¢€) = m(1 —¢).
Thus, tan kb = sin kb/ cos kb = kb — w. The quantization conditions then become

ksb — 1 kob — 1
LT _Zcothka  and @77 _ _ tanhka
ks K kg, K
which are easily solved for the energy levels £ = h*k?/2m. The splitting is
h2 2,.2 1 1
AE=E,— B, =~—"

2m | (kb+ tanhra)? (kb + coth ra)?

Further simplification is possible if the barrier is “narrow”, i.e. ka < 1.
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7. (a) wp(X,t) — eiPx—Et)/h ¢ w;(x7 —t) — e—i(p-x+Et)/FL — ei(—p'x—Et)/ﬁ — wﬁp(& t)

e~/2 cos(3/2)

(b) Equation (3.2.52) constructs y(n) = [ } Following that example,

/2 sin(3/2)
(A) = cos 1 —isin ] 0 cos § —sin g 0] [ —e™2sin g
X= - 0 cos 3 +isin 3 sin§  cos g 1] €12 cos 5

0 —1 ] { 2 cos & ] _ [ /2 o b ] = x—(n)

so. —imc@ = | {7y || Sonie
See the discussion surrounding (4.4.66).

8. The statement in (a) is just Theorem 4.2, proven in the text. As it says just following
this proof, on page 295, the theorem would appear to be violated by the plane wave eP*/"
except that this state is degenerate with e=*/" 5o violates the assumptions of the theorem.

9. This problem is also, essentially, worked in the text. See (4.4.61). We have
wlela) = (110 [ &) 'l0) = o] [ 5] - p)p'la)
— (0| [ @) Rl = [ ) (B = (B = & ()
We used the antiunitary property (4.4.13b) of ©.

10. See the rewritten version of this problem in the Errata. (By the way, the idiosyncrasies
connected with Problems 8 and 9 are that they are in fact solved in the text.)

(a) Equation (4.4.53) just says that © anticommutes with all components of J. There-
fore J,©|jm) = J,[0|jm)] = —OJ,|jm) = (—m)[B|jm)], so ©|jm) o |j, —m). Similarly,
J[O]jm)] = —c4(j,m)[O©]7, m£1)], and in a convention such as (3.5.39) and (3.5.40) where
the ¢y (j,m) are real and non-negative for all j and m, 6|jm) x (—1)™|j, —m) in order for
the sign to change when m is changed by one. Thus O|jm) = ¢?(—1)™|j, —m) where § is
real, in order to maintain norm.

(b) Using the infinitesimal form (3.1.15) for D(n,d¢) =1 —i(J - n/h)d¢, we have

71 . A
i—@J@h Sdg=1—i

J-n

h

J-n

h

OD(R)©O ' =06 [1 — i d¢} O l=1+ d¢ = D(R)

So, OD(R)|jm) = OD(R)O~'0|jm) = D(R)O)|jm).
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(c) The trick here is to write (j, —m/|DO|j, m) two different ways, and then equate them.
(. =m'[D6lj,m) = (=)™ (f, —m!|D]j, —m) = *(~1)"DY), _,,
and = (j,—m'|OD]j,m) = (j,—m/|® Y _ [j,m")(j,m"D]j, m)
= DDl |8l m)
= Y D ()™ Gy = D) P (—1)™
SO D,(fj*m = (m 1)m= mD(_j}n .

for any value of §. So (d), the properties of rotations are satisfied and, so long as we
stick with the “real and non-negative” phase convention for J., we can set 6 = 0 and take

Olim) = (=1)™|j, —m) = *™|j, —m).
11. Time reversal invariance means OHO™! = H, or O©H = HO. So for a state |E) with

H|E) = E|E), we have H[O|E)] = E[O|FE)] which says that if |F) is an energy eigenstate,
then so is |E) = O|E). Since there is no degeneracy, |E) = ¢?|E) for a real phase §. Now

(BIL|E) = (E|OLO™'|E) = —(E|L|E) = —e *(E|L|E)e” = —(B|L|E)

and so (F|L|E) = 0, where the first step makes use of (4.4.36). Then, writing the wave
function for an eigenstate as Yp(x) = (X|E) = >, Fin(1)Y,"(0, ¢), the time reversed wave
function is 1(x) = (x|E) = €Z6<X’E> = e“swE( ) but also, from (4.4.56), ¥p(x) = ¥h(x) =
2 im Fin (1) (V(0,0))" = 3 Fin(r)(=1) 7Y, 770, 0) = 3, B (r)(=1)"Y"(6, ¢) so,
finally, £, (r) = (—1)me_i‘§ﬂ’f_m( ).

12. It is easy to build the matrix representation of H using S, and Sy = S, £145,. Find

p[010 p [0 =i 0 10 0 A0 B
Sy=—71]101|S=—7|3i 0 —i|S,=hr|00 0 |H=r|00 0
V210 1 0 V2o i o 00 -1 B 0 A

so energy eigenvalues F = h*(A 4+ B) and 0 with eigenvectors |F.) = [|1,1) + |1, —1)]/v2
and |Ey) = |1,0). Now for a spin component S;, have 85?071 = 05,067'65,07! =
(—S;)(=S;) = S? and A and B are real, so H is time reversal invariant. From (4.4.78),

O|E:) = — [(D)'[1, 1) £ (=)7L, -1)] = —|E:)  and  O[Ey) = (—1)°|Ep) = |Eq)

Sl -
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Chapter Five

1. The first order correction is proportional to (0|z|) = 0. The second order correction is
AEy =32 [V 2/(BL — By = —p2 5% |(k|#[0) |2/ (kfiw). From (2.3.25a), or using the
equation given, albeit written in a strange notation, you find (k|z|0) = /h/2mwdg;. Hence
AEy = (=b*)(h/2mw)/(hw) = —b?/2mw?, and Ey = hw/2 — b*/2mw? to second order. To
solve exactly, write V(z) = mw?x?/2 + bx = mw?/2(x + b/mw?)* — b*/2mw?. If you define
¥’ = x + b/mw?, then you see that it is still the simple harmonic oscillator, but with the
equilibrium point shifted and with an overall energy shift of —b?/2mw?. That is, second
order perturbation theory gives the exact answer in this case.

2. The problem should ask for terms up to A2, not ¢?, for the notation to be consistent.
Now, in the notation leading to (5.1.44), we want the quantity [(n(”|n)|?, where the |n) are
properly normalized, i.e. [(n(®|n)|?/|(n|n)|?. Using (5.1.44), (n®|n) = 1 and

= + A Vk”’“O' +0(\?) A ")V + O\
(nln) = > 0w + O I E<0> zo TN
k#n ” l#£n
= 1+A2§j§ k" (5kg+(’)()\3):1+>\2§:—
i (BY - EO)NEY - BY) (B - B2

since the [n(?)) are orthonormal. Note also that this precludes any of the O(A?) terms in the
first multiplication from yielding any other O(A\?) terms in the second line. Hence

EOmE Vel ,
LI L) Y Ll E—yO 5!
(i) P 2 5 gy T o)

3. The unperturbed ground state wave function is w(()o) (x,y) = (2/L)sin(rz/L)sin(ry/L),
so Al = 4)/L2 fOL fOL xysin®(rx /L) sin?(ry/L)dxdy = A\L?/4, and the zeroth order eigen-
function is just @Z)éo). For the first excited state, @b%g)(:p,y) = (2/L)sin(mx/L) sin(2my/L)
and @Z)g)(x,y) = (2/L)sin(2mx/L)sin(wy/L), that is twice degenerate, so we construct
a 2 X 2 matrix and diagonalize. The diagonal elements are V,, = [ zp§2)v¢§ﬂ)dxdy =
4N/ L3 fOL fOL zysin’(rx/L) sin®(2ry/L)dxdy = AL?/4 = Vi, and the off diagonal elements
are Vg, = [0V dady = 128XL2 /817* = Vj,. Therefore, following (5.2.9), the first order

energy shifts in the first excited are the eigenvalues Agl) of

AL A“) C(128AL2\? .
4 8174
and A = AL%(1/4 +128/817%) = AL?{0.266,0.233}. The eigenvectors are easy to find for
a simple matrix of this form. They are (@Zzﬁ? + %2)) JV2.

CALPTwt o 1024/81
T 4pt | 1024/81  xt
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4. The problem separates into independent z- and y-harmonic oscillators, i.e Hy = H, + H,,
with states |n;, n,) and energy eigenvalues E = (n, +n, + 1)hw. So the three lowest energy
eigenstates are |0,0), with £ = hw, and |1,0) and |0, 1), each with E = 2hw. That is, the
first excited state is doubly degenerate. The first order energy shift for the ground state
is zero, since the operators x and y only connect states that differ by one quantum, i.e.
(0,0]zy|0,0) = 0. The first excited state requires us to diagonalize the perturbation for the
first order energy shift, but (1,0[|zy|1,0) = 0 = (0, 1|xy|0,1). The off diagonal elements are

A B hw
201 1) = 21 \/ 1\/ 1| [1.0) = 6— = (0, 1|xy|1
dmw=(1,0[zy|0, 1) = dmw(L, 0| [ Qmw\/_ Qmw\/_ 11,0) =4 5 (0, 1]xy|1,0)

So, following (5.2.9), the first order energy shifts in the first excited are the eigenvalues Agl)
2

where (AP) — (0hw/2)* =0 or Agl) = +6hw/2 and E = (2 £+ ¢/2)hw for the degenerate

first excited state. The corresponding eigenstates are (|1,0) & [0,1))/v/2.

To solve the problem exactly, observe that we can rewrite the potential energy as

2

ra-pEzy _2‘”)

(z +y)*

1 1
—mw?(2* + y* + 20zy) = ém(f (1+49) 5

2

and then rotate the x,y axes by 45°. This anharmonic oscillator has normal coordinate
2" = (z+y)/V2 with frequency w(1+0)"2, and v = (x —y)/v/2 with w(1 —6)"/2. Therefore

[Ty, M) Energy
|0, 0) Thw(1+0)"2 + thw(1 = 6)'2 ~ thw(1+6/2+1—6/2) = hw
|1, 0) Shw(l+6)Y2 + Lhw(1 — 6)? ~ thw(3+36/2+1—6/2) = (2+ §/2)hw

1,0) Thw(1+6)Y2 + 3hw(l — 6)V? ~ $hw(1+16/2+ 3 — 3§/2) = (2 — §/2)hw

in perfect agreement with our lowest order result from perturbation theory.

5. We need the matrix elements Vig = emw?(k|22|0) /2. The algebra for matrix elements for
harmonic oscillator states was worked out in Problem 2.14. Using that result, we have

1 1 h €
Vk() = §€mw2(k:|x2|0> = §5mw2% [5% + \/552,4 = Z_Lhw [5% + \/552,4

and so Vyg = chw/4 and Vi = ehw/2+/2, in agreement with (5.1.54).

6. Put w, = w, = w and w, = w(1 + ¢€) with e < 1. Then, following (2.7.20),

1 2 mw?
(1+€)%2% = . (p — gA> + %73 + emw?2?
m c

TTL(,L)2

1 2 2
H=— <p—gA> + (2 ) 5

2m c 2
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For fixed B, A = $Bxr, from (5.3.32) or any textbook on electromagnetism. So for B = BX,

1 q,\2 p q ¢ 5
— (p- —A> - P9 4.8 Bxr)- B
2m (p c 2m  4dmc P (Bxr)+(Bxr) p|+ 8mc2< xT)
2 2 P2
P qB ¢°B°, .
= o T o [p2y — pyz +yp. — zpy] + R (yz — 2y)
2 2 R2
p qB B® 5
= = _ L,
2m  2mc + 8mc? (W™ +27)

Now, “Zeeman splitting is comparable to the splitting produced by the anisotropy” means
that the second term above ~ gBRh/mc is about the same size as ehw, that is € ~ ¢B/mcw.
The third term above is ~ (¢>B?/mc?)(h/mw) = €2(hw), and we can disregard it with respect
to the first term. Finally, to make the angular momentum algebra easier, rotate x — z and
2z — —x. Therefore the Hamiltonian becomes

2 1 B
H= L + —mwr? — q—Lz +emw?r? = Hy+V
2m 2 2mce
where Hy = p?/2m + mw?r?/2 and V = —¢BL./2mc + emw?z? is an order € perturbation.

The eigenstates of Hy are derived and discussed in Section 3.7. See also Problem 3.21.
The first excited state has E' = 5hw/2 and is threefold degenerate. All three states have
angular momentum eigenvalue [ = 1, so label them in order m = +1, m =0, and m = —1.
In this basis, the first term in V' is diagonal, with values —gBh/2mc, 0, and +gBh/2mc,
respectively. For the second term, write these basis states in terms of the basis |n,n,n.).
See the solution to Problem 3.21. The result is [+) = (|100) + i|010))/+/2, [0) = |001), and
|—) = (]100) —|010))/+/2. See Problem 2.14 for matrix elements of 22 in the |n,n,n.) basis;
the essential result is (m|z?|n) = (2n + 1)(h/2mw)d,y, for the states considered here. So for
example (+|z%|+) = [(100]z*|100) + (010|z*|010)]/2 = h/mw. The perturbation becomes

—qBh/2mc+ehw 0 ehw/2 —a+ew 0 €w/2
V= 0 el /2 0 —h 0 ew/2 0
ehw/2 0  +¢Bh/2mc+ ehw €w/2 0 a+ew

with o = ¢B/2mc. The energy shifts ho come from diagonalizing this matrix. One eigenvalue
is 0 = ew/2. The others solve (—a+ew—03)(a+ew—08)—(ew/2)* = —a+(ew—08)*—(ew/2)* = 0
and the energy shifts are given by
B\?2
() e
mce

In the limit € = 0, we simply have the Zeeman splitting of the levels according to m eigen-
values for orbital angular momentum. On the other hand, for B = 0, the degeneracy is only
partial lifted, i.e., one shift is (3/2)ehw, but the other two are both (1/2)ehw. This makes
sense, since the anisotropy is in only one direction, leaving symmetry between the other two.

. . 1/2
—ehw and ehw £+ =h
2 2
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7. Use (5.1.44) to write the first order approximation to the ground state as

(nlm(®]z|100))
1000) = [1009) — ¢[E|' S [nlm @) (n
\ ) = | | |Z| Fron— B

nlm

Now find the expectation value of the electric dipole moment (to lowest nonzero order)
making use of the fact that (100(?|z|100®) = 0. We have
(100" |ez|100M)

)\ (nlm®|z[100) nlm(®|z[100©))*

= —?[E[|> (100 |z[nim ) +Z(nlm(0)|z|100(0)><

nlm ElOO - Enlm nlm ElOO - Enlm
(0) (0) 2
2 |(nim©|z|100)2 [(ndm ) |2]100(©))|
| | % ElOO - nlm a| | i % ElOO - nlm

defining the polarizability «, the same as (5.1.68) from the second order energy shift.

8. I'm not exactly sure what these have to do with “approximation methods”, but OK.

(a) From (B.5.7) z = rsinfcos ¢ = —(27/3)/2(Y,! =Y, !). So, the matrix element vanishes.
In position space, it is proportional to integrals of Y, YjEl which are zero by orthogonality.
Alternately, by (3.11.28), since & combines spherical tensors Tq(k) with ¢ = 1, the matrix
element must vanish since 0 # 1 + 0. More colloquially, the matrix element is between two
states with new orientation perpendicular to the z-axis, so its value must vanish.

(b) From (2.2.25) and (2.2.26), p, = mz = (m/ih)[z, H], so the matrix element is pro-
portional to (Ea — F210)(210|2]200) = 0 since Esgy = Ea19. More physically, this matrix
element is between states that have no up/down asymmetry, so (p,) = 0.

c) First express the state |lsjm) = [4227) in terms of states ls;mymg) = 4 Ty, 5 — My ).
222 2

This transformation matrix is given by (3.8.62) and using j =1+ 1/2. The result is

197\ 1 1.1\ 1|1 1
A-22) = SVBAZ 3,42 ) 4 < 4254, —=
' 222> 3\@‘ 2’3’+2>+3‘ 2" 2>

So (432Z| L, [4321) = (8/9)3% + (1/9)4h = (28/9)h.
(d) See the solution to Problem 3.4. The singlet (triplet) state is \/Li [|+-=)F|—+)] so

the matrix element is % (+—=]—=(—+ ][+l +—-) —h|—+)] =h.

(e) One is apparently supposed to be aware that the ground state of the hydrogen molecule
puts the spin part in a singlet state, so-called “homopolar binding” with a symmetric spatial
wave function. Therefore (Sy-Sy) = 2 [S? — S} —S3] =1 [0 — 2n° — 31%] = —3n%
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9. Write 22 — 32 = r2sin?0(cos? ¢ — sin? ¢) = r?sin® cos 2¢ = r?sin? 6(e*¢ 4 e72%) /2, s0
from (B.5.7) V is a combination of Y;2 i.e. the sum of tensor operators T5. Therefore
by (3.11.28), the perturbation only connects states with m differing by 2. The integrals
I =3 [sin® 0e*?e™% sin® 0e*?d() [ r2R2,r?dr are the same for the cases connecting m = %1

to m = F1 respectively. So, labeling the states m = 1,0, —1, the perturbation is

1

V= NG

and n10), —[|n11) £ |n1, —1)]

~ O O
o O O
O O N~

are the “correct” zeroth order eigenstates. From (4.4.58), under time reversal, a state |, m)
goes to a state |l, —m) and picks up a phase (—1)™. Thus, the eigenstates go into each other.

10. (a) The lowest order solution is well known. For n = {n,, n,}, the energy eigenvalues
are E, = (h*7?/2ma?)(n2 + n2) and ¢, (z,y) = (2/a)sin(n,mz/a) sin(n,ry/a) are the wave
functions. The (nondegenerate) ground state is n = {1,1}, the (doubly denerage) first
excited state is n = {1,2} and n = {1, 2}, and the (nondegenerate) third state is n = {2,2}.

(b) Let E, = 2(h*n?/2ma®), Ey = 5(h*1?/2ma?), and Es; = 8(h*r?/2ma?) be the three
unperturbed energies. For the first and third energy levels, the first order shifts are

9 [o !
AV A{E /0 wsin? (%‘) du} :ZAaQ:)\aQ(O.%O)

) 2 [ ., (27u S P
Ay’ = X|= [ wsin® | — ) du| = —Xa® = Aa”(0.250)
a Jo a 4

For the degenerate first excited state, see the solution to Problem 3. The two energy shifts
are AL = Xa2(0.233) and Af)) = Aa2(0.266,0.233). The energy level diagram is

-
-
-
-
-
R
—_—
2 ’,—l_—..— ———————————————
-
-
R
E -
-
-
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11. See Problem 1.11. Find Ej5 = (E? + E9)/2 £ \/(EY — E9)2/4 + A\2A?, and

= [COS(B /2 } and ¢y = { —sin(3/2) } where  tan g 2

sin(5/2) cos(6/2) FEY— ED
are the exact eigenstates. Now in terms of perturbation theory with AA < (EY — EY),
[ EY 0 . o |1 o |0 I L V. VA
HO—[O ES] with ¢ = 0 92 = |y and V = A0

The first order energy shifts are ¢3§0)V¢§0) =0= q?)go)nggO). Use (5.1.42) for the second order
shifts to find Al = |60V eV 12/(EY — EQ) = \2A2/(EY — E9) and A§Y = A\2A%/(EY — EY)
which agree with (5.1.14). From (5.1.44), the first order eigenstates are

(0) ¢(0) ¢ _ l ES)\_AE? :|

o1 = oy + ¢

0oy Vel [ 1
EO 1

EO EO AA :| and ¢g ¢2 + (b

0 0
El _E2

In the limit AA < (EY — EY), these are clearly the same as the exact eigenstates because
cos(f/2) — 1 and sin(8/2) — /2. As for the energy eigenvalues in this limit,

Eip=

E'+EY EY-EY AN2A2 EY+EY EY—EY 2\2A?
R ST S B AN/ R R G 1) P Ao
2 2 (EY — E3)? 2 2 (EY — Ey)?
and the energy shifts are 2\?A? /(EY — E9), the same as the values Aglg obtained from second
order perturbation theory.

Now in the opposite limit, i.e. AA > (EY — EY), 8 — 90° and ¢ 5 — [ jil/\/\[ 1 nd

EY + Ej (BY — E9)*  EY+Ej (EY — E3)?
ELQI—:}:/\A 14 A2 — 5 + AA +W

which means first order splits =AA for the degenerate state with EY = EY. Both of these
are exactly what you get if you diagonalize the perturbation matrix V', that is, in agreement
with the treatment of degenerate perturbation theory.

12. I will treat a and b as real numbers. It is useful to know where we’re going, so let’s find
the exact eigenvalues X first, which satisfy (F; — A\)?(FEy — \) — a*(Ey — ) — b*(E; — \) = 0.
Therefor A = Ey = \g or A2 — (B} + Ex)A+ E1Ey — (a® + b?) = 0, that is

A:

E1+E2i\/(E2—E1)2+4((12+b2)NE1+E2 EQ_El |:1 9 a2+62 :|

~~ :t
2 2 2 (Ey — Ey)?

so the others are A = Fy+ (a®>+0?)/(Ey — Ey) = Ay and A = By — (a> + %) /(Ey— Ey) = A
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1 0 0 00 a
Now with ¢{” = [ 0 |, ¢\ = | 1 |,and ¢ = | 0 |, withV'=| 0 0 b |, the only
0 0 1 a b 0
2

nonzero matrix elements V,,;, = gE%O)ng,(fO) are Vi = a® = Vi3 and Viy = b? = Vag, 5o Vo =
0 = Vip and the F; degeneracy is not removed in first order. If we use (5.1.42) to calculate
the shift using non-generate second order perturbation theory, we get A; = a?/(E; — Es),
Ay =0?/(E, — Es), and A3 = (a* + b?)/(Ey — Ey). The energies E,, + A, do not agree with
the values A derived above, except for Fs + Az = A_. Non-degenerate perturbation theory
is not applicable to degenerate states, even taking it to second order.

Use the formula in Problem 1, Page 397 of Gottfried (1966). The energy shifts A satisfy

2 2 272
( A__ O ) ( A b ) _a’ :
B — Bs Ei—E) (B - E)
That is, A = 0 and A = (a*+b?)/(E;, — E5). These energy shifts give eigenvalues that agree
with A\g and A\, above, from the exact solution.

13. The perturbation is V' = —eez, so (251/2|V|251/2) = 0 = (2P, 2|V |2P, 2), which should
be obvious from parity considerations. Also (251,2|V|2P;/2) = 3eape from (5.2.19). So

Hﬁ{Ez—’_é 36“05} and  (Ey+06 — E)(BEy — E) — 9¢%a2e> = 0

36@08 E2

gives the eigenvalues E, where 0 is the Lamb shift. Solving for the eigenvalues gives

E

9E 5+ Y0 52 36222_4E E. ) ) ) 2

So, for eape < §, have F =~ Ey + (§/2)(1 + 18€*a3e?/§?) = Fy + (6/2) £ 9e%aZe?/§ and the
energy shifts are quadratic in e. For eape > ¢ find +3eagpe(1 + §2/36e%aie?) ~ +3eape for
the energy shifts, which are linear in .

Regarding time reversal, I will just quote from the original solutions manual. “Whereas parity
restricts (251/2|V[2S1/2) = 0 = (2P )2|V|2P, ), time reversal invariance of our Hamiltonian
places no similar restriction. Nevertheless, for example from (4.4.84), it imposes the restric-
tion that expectation value (x) (hence (z) as a special case) vanishes when taken with respect
to eigenstates of j, m. For example, |7, m) of our problem need not be parity eigenkets, and
could be cg|257/2) +cp|2Py/2). yet it remains true that (j, m|x|j, m) = 0 under time reversal
invariance, i.e. no electric dipole moment.”
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14. This is the linear Stark effect (see pages 319 through 321) but with a larger (nine
dimensional) degenerate subspace. Let us write V' = —eze = —eer cosf and first determine
the nonzero matrix elements (30'm/|V'|3lm). Since V oc Y} ~ TO(I), from (3.11.28) the matrix
elements are zero unless m = m/. Also, from the Wigner-Eckart Theorem (3.11.31), the
matrix elements are proportional to (I1;m0|l(1;1'm), so, as in (3.11.32), we need |l — 1] <
I/ <1+ 1. Finally, since V is odd parity, the matrix elements are only nonzero between
states where [ and [’ differ by an odd number, and we have [,I’ = 0, 1, 2 in this problem. The
integrals can be done using (B.6.3) with (B.5.7). 'll do the math with MATHEMATICA, which
defines internally the spherical harmonics and associated Laguerre polynomials. Proceeding,

9
(321|V[311) = Jeeao = (311|V[321) = (32, ~1|V|31, ~1) = (31, ~1|V/|32, ~1)

(320|V[310) = 3v/3ecay = (310|V320)
(310[V[300) = 3v6ecay = (300|V|310)

which, for some reason, are all three times smaller than the values in the original solutions
manual. The code which finds the wave functions and calculates (one of) the matrix elements
follows. Note the convention MATHEMATICA uses for the associated Laguerre polynomials.

RleAtom[n_, 1_] := (2/n"2) Sqrt[1/a”3] Sqrt[(n - 1 - 1)!/(n + 1)!]*
Exp[-Z r/(n a)] (2 Z r/(n a))"1 %
Laguerrel[n -1 -1, 21+ 1, 2 Z r/(n a)l

\[Psil[n_, 1_, m_] :=

RleAtom[n, 1] SphericalHarmonicY[l, m, \[Theta], \[Phil]

Z=1;

\[Psi]300 = \[Psi][3, 0, 0];
\[Psil31p1l = \[Psi] [3, 1, 1];
\[Psi]310 = \[Psi] [3, 1, 0];

\[Psi]31m1 = \[Psi][3, 1, -1];
\[Psil32p2 = \[Psil[3, 2, 2];
\[Psi]l32p1 = \[Psil[3, 2, 1];

\[Psi]320 = \[Psi] [3, 2, 0];
\[Psi]32m1 = \[Psi] [3, 2, -1];
\[Psi]32m2 = \[Psi] [3, 2, -2];

p = Simplify[Conjugate[\[Psi]32p1] r Cos[\[Thetal] \[Psil31pl, a > 0 && r > 0];
V2plipl = Integratel[
p r°2 Sin[\[Thetall, {r, O, \[Infinityl}, {\[Thetal, 0, Pi}, {\[Phi], O,
2 Pi}]
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w

/

Writing the eigenvalues as —3\ecag, with a =

b = /3, and ¢ = V6, and labeling
{L=0{m=0},l=1{m=—-1,0,1},2{m = -2, 1

,2}}, the eigenvalue equation is

._n

>

,0,
0
0
0
a
3ecay 0
0
0
A
0

O OO OO O X»Oo
O OO O O oo
OO OO OO OO
O OO O O o O
OO >O OO o O
> O O O O oo oo

N

<

I

)

OO T O OO >»O0

OO OO OO0 O

The characteristic equation is A (a2 — A2)* (b% + ¢ — A2) = 0, so the energy shifts are

Ajg3 = 0
Ay = —3ecap(—3/2) = 9ecay/2
A7 = —3ecap(+3/2) = —9ecay/2
Ag = —3ecag(—3) = 9ecay
Ag = —3ecap(+3) = —9ecag

and the corresponding eigenstates are

11,2,3) = |32,i2 an \/r}320 \/r}300

4,5) = :7= [321) + 311)]  an V/_132 1) + (31, —1)]
6,7) = :75 H321>-—!311>] and :7: 132, ~1) — |31, —1)]
8) = —[300) + ——[310) + —=|300)
V3 »/_ \/_
9) = —]300) — —=[310) + ——|300)
V3 vf_ w/_

Following is the relevant MATHEMATICA code, with mV defined as the matrix above with
zeros on the diagonal. Also, I'm including the code for only the first two normalized eigen-
vectors, just to save space.

Simplify[CharacteristicPolynomial [mV, \[Lambdal]] // TeXForm
Eigenvalues[mV] /. {a -> 3/2, b -> Sqrt[3], ¢ -> Sqrt[6]}

eiv = Eigenvectors[mV] /. {a -> 3/2, b -> Sqrt[3], ¢ —> Sqrt[6]};
Normalize[eiv[[1]]]

Normalize[eiv[[2]]]
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15. This problem is a bit open-ended, so I am copying the solution here pretty much directly
from the original solutions manual. For an electric dipole pe = peo, have V.= —pu, - E where
the E = —(1/e)tdV,/dr and V,(r) is the Coulomb potential energy of the nucleus. Writing

1 4
o-T= " [04(z —iy) +o_(z +1y) +0.2] = 4 % [\/i(UJrYfl +o.Y)) +a.Y,

we see that the Wigner-Eckart theorem tells us which matrix elements are nonzero. For
Am = 0, the matrix elements of Y? are needed, and these vanish unless A¢ = 41. For
Am = +£1, we still need A¢ = 1. This is expected since r is a vector operator and connects
states of different parity. The radial contribution is proportional to fooo RRZ%Rng/TQdT =
— fooo R, R,rdr. One may verify that for £ — ¢ = %1, this integral vanishes for n = n/'.

The ground state of Na has n = 3 (degeneracy n? = 9), but from the above, we know that
An = 0. Therefore the effects of this perturbation V on the energy levels are seen in second
order. Mixing occurs between 3s and 4p states, between 4s and 3p, 3d, and 4p, and so on.
Using eigenstates of L2, L., S?, S., the following expression for (3s|V'|4p) is true for Al, = 0:

Z e 47 11 11
V14 -0 = R R A/ — - J10==
(3s|V4p) ar.=o dr Rso(1) Ra1 (7) 3 <0022’ U| 022>

2
= ——/ drR30R4H/47T/ d(b/ d(cos0) 1/ \/—COS@
47
= ——\/7/ d?"RgoR41 = __\/;]R

Therefore, using (5.2.15), we determine the second (lowest) order shift in the 3s states of Na

2
to be As, = (—%) /(Ep—s — En—4) where E,, = —Z%*m,e*/2h*n?.

16. For any | = 0 state, we can write (real valued) ¥ (r) = wu(r)/r where u satisfies (3.7.9)
and u(r) — 0 as r — 0 or r — oco. Multiply (3.7.9) by du/dr = «'(r) and rewrite it as

1dv , 1d

"2 2
- - Sl V) - 2= B
2m2dr( v) +2dr( w) 2dr " 2dr"
Now integrate over r from zero to oo, leaving —% (W)?y” =5 Jo° Deuldr = 0. Since u = 1),

uw'(r) = (r) + ry’(r), where both ¢(r) — 0 and ¢'(r) — 0 as r — oo. Therefore
n? o, 1 [®av , ., 11 /dV ,  om /dV
—m¢(0) = 5/0 ¥ (r)ridr = o <%> so  Y(0)° = o2 <W>

The wave function of the hydrogen ground state is, from (B.6.3), (B.6.7), and (B.5.7),
Y(r) = exp(—r/a)/Vma?. So, ¥(0)* = 1/ma® and
d c [ n’ orh? 1 27h?
r

wa® J, r? wa® 2 m ma? m
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For the 3D isotropic harmonic oscillator ground state we have, from (3.7.8), (3.7.40),
(3.7.31), and (3.7.33), 1 (r) = N exp(—mwr?/2h) where the normalization constant was never
determined. Nevertheless, 1(0)? = N? and (using MATHEMATICA for the integral)

av > 2 72 21h?
<—> = 47TN2’ITL(,U2/ re” ™ 2 e — 41 N2mw? T N?
0

dr 2m2w? m

17a. Using the notation of Section 5 1, we write Hy = AL? + BL., so [n®) = |Im), and
V =CL, = (C/2i)(Ly — L_). So B = AR*I(I + 1) + Bhm, Al) = (n©@|V|n®) = 0, and

AD _ Z K zm\vu' >|2 C*R* | (l—-m+1)(I+m) (+m+1)(l—m)| C%hm
0 0 0 0 o
El’ ’ 4 Ez( : El(nl 1 El(m) - El(,nzﬁ—l 2B

Note that the problem can be solved exactly by rotating about the x-axis through an angle
0 such that tan® = L,/L, = C/B. That is, H = AL? + (B? + C?*)Y/2L, with eigenvalues

2

E = AR +1) + (B* + C*Y?hm = ARI(1 + 1) + Bhm + 20_ma + -

which agrees with the result from second order perturbation theory.

17b. First of all, both operators are spin independent, so Am, = 0. For the rest, see
Problem (3.32). Since 322 —r? = r?(cos? @ — 1) o< Y3, this operator is a spherical tensor T0(2),
and (I'm/|(32% — r?)|lm) is proportional to (I12;m0|l2;'m’) by the Wigner-Eckart Theorem
(3.11.31). Therefore m = m/ and [ —2| <1’ <1+42. (Also, Al = —1' must be even since Y3’
has even parity.) Now xy = rsin®f cos ¢ sin ¢ o sin § sin 2¢ o (Y22 — YQ_Q), ie T2(2) — Tg).
So, similarly, (I'm/|zy|lm) is proportional to (12;m2[12;I'm’) if m’ —m = 2, or proportional
o (12;m, —2[12;I'm’) if m" —m = —2, and zero otherwise. The same rules hold for [ and .

18. The perturbation is V = €*A?/2m.c* = €?B*(2* + y*)/8m.c* where A is given by
(5.3.33). For the spherically symmetric ground state (z%) = (y?) = (2?) = (r?)/3. Therefore

2 2 % 2 2 22 2
_ bzl 47r/ e /a0y 2, — b 1% ks _ % —leZ
8mec?3mal mec®3ad (2/ag)®  4mec? 2
so the diagmagnetic susceptibility is x = —e?a2/2m.c?

19. This is a numerical comparison based on Problem 18; the two problems should be
combined. With ay — ag/Zeg, find x = 2 x (—€2a2/2Z23m.c*) = —e*al/Z%m.c* where
we recognize that this is a two-electron atom, each of which behaves independently in this
approximation. Put e? = hc/137 = (200/137)MeV x 10~%A, ag = 0.53A, m.c> = 0.511 MeV,
and Zeg = 2 — 5/16 = 1.69, to find y = —0.281 x 10-°A3/atom=1.69 x 10~%cm?/mole, in
good agreement with the measured value of 1.88 x 107%cm?/mole.
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20. Follow (5.4.1) and calculate the approximate energy H(f3) as follows:

7 (—Rh*/2m) [ exp(— |:1:|)dm2 exp(—Blz|)dz + [ exp(—20]x|)(mw?a?/2)dx
ffooo exp(—20|x|)dx

The denominator is ffooo exp(—26|z|)dx = 2 fooo exp(—20z)dz = 1/, and the second integral
in the numerator is [°°_exp(—23|z])(mw?s?/2)dx = mw? [ exp(—20z)x?de = mw?(2/8%).
The first integral in the numerator is tricky since the first derivative is discontinuous. Write

X el & _piay s s © bl
/_Ooe @e dac:2/6 e @e da:—i—/_ee @e dx

and let ¢ — 0. The first term is just 3. For the second, the integrand factor e #1?l — 1
leaving the integral [ %e*m“'dx = b = —Be P — (+B)e P — —23. Therefore

g (SR [2m)B + (<H/2m)(=28) + mu? (2/85%) _ W5
N 1/p - 2m 432

Putting dH /dB = h*B/m — mw?/28% = 0 find 32 = mw/h\/2, so the minimum value of H is
Hpin = hw/ 22 + hwy/2 2/4 = hw/2 2/2, compared to the correct ground state energy hw/2.

21. Solve this using (5.4.1) as for a “Hamiltonian” H = —d?/dz?* + |z| with eigenvalue A
and trial wave function ¢ (z) = ¢(a — |z|) for |z| < a and zero otherwise. The denominator
is 2 [ ®(a — x)?dx = 20°¢?/3. For the numerator, we need to deal with the discontinuity
in di)/dx at x = 0. Skipping this for the moment, we take d*y)/dz? = 0 for |z| > 0 and are
left with 2 [ ¢*(a — z)?zdx = o*¢?/6. For the discontinuity, see Problem 20. We need

€ 2 €

lim w—da: = lim ca—dm = lim o

N S _ 9.2
e—0 d{}jz e—0 dl‘Q e—0 €T —COZ[ ¢ (+C)] 2004

—€

Therefore H = (2a+a*/6)/(20°/3) = 3/a? + o/4. Minimizing, dH /doc = —6/0® 4+1/4 = 0,
so a = 2413 = 23/3 and Hyy, = 3/43/94/3/2 = 3v/3/4 = 1.0817, indeed larger than 1.019.

22. From (5.7.17) we have c(()o) = 1 and, for lowest nonvanishing order,

D = _2/ UEn=E)t' /R (| Fya: cos wi!|0)dt! ———Fo

h 2mwo
S0 Cgl) _ / uuot’ zwt —zwt’) dt'
\/ 2mwg
z(wo—‘rw)t -1 z(wo w)t 1
= F \/ =c(t
2R mwo{ wo + w * Wy — W ] a(t)

t
N !
S / ot cos wt'dt’
0
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and i) = 0 for all n # 1. Therefore, from (5.5.13), |a,t)r = |0) 4+ ¢1(t)|1), and so, from
(5.5.5), |a,t)g = e ot/ o t); = e7™0t/2|0) + ¢ (t)e>*0¥/2|1). We can now calculate

<‘T> - <C¥, t|$|0&,t>s
) ) h ) )
[ezwot/2<0‘ + CT€31w0t/2<1H [CL + CLT} [efzwot/Q‘()) + Clef3zwot/2’1>}
Qmwo
) ) h ) ) )
[ezwgt/2<0| + CT63lw0t/2<1H |:clef3zwot/2’0> + efzwot/2|1> + 016732w0t/2\/§|2>i|
2mwy
h
— iwot * zwot
S, [016 + cje }
FO I 6iwt _ e—iwot e—iwt _ e—iwot e—z’wt _ eiwot eiwt _ eiwot
= —— +
2h2mw0[ Wy + w Wy — W Wy + w Wy — }
B Fo [coswt —coswpt ~ coswt —coswpt | Fpcoswt — coswpt
 2muwy wo +w Wy — w om Wi — w?
Classically, this is a harmonic oscillator with a “forcing function” F(t) = —Fycoswt. The
classical equation of motion is mZ# = —mwix + F(t) or & + wix = —(Fy/m) coswt. The

homogeneous solution is z,(t) = A coswyt + Bsinwyt. A particular solution z,(t) = C coswt
implies C(—w? + wd) = —Fy/m, or C = —(Fy/m)/(wd — w?). Therefore

Fy coswt
x(t) = xp(t) + xp(t) = Acoswot + Bsinwgt — EOH

is the general classical solution. For ¢ < 0 the oscillator has (x) = 0 = (p), so for initial
conditions take z(0) = 0 = #(0). Hence A = (Fy/m)/(w2 — w?) and B = 0, and we see that
the classical solution is the same as the quantum mechanical result for (x) as a function of
time. Of course, the result is invalid at “resonance”, i.e. w = wy, since the response tends
to infinity for any finite F{y and perturbation theory breaks down.

23. The probability for the transition |0) — |n) from (5.7.19) is \cg)\Q, to first order, where
el is given by (5.7.17). In this case, V(z,t) = —Fywe /™ for t > 0, but zero for t < 0. So,

.t
CS) = %/ e!(En— Eo)t/ﬁ<n|F ze 1t/7|0 :—Fo\/ nl/ wot o =t'/7 ¢!
0
: (fwo—1/T)t __ 1
m _ ip [ e d D=0 for n>2
oA no° 2mwy  two — 1/7 an or.n

2 F? e 27 — 27U coswot + 1 1 F2r?
Hence ‘cgl)‘ = 0 5 0 — 0T2 for t — o0
2muwy wg +1/712 2mwp 1 + wiT?

which is independent of ¢, not unexpected since the force turns off. More interestingly, the
result only depends on the (finite) impulse Fy7 as 7 — 0. Higher excited states are not
possible in first order, but from the expression for ¢ i n (5.7.17), we see that |2) can be
reached in second order. Apparently, |0) — |n) tran81t10ns can occur in nth order.
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24. Follow the solution to Problems 22 and (especially) 23. Also use Problem 2.14 which
gives (m|z?|n) = (h/2mwo)[/n(n — 1)0p—2.m + (20 + 1)0pm + /(1 + 1)(n + 2),42.m)- So,

. A t , , i A (iwo—1/T)t __ 1
07(11) = —EA—\/%M/ ol eIy = — ! §n26 :
h™ 2mwy 0 mwov/2 iwg — 1/7
12 A2 2T _ 27T coswyt + 1 1 A%r?
and ‘c ) = 5 5 5 — = 55 fort— o0
2m2wg wi+1/7 2m2wi 1+ wgT
and transitions (to first order) to states other than |[n) = |2) do not occur. Apparently,

however, from (5.7.17), |0) — |2n) transitions can occur in nth order, but transitions to
states with odd n are forbidden.

25. I first address whether or not this problem can be solved exactly. (The original solutions
manual says it can be.) Indeed, it is essentially the “magnetic resonance” problem, for an
oscillating field B, coswt in a constant, stronger holding field B,. Many books solve this
problem, but in the approximation w = (EY — E3)/h, that is, near resonance. If, instead,
the oscillating field rotates, that is B, coswt + B, sinwt, then you can find an exact solution
for all w. Just expand |a,t) = a(t)| 1) + b(¢t)| {), substitute into (2.1.27), and express as
a matrix to arrive at coupled, first order differential equations for a(t) and b(t). With the
rotating field, the ansatz a(t) = agexp(+iwt/2) and b(t) = by exp(—iwt/2) leads to finding
ap and by by enforcing nontrivial solutions to the homogenous linear equations. This does
not work, though, for the linearly oscillating field, and I cannot find any other solutions.

So until an exact solution is found (or I delete this problem in favor of 5.30) I will not be
able to compare the perturbation theory result to the exact solution. Too bad, that would
be instructive. For now, then, just do the first order perturbation solution. We then have

|, t) = exp(—iBYt/R)| 1) + 5 (t) exp(—iESt/h)| 1)

from (5.5.4) and (5.5.17). With wy = (E? — E9)/h and ¢$" (¢) = (=i /h) fot ™ot X coswt', find

2 ) {sin2(w0 +w)t/2  sin*(wg — w)t/2  coswt(coswt — coswyt)

Dpl? —
‘ 2" (¢) n? (wo + w)? (wo — w)? (wo — w)?

If EY — EY is close to +fiw then one or more denominators in the above expression goes to
zero and the coefficient is large, so the perturbation expansion breaks down. Of course, this
is just the resonance condition.
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26. The perturbation is V = —F(t)x and wyo = [(3/2)hw — (1/2)hw]/h = w, so from (5.7.17)

(1) ot For o gt i F()T /
“ (OO)__ﬁ< w)<1| ‘O>/ 2+t2 / 7'2+t2

The integral can be done using complex analysis; see, for example, Section 6.2 of this text-
book. Since w > 0, replace the integral with a semicircular contour integral closed in the
upper plane. The contribution along the curved portion tends to zero as t — 100, leaving
the integral we're after. Only the pole at ¢ = +i7 contributes, so by the residue theorem,
the integral equals 2mie™(™) /(it +it) = (7/7)e ", and |\ (c0)|? = (72F2/2mhw?)e 27

Does it make sense that the probability is zero for 7 > 1/w, even though the impulse is
independent of 77 Yes, it does. In this limit, the perturbation is turned on and then off very
slowly, and the oscillator is, essentially, always in the ground state.

27. Once again, use (5.7.17). Insert [ dz|z)(z| and change variables in the ¢’ integral to get

Wi iA = wex/c, *
= ——/ dt// dr €1t Ad(x — et )uj(z)u;(z) =7 _Oodx e's /uf(x)ul(ac)

and the probability to end up in state |f) is ]cf 2, where wy; = (Ey — E;)/h. The following
explanation copied from the original solutions manual. The pulse can be regarded as a
superposition of the form e“*/°e=“* with w > 0 (absorption) and w < 0 (emission). Our
result shows that the traveling pulse can give up energy hwy; so that the particle gets excited
to |f), and that only that part of the harmonic perturbation with the “right” frequency is
relevant, as expected from energy conservation. Note that the space integral f uwpude is
identical to the case where only one frequency component is present.

28. The potential energy (e < 0) is V = —eEyze"/7. The matrix element (200|z|100) = 0
by parity symmetry, and (21, +1]2z]/100) = 0 by the Wigner-Eckart Theorem. I calculate with
MATHEMATICA (210|2]100) = (128v/2/243)ao. Returning once again to (5.7.17), we have

C(l)(t) _ /t dt'(—eEy) 128v/2 a1/ _ 215/2 je Fyag ™1/t — 1
2p h 0 243 35 h Z(_,L) —_ 1/7_
‘ ‘ 2'° ¢ Bfag e /7 — 2¢”!/T coswi + 1 . 25 e?E3ad 1
c = 21

with w = (Ey — Ey)/h = —(€?/2a0h)(—3/4) = 3¢*/8aph and ag = h*/m.e?, ast — oco. In
the limit 7 — oo, that is, a step function perturbation, the probability of transition is
> M5 R? 1 2 Fad

310 hQ w2 312 e2

1
et (00)
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29. Note that S;-Sy = (S?—8? —82)/2 = h*/4 for triplet state |1,0) = [|+ =) +|—+)]/V?2,
and = —3h7 /4 for a singlet state |0,0) = [|+ —) — | — +)]/v/2. Therefore H|1,0) = +A|1,0)
and H10,0) = —3A]0,0). Also, for ¢ < 0, the system is in the state |+—) = [|1,0)4]0, 0)]/v/2.

To solve exactly, go back to basics and use (2.1.5), using (2.1.28) and initial conditions at
to = 0. That is, put |a,0) = |+ —) = [|1,0) +10,0)]/v/2, so that at time ¢ the state vector is

1

la,t) = e M, 0) = — [e‘mt/h|1,0> + eSmt/h|0,O)} Therefore,
V2

(4 — | 8)? = i |eidt/n egmt/hf _ I+ COS;4At/h) ’

=+l = 1 |emidt/A _ e3iAt/h’2 I COSé‘LAt/h) 7
and |(++ o, £)[* = 0= |(= — |a, )"
For perturbation theory, back to (5.7.17). For the states |n) = {|++),|+—),| —+),| ——)},
we need the matrix elements (n|H|+ —) = [|1,0) +(0,0)]/v/2. Also note that | ++) = |1,1)
and | — —) = |1, —1). Therefore (++ |H|+ —) =0 = (— — |H| 4+ —) and there is no (first
order) transition to these states, in agreement with the exact solution. We are left with

oot it 2iAt
) =~ [ O (= H]+ )t =~ 3 101,00 - (0,0 (A1) - 38]0,0)) = -
0

so the transition probability is |c")(£)|*> = 4A%2/h?. Expanding the exact solution for
small times gives |(— + |a, t)[* = (1/2)(4At/h)?/2 = 4A2¢%/h?, in agreement with first order
perturbation theory. In the sense that the probabilities sum to one, this also agrees with
the probability |(+ — |, )|?, but applying the first order formula in (5.7.17) to the state
In) = | + —) = |i) does not give agreement.

“_»

30. The exact solution follows from (5.5.15); note the missing sign. We have

ihe, = WQ(t)ei(El_Eﬂt/th = rellwwolte, with c1(0)=1
and they = V21(t)ei(E2’E1)t/hcl = e Hwmwolte, with c2(0) =0
where wy = (Ey — E1)/h = wy; and |cy(t)]* + |e2(¢)]|? = 1. Recast these equations using the
changes ¢ (t) = a1 (t)e’@ =02 and ¢y(t) = ay(t)e @02 with |a,(t)|? + |az(t)|? = 1 to find
ihay — h[(w — wo)/2]la; = ~ay with a1(0) =1
and ihas + h[(w — wo)/2]las = ~yay with a(0) =0

To solve, write a; = ae®™ and ay = ae™ for constants af and a$. Then

RQ+ (w— wo)/Q]a? + 'yag = 0
761[1) + R[Q — (w— wo)/Q]ag =
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Nontrivial solutions are only possible for Q = +[y?/h* + (w — wg)?/4]"/2. Taking Q > 0 we
write the solutions as a;(t) = e + e and ay(t) = roae™ + rgBe ¥ where

Q+ (w—wp)/2 v/h Q—(w—wy)/2 v/h

TR e ™I T gk At w)p

Now a1(0) = o+ = 1 and ay(0) = rqa+ 138 = 0, so a — roafrg = a(l — ry/rp) = 1.
Therefore as(t) = 2ir,asin Qt where

Yirge = 2——0 ;T8 t__ 7

1—ry/rp rs—r1o  2Q/(y/R)  ihQ

We therefore have ihico(0) = iha3Q = ¢ (0) = v and

eo(t) = L e e 26in Ot 50 |eo(t)]? =

e sin? Qt and ey ()2 =1 — |ea(t)]

y
h?Q2
which agree with the solution given in the problem and also in (5.5.21). We can also find
c1(t) directly, as a = r3/(rg —ro) and B = —r,/(rg —14), SO

ar(t) = (e + Be—mt)ei(w—wo)t/z _ 2;9 (r,gemt i ,rae—iﬂt)ei(w—wo)t/Q

It is worthwhile to check that the normalization condition is maintained. We have

2 2
2 2 2 2iQ —2iQ gl

ler(B)]” = I (15 4+ 12 + rarg(€® + 7)) = IR

72 [Q—{—(w—wo)/Q Q— (w—wp)/2

i [7’% + 12 — 2 cos 201]

—2c0s? Ot + 2sin® Ot

4R%Q2 [ Q — (w — wo)/2 Q+(w—w0)/2
2 32
I G P ) s
= 27‘1292_[ T—F?(l—Qsm Qt)
1 oh 7
= 5p [292 - 2h2 sin Qt} =1- 202 sin? Qt = 1 — |ey(8)]?

So much for the exact solution. For perturbation theory, go back to (5.7.17), that is

. t ) y (w—wo) __ 1
Cg) _ _% /0 L fym and therefore,
‘ (1)‘2 7 2 — 2 cos( )] ECy Ll ¥
c = —————|2—2cos(w —w = 57—z sIn
2 hz(w _ W0)2 0 72 (w=wo)? 2

4

This agrees with the exact solution only for 7 < |w — wy|/2, in which case Q ~ |w — wpl/2.
This makes sense. For w = wy, that is near resonance, the effect will be large and we don’t
expect perturbation theory to hold.
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31. Take V(t) — Ve™ and consider the second order expression in (5.7.17). Then

-\ 2 t t
t
- __ Z Vanm'L . 1 / dtle(ZWnZ+2n)
h Wi + 1

iwnit 520t

— e(lwm+2n Z Vnmvmz o € € Z Vnmvmz
N h) iwp +2n Wi + 1 - E,—FE, — 2ihn - E,, — E; —ihn

_ Z Vnmvmz + ezwmt 2t 1 Z Vnmvmz
&= (BEy— B —ilm)(E, — E; = 2ilm) B, — E; — 2iln <~ E,, — E; — il

~.

Now we can let 7 — 0. The first term above becomes the first term in (5.7.36). In the text,
the second term in (5.7.36) is argued to give no contribution to a transition probability that

grows with t. However, this is not the case for the second term above. Letting n — 0 gives
the factor [e™rit —1]/(E, — E;) — t/h as w,; — 0.

32. The eigenvalues and eigenstates of Hy = AS; - S, = (A/2)(S? — S? — S — 2?) are
well known. They are —3AR%/4 for 0,0) = [| + =) — | — +)]/v2 = |[10), and AR®/4 for
1,0) = [+ =) +=H]/v2=129), [1,-1) = | - =) = [3©), and [1,+1) = [ ++) = [4).
The perturbation V' = (eB/m.c)(S1, — Sa2.) gives no first order energy shifts, since all
matrix elements (n(®|V|n®) = 0. This is easy to see, since (S, — S5.)|1@) = A2},
(S1, — 99.)[2@) = A[1©) ) and (51, — 92,)|3@) =0 = (51, — 5,)|4?). This also shows that
all matrix elements (m®|V|n®) = 0 for the degenerate subspace m,n = 2,3,4. Therefore
there are no zero energy denominators in (5.1.42) and we can use nondegenerate second order
perturbation theory to find the energy eigenvalues. We find energy shifts A3 =0 = A, and

o VP @B —S)RO)E 2B
! B —EO m2c? —3AR*/A— AR® /4 m2c2 A
V- 2 232
Ay = —| al :_A1:+€

EQ _ EO m2c? A
These agree exactly with the exact eigenvalues for the triplet m = 41 states [3() and [4(9)).
Expanding the exact solutions for the two m = 0 states for eBh/m.c < AR?,

h2A 1 eB \? h2A 232
E = 1+2 |1+ =4 -1+ T ——
{ * 2 <mechA) } ( )F

4 4 m2c?A
which agrees with the zeroth order eigenvalues plus the second order energy shifts. The first
order wave functions from (5.1.44) are |3) = |3(0), [4) = [4()),

_ Va 110 — [200) eB
EY — EY mecA

eB
mecAh

1) = 1) + 2% and [2) = 2%) + 1)
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Now introduce an oscillating magnetic field B = Be™'h where fiw = F;—E», and the problem
asks for which direction n = z or n = X is needed to induce transitions between the states
we’ve labeled |1) and |2). The interaction Hamiltonian is g - B = (eB/mec)e™*(S; — Ss) - f,
so we need to examine the matrix elements (1](S1, — S2.)|2) and (1](S1, — S2,)[2). Note
from above that |1) and |2) each contain components in the direction of [1) and [2().

First consider (1|(S1, — 55.)|2) since most of that work is done above. We have already seen
that (1O[(S, — S5, ) 1) =0 = (2O|(Sy. — 5,.)[2). However

(1O)(S;, = S5 )1O) =

(== =+ 10L =S) [+ =)+ = +)]
h
= M Il = - - =5 #0
So, an oscillating magnetic field in the z-direction will cause transitions between |1) and |2).

For (1](S1, — Sy,)|2) calculate (S;, — S5,)[1©). Use S, = (h/2)[|+)(—| + |-)(+]] from
(3.2.1). Then calculate Sy,|1©) = (2/2v2)[—| + +) + | — =)] = (R/2/2)[|3@) — [4))] and
Sy, 1O = —(h/2v/2)[|3@) — 4], s0 (Sy, —S2,)|1@) = (A/v/2)[|3) — |4)]. However, all
of the [n(?)) are orthogonal. Therefore (1|(S;, — S5,)|2) = 0 and there will be no transitions
for an oscillating magnetic field in the x-direction. Similarly for the y-direction.

33. The essential physics in this problem has to do with the proton magnetic moment being
much smaller than that of the electron. Therefore, the interaction of the external magnetic
field with the proton is neglected. Mathematically, the degeneracy ends up getting treated
differently, but pretty much everything else is the same. I am just reproducing here what was
published in the old solutions manual, which does not deal with a comparison to the exact
eigenvalues, but I want to look into reformulating the problem at some point in the future.

We need to digress here on time independent degemerate perturbation theory. Let
Bty = Egby = (5, + £{1) 4 g teereedby. Write y, = (% +oll) 4 3D,
We bave 1. B 953)4ye(@) _ £l0), (1),2(1),(0). @) 15 (1) L (0], (2) {1
422y ), 5 o caatn @ _ -::? (::n (:: c;:L{z;*?nmﬁs} By by +ESH D)

a Yo 3 3 Boug 4w ¢l = gl LR e A AN A S ?é"}fnrthefirst
three orders of perturbation. Ler té“) . té?)... be degenerate eigenfuncrions of
H, with eigenvalue E:(I“). We saw earlier that we need to choose these to be eigen—
functions of V so these would not be mixed by the perturbation. We want to solve
8= £ 9, @), Take scalar product of first order relacion 1. above with e

1
ve have E.1 = Von Take scalar product of 1. with y{°) where E{®) # £{0), we



Copyright, Pearson Education. 78

have C, = Vpnf[h'é"}-zé"}] which s correct to lst order. BNote if we had taken

scalar product with tﬁ?] in 1. we would have got Gn.ﬁgf) = Eé"}cnf because vn‘n'ﬂ
and hence Cyr is pot fixed by the Ist order equation. Multiply secound order eqn.
2. by 4$% ve bave ¢, (v - v, ,) = wtalar...Cfary- Although this is formally

a 2nd equation, note however that if the perturbation removes the degeneracy, i.e.
ka"a 'k
(o)

=]
En "E-é ))‘(v“' nlut)
which is formally lst order! The reason is that l. above does not determine Cyr

V oFVaryr then Cov = Wharn'... Vo VapVargel = Hn’:n.“(

hence we need to go to second order equation 2. and obtain the curious Yan""a'n

v de=

nominator for C,+. But for our case, n & n' were nondegenerate only in lst order,

1.e. Vpp=Vp1yv is 1lst order so that we must need a an order mumerator (and hence

use 2nd order eqn.) to get first order answer for the vavefunction/eigenvector.

This wvas che reason why an arbitrarily Small perturbation makes a big effect unless

we work in the correct basis.

(a) wrice 3.5, = x[82-57-32). again eigenstaces are triplecs and singlets.

Treat V = eBS) /mec = aS), as a perturbation and demote state as |e,p>. Then

Sy []+=> = ]—u-:]le‘ = LE[ [+=> + |—1-:‘-].fzil‘i and thus S, |singlec> = |eriplee> o

Sy, ltriplec,a=0> = ig|singlet>, Sy, |++> = lk|+>, Syz|=> = ~ii|—=>. The singlet
state clearly obtains no shift to first order in perturbation theory. For the
tripler state, we must again use degenerate perrurbation theory and choose a bas
where V is diagopmal with respect to the triplets. Forrtunately, our basis alread
has this property. The m = *1 components of the triplet suffer a first order
energy shift ES;):I = <=|V|2> = Y.
Second order perrurbarion theorv. For the singlet state, usual perturbacion the

formula is okay. We have
(2) = L (o) (o) _
Esingle: Tk "rﬂl»f-v!k::u‘r (En "Eh ), in> = singlet
This has only a non-vanishing macrix element with the m = 0 tripler, f.e. |[k> =

be criplet m = 0 scace. We have
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a=0,tripiet |V|singlet> = ifa

(o) = —3aK2 (o) = AW
and since Esol ler 3AK“/4, E inlet = AK“/&4, we have
(2) = 2, ,u2
8E i oter Csha )™ /-AK

Shift of tripler wavefunction in Ist order. The |w=*,triplet> stares are eigen-
functions of V and so they don't mix. The |m=0,tripler> does mix with the sing

and Cogpnorer = ‘a/ [a¥2/4 - (-3AKZ274)) = %k /aK®. There is oo mixing with the

other triplet components as can be seen unambiguously from our expression for C

equarion above. Writing "|w=0,triplec>” for the first order shift, we bave

" jm=0,criplec>” = [n‘-*ﬁ,triple:}(o

Finally, multiplying Eq. 2. by :ég), we have

) 4 -E%ﬂs:l.ngle:)

{pioj . ‘F*:(ln) = Egn (vhere we have used Ein = Q)
and thus zg_;pm(m:m = C_ingiec W=0sCriplec|V|singlec> = LR/AK? x Wa =
()2 /6nk2.
{(b) The new time dependent perturbative term is for this problem
V() = (eB'fhEc)ei":gl-i'
Using the expressions for y; amd x, in terms of ] and v, and Eq.(9) and Eq.(1]
of solution to Problem 32(b), we find readily that <x; [Six|%p> = 0, and simila:
‘11|31,|Io" = 0. However again like Problem 32(b) <xj|S;;|x,> does pot vanish.
Therefore the B' field should again be in the z—direcrion to cause ==0 rransirioms.
(¢) The first order eigeavector "|m=0,tripler>" was already givem in part (a), feor
"|m=0,stnglec>" = [$%> + (<4 V|1 D= L)) 197> = [¢> + Cda/-a8D) 4>
Hote for this problem n = triplet, ==0; o' = triplet, m==l; k = singlec; hence

Vot = 0 and thus C v = 0 and does not actuwally coantribute here in firsc order.
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34. Following (5.8.1), the interaction piece of the Hamiltonian is V' = —(e/m.c)A - p, for
the gauge condition V - A = 0, and ignoring A? terms. As seen in (5.8.5) and the attendant
discussion, we take for emission A(x,t) = A€ exp(—iwn - x/c) exp(+iwt) for polarization
vector €, although the photon field is in fact real, given by (5.8.3). Since the process “is
known to be an E1 transition”, we invoke the long wavelength approximation and take the
leading term in exp(—iwn - x/c) — 1. The transition rate for emission, following (5.8.8), is

2

*[{nl(& - p)[i)|" 6(Bn — Ei + hw),
Next, as in (5.8.21), make use of [x, Hy] = [x, p?|/2m. = ihip/m., and therefore
(n|pli) = 7 —(n|[x, H|i) = m (E E,)(n|x|i) = imewn; (n|x|i) = imewnidy;

and the quantity |€ - d,;|*> should tell us the angular distribution. We’'ll take d,; as the
angular momentum quantization (“z-”) axis. (Since “the magnetic quantum number of
the atom decreases by one”, we must be able to distinguish m states. Thus, some small
perturbation breaks the degeneracy, and defines the z-axis.) Let the photon be emitted in
the xz-plane. Then n = xsinf + zcos # for polar angle 6. The polarization unit vector € is
normal to n so we can write it as € = — sin a cos #x + cos ay + sin « sin 0z.

Now write |i) = |[,m) and |n) = |I',;m — 1) where we know that [ and " must differ by an
odd integer. Also write x = X + yy + 22 = r(Xcos ¢sinf + y sin ¢ sin 6 + z cos ) as

x = 1r/21/3Y N (X +iy) — r/ 27 /3Y] (X — iy) + r/4n/3Y 2

These terms are proportlonal to a spherlcal tensor T ) for q = —1,+1,0, respectively, so by
(3.11.28), <n|Tq | ) =(',m 1\T |l m) is nonzero only for m — 1 =g+mor ¢ =—1. So
€-(n|x[i) x e-(x+1y) =, +1ic, = —sinacosf+icosa = 3¢ e"“(1+cosf) + ¢ e (1 —cos6)

and a photon emitted in the +z (—2) direction, seems to have right (left) handed circular po-
larization. This makes sense, since the L, for the atom decreased by one unit, and the photon
carries off the difference. For emission angles 0 < 6 < 180°, the photon also carries off some

“orbital” angular momentum. Since ((e2 +¢€})) = (sin® asin® @) o< sin® @, the (polarization
averaged) angular distribution is sin®#, the same as for classical dipole radiation.

35. Have (x|i) = (1/ag)*/? exp( r/ao)/\/_ and (x|f) = (2/ao)*? exp(—2r/ag)//7. So, the
probability amplitude is (i|f) = [ dz(i|x)(x|f) = 47 (23/%/7ad) [ r?dr exp(—3r/ap). Using
MATHEMATICA 1 find fr2drexp( 3r/ag) = 2a3/27 so {(i|f) = 8v/2 x (2/27) and |(i|f)|* =
29/35 = 0.702 is the probability to find the atom in the *He' ground state. The decay
electron leaves the neighborhood in a time 7' = 1A /v where m.v?/2 ~ 10 keV. Therefore
v/c~ (20/511)1/2 and T =~ 107'® sec, whereas (see page 346) 27 /wa, ~ h/10 eV~ 1071 sec
Thus T' < 27 /wyp and the condition for the sudden approximation is satisfied.
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36. This problem shows that Berry’s Phase is a real number, and it is not hard, but the
notation is a little tricky. Remember that a differential operator acts to the right, and that
you can differentiate a ket (or a bra) with respect to the parameters on which it depends,
and get a different ket (or bra). Being very explicit to make this clear, we have

0= VgI[l] = Vr[(n;tln;1)] = Ve [((n;t]) (In; )] = (Vr(n;t]) [n;t) + (n;t] (Vr|n;t))

However (Vr(n;t|) |n;t) = ((n;t|[VRr|n;t)])". So (n;t|[VRr|n;t)] = — ((n;t| [Vr|n;t)])", in
which case it is a purely imaginary quantity. Therefor A, (R) in (5.6.23) must be real.

37. The state vector is well known, in Problem 1.11 and (3.2.52). In spherical coordinates,

|ngw::cos(g>|+v—%ewsn1(g)|—>

To be sure, we want the state |n;t) which depends on the vector-of-parameters R(¢) that is
the magnetic field. However, the state does not depend on the magnitude of the field, only on
the field’s coordinates, in the usual three spatial coordinates. Consequently, a gradient with
respect to By or By is the same as the usual three dimensional spatial gradient. Therefore

~ 0 ~ 1 0

1 O\ - 1 O\ 4 7. 0\ -~
— T v ip * v . id v .
5 Sin <2> 0|+) +e 5 Co8 <2> 0| >+sin66 sin (2) o|-)
. N
(n:t| [Ve|n:t)] = —— sin? <—> @

sing >\ 2

o\ . .
AR = o] [Vfuit)] = st (5 ) 6= 4,000

.1 0, . .1 1 . /0 0 1
Ve xA,(R) = t———(sinfA,) = _rsin02§ sin (5) cos (—) = —T—

At this point, you will notice that we have essentially derived the first part of (5.6.42) for

this particular state vector. The rest follows from the definition of the solid angle, but for
the sake of completeness, we can carry it through. So

(€)= / Vi x A, (R)] - da — —§/f ‘da— —%Q

If you really want, you could carry out the integral, at which point you will simply derive
the expression for the solid angle subtended by a cone of half-angle §, namely 27(1 — cos ).
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38. Write V(x,t) = [exp(kz — wt) + exp(—kz + wt)] /2. Following (5.8.6), only keep the first
term since E; < Ey and only absorption of iw is important. The absorption rate (5.7.35) is

2m ‘/0 ? ikz 2
wisy = 2 (L) tple™ 10} (B — B — )
where Ej is the energy of the ground state |0), and Ej, is the energy of the state |p), taken
to be a plane wave with momentum p. Inserting 1 = [ d®2/|x’)(x'|, the matrix element is

ik 1 1\ 3 ip-x' /i ik / 1 1\ 3 ' /
) = — | — >z —ipX'/h ik —r'fao _ [ _~_ d>x’ —igq-x’ ,—r'/ag
pletoy = = (qp) [ e = () [

where q = kz — p/h. To evaluate this integral, let q define the 2’ direction. Then,

1 3
/d3(L’/ e—iq-xle—r//ao — 9 /OO T/2d7,/e—r’/ao / d(COS 9/>e—iqr’ cos® _ 47T6L0
0 -1 (1+ agq?)?

(For more detail, see the solution to Problem 41.)

The problem asks for a comparison to the photoelectric effect, so let’s first retrace the steps
that lead to the differential cross section (5.8.36). We start with the absorption cross section
(5.8.14) and integrate with the correct density of states p(E). We are concerned with the
number of states for ejected electron energies between E and E + dFE which move into a solid
angle d). As in Section 2.5, we quantize in a “big box” of side length L, the energy (5.8.30)
is £ = p?/2m, = th?/Zme = (27h)*n?/2m.L? where n* = n? +n +n? and n,, n,, and n,
are (positive, negative, or zero) integers, and following the textbook we put p* = h2k:]2@ with
k; = (2r/L)n. Note that a value of n uniquely specifies the value of the energy E.

Now consider the number of states in n space, for large values of n. There is one state
for each point (ng,,n,,n,). Also, the electron momentum vector p points in the direction
(ng, ny, n2), so the solid angle d2 is in n space. Therefore, the number of states between E
and F + dE ejected into solid angle df) is obtained by counting the number of states in a
thin spherical shell of thickness dn for this solid angle. That is

dn L\’ m L\’m
E) = n?dndQ) = n*~—dEdQ =n* | — | —dEdQ = | — | —k;dEdQ
pLE) = n7dn " dE " (27Th) n <27r) n2

which is (5.8.31). Then, multiplying (5.8.14) by p(E) and integrating over the energy F

do  4Am%h [ 2 - N o ([ L\*m
- i i(w/e)(a-x) 2 | 115 =) e
dQ  miw (hc) [(nle ¢ pli) (27r) nl

which in fact is the same as (5.8.32), with a = €?/hc. At this point, the book’s description
is straightforward. Integrating by parts, one turns (n|e!©/9®@%)¢ . pli) into € - k; times our
integral, above. The result is (5.8.36).
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So, now return to the problem at hand. Integrating over Ej, after inserting the same density
of states, the decay rate w;_,y becomes

dw 2m (VoN?1 (1 \°[ 4drad 1°(L 3mek ComVgad ky

dY  h \2) 7 \aylL (1+ a2q?)? o) w2 T R (1 + a2g?)?
Checking dimensionality, (M E*L3/E3T®)(1/L) = ML*/ET?® = ML?*/[(ML?/T*)T? = 1/T.
The angular distribution here is contained in the dependence on ¢?. It is similar to the
angular distribution (5.8.36), except for the factor (€ - ky)* = k% sin® 0 cos® ¢.

This is a peculiar perturbation, a wave traveling in the z-direction but with no polarization.
Indeed, the polarization of a true electromagnetic wave leads to the additional angular de-
pendence. It isn’t clear to me how one might create such a perturbation, independent of the
a magnetic field that would be generated Maxwell’s Equations.

39. From (B.2.4) the energy is £ = h*n?r%/2mL? for n = 1,2,3, ... and we consider n > 1.
There are dn states between n and n + dn, and dE = h*ndnm?/mL?, so we have

dn  mIL*1  mL*hn [ 1 1/2_L<m>1/2
dE  R’m2n R’m2 L \2mE ~ hm \2F

Note that L/h has dimensions of 1/momentum and m/FE has dimensions 1/velocity? so that
dn/dE has dimensions 1/momentum xvelocity= 1/energy. Note: This does not agree with
the old solutions manual, but they count states as ndn, which is the two-dimensional case.

40. We start from (5.8.32). As in (5.8.33) we need to evaluate

ik

. N . N KX .
<kf|61(w/c)(n'x)é.p|z'> = é-/d3x<kf|x>ez(”/c)(n'x)<X|p|i> = —ihé'/d3$€—ez(w/0)(n'x)vw(x)

13/2
where 9 (x) = (x|i). Following the text and integrating by parts, we are led to evaluate
é . V[e—ikf~x6i(w/c)(ﬁ~x)] —é. [—Zkf + i(w/c)ﬁ]e—ikf~xei(w/c)(ﬁ~x) — —Z(é . kf)e—ikf~x€i(w/c)(ﬁ-x)

since €-n for the electromagnetic wave. Now (x) is the ground state wave function of the 3D
harmonic oscillator with Hamiltonian is H = p?/2m + mwix*/2 = H, + H, + H, where the
H; are the corresponding 1D Hamiltonians. Therefore 1)(x) = (mwg/7h)3/* exp(—mwqr?/2h)
using (B.4.3). Defining q = ky — (w/c)i we have

‘ : 1 3/4 '
(ky|e'@/9@X)g . pli) = ih(é - kf)m (m_;;o) /dga: e~ i gmmuwor?/2h
m

The integral can be written as I,1,I, where I, = [ dxexp(—ig,x)exp(—mwoz?/2h), etc.
With ig,x + mwoz?/2h = (mwo/2h) (22 + 2ihqez/mwy — %% /m?w?) + hqg? /2mwy, we have

[e.o]

27k \ /2 5
dx exp[—(mwo /2h) (z + ihq, /mwg)?] = (_) e~ haz/2mwo

mwo

I, = exp(—hqi/Qmwo)/

—00
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So now return to (5.8.32). The differential cross section becomes

do 42l 1) 1 (mw0>3/2 orh\? . hq? | mk,L?
- : — xp | - ——
dQ) m2w 3\ rn mw mwo | h?(2m)3
Aok o 7wk \'? hq?
T m2wwg k(€ -y (mw()) P [_ mwo}

Using the coordinate system in Fig. 5.12, we find (5.8.37), that is (€ -ky)*k} sin® 6 cos® ¢ and
q® =k} — 2kg(w/c) cosf + (w/c)®. Putting this all together,

do  4ab’k} -, ( ah \'? h w2
0 miem, sin“ 0 cos” ¢ (m_wo) exp {_m_wo [kf <c> ]}exp {2hkfmcw0 COSQ:|

41. The real point is to calculate the Fourier transform ¢(p) of the 15 state of the hydrogen
atom. It is relevant for deriving (5.8.36). We have (with p defining the “z” axis)

1 3 —ip-x/h 1 3 —ipx/h _—r/a
o(p) = W/da:e p/l/)(x)zm/dxe px/he=r/

— 1 2 —zprcosH/h
- (27r2a3h3)1/2/ redr e~ / d(cosf)

1 h / ( p ) — 1 2n'a®
= —— rsin | =r r=
(2m2a3h*)1/2 p h (2m2a3R*)1/2 (h? + a2p?)?

2h° a?
72 (h? 4 a2p?)*

so [o(p)]” =

where the integral was evaluated with MATHEMATICA.

42. Note. The previous solution manual refers to Sakurai “Advanced Quantum Mechanics”,
pages 4144, for the solution to this problem. That uses a quantized electromagnetic field,
however. Here I give a solution within the context of the present textbook.

The lifetime 7(2p — 1s) is the inverse of the transition rate (5.8.8), evaluating the matrix
element and integrating over final states. An important ingredient, though, is the electro-
magnetic field normalization Ay, which is not discussed in the book. We can determine this,
however, by integrating the energy density over our “big box” of slide length L, and setting
it equal to hw. That is, the electromagnetic energy must equal that of the emitted photon.

Start with (5.8.3) with k = wn/c = (2r/L)(n,x + n,y + n,z). That is, imposed periodic
boundary conditions in our big box, with L — oo at the end of the calculation. One finds
10A

E= e = 2Apkeésin(k - x — wt) and B=V xA=2A(¢ xk)sin(k-x — wt)
c
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The energy density is u = (E? + B?)/87. Note that (€ x k)? = €?k? — (€ - k)2 = k? since €
is a unit vector perpendicular to the propagation direction k. Therefore
k2 k2
U= ﬁAg sin*(k - x — wt) = 2—A2 [1 —cos2(k-x — wt)]
The cosine term integrates to zero with our periodic boundary conditions. Therefore

2mhc?

wlL3

which agrees with (7.6.21). To get the density of states for the photon, write the energy
E = hw = hkc = 27hen/L. As in Problem 38, but this time integrating over solid angle,

»dn RPw’l? L
E) = 4mnPdn = 4mn?—dE = dn—————dE = L3dE
pIE) = dmndn = dmn o " Am? R e 7r2hc3
Now the matrix element. The photon wavelength is hundreds of nm, whereas the atom has
a size ~ 0.1 nm, so use the first term in (5.8.15); indeed, the 2p — 1s transition is E1. So,
(1s|e!@/@x)g . plop) = (1s|é - p|2p) = m—};<ls|é - [x, Hpl|2p) = —im.w(1s|€ - x|2p)
i
But the state |2p) could be any one of three states with m = 0, £1. We separate these using
. Ep — €Y T + 1Y  Ep +1igyT — 1Y [4m 41 1 0
E-X= + +e,z2=1\— (—e_rY" +eyrY, " +egry;
\/5 \/5 \/5 \/§ 3 ( 1 + 1 0 1)

where e = (g, +ig,)/v/2 and gy = .. Since the Y;™ are spherical tensor operators, by
(3.11.28) the matrix elements (1s|Y}!|2p, m) are nonzero only if m = —¢. Furthermore, by
(3.11.31) (1s|Y{|2p, m) = (11; —q, ¢|11; 00)(15|]Y1H2p>/\/_ so only calculate for ¢ = 0, i.e.

V3 2
(1s|z]2p,m =0) = 27w d(cos ) e~/ 1 cos @ re"/2w0
’ An 23/2a0 CLO\/_

1 4 —3r/2a0 1 128, 2172
— r/2a d _ L e _
\/;ao / he " 3\/§aé a0 = g5 0
V3(1s|rYP|2p, 0) 3 219/2
Ls||rYi|[2p) = —L = (1s2]2 = -
o slirnili2p) (11;00[11; 00) —1/\/_\/ Wslel2p,0) = =/ 4 =g o

R 1 1 915/2
and <1S|€X|2p7m> = ﬁ (_5—\/55771 1+€+\/§5m+1 50\/§5m0) <_ 34 aO)

Note that all three matrix elements have the same value. For the transition rate, average
over these, with |e_|? 4+ |e,|> + |go|* = 1. Finally, integrate (5.8.8) over final states to get

2 e? 2rhe® 21( 215> w? 5 2eaf

k? w?
/ dru=—AL* = ——ASL* = hw SO Ay =
3 27 27c?

= ox L ° T 2,2
v h m2c? wlL3 e 3\ 10310 ) s T 3l pe 2

B 21T e2 a2 [1 €2 1 1 3_28 e 40_28 e? 5mec2_1
3 Aee? | h2ag 22 38 \he) ay 3% \he hT

This agrees with, for example, Townsend (2012) Eq. (14.168). Using m.c® = 0.511 MeV and
i = 6.58 x 10716 eV-s, we find 7 = (6.58/0.511) x 10722 137° - (3/2)® = 1.59 x 107
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Chapter Six

1. The problem is to solve the Lippman-Schwinger equation (6.2.2) for a one-dimensional
potential. Ignore the comment about “Is the prescription £ — E + i?” and just consider
scattering forward in time. That is, we want the solutions ¢(*)(z) = (x|¢7)) to the equation

pP(z) = ¢(x)+/d:v’<x

> @V ®)
2m

= o)+ 23 [ a6 W)

—a

1
E—Hg+i€

where ¢(z) = (z]i) = ¢**/\/27 and G (z,2') = 1= <w }m x

= 2m

>. Now drop the super-

script “(4)”. To find G(z,2’), insert complete sets of (continuous) momentum states. We
have E = h*k?/2m, and make the definition p = hq. Therefore
V) W)

G(z,z") = /dp/ dp' ( |p< ‘E ot ie

pr/h —ip'z’ [k
_ _/ dp/ i {plp) e
2m o o \/QWhE—p’2/2m+i€ vV 21h

—_ dp 5 — = — - dq
2nh2m J_ ~ E —p?/2m +ic 21 J_ o (¢ —q0)(q + qo)

with go = k(1 + ig), redefining ¢ but keeping the same sign. Do the integral with a half-
infinite-complex-plane contour. For x > 2/, close the contour (counter clockwise) in the
upper plane and the exponential factor goes to zero along the semicircle; this picks up a pole

at ¢ = +qo. For x < 2/, close (clockwise) in the lower plane, with pole at ¢ = —qo. Therefore
1 ik(z—a') 1 )
G(z,2") = —%(+2m') ek e %k th(z—a’) for x>
1 e—ik(m—m/) 1 ‘
d G ! —= R — _2 Y [ — —’Lk‘(.r $) f < /
an (x,2") 27T( i) % = o or <z

which agrees with (239) in Sec. 4.4 of Gottfried and Yan (2003). For V (z) = —y(h?/2m)d(z),

find ¥ (z) = ¢(x) — yG(x,0)1(0). Since G(0,0) = 1/2ik, have ¥(0) = ¢(0)/(1 + v/2ik). So
1 . 1 2k,
— IRT — IRT f
wie) o { 22k+'ye ] Vor 2ik ¢ or w0
— —ikx
and  ¢Y(x) = N [ 22k +’y } for <0
so T'(k) = 2ik/(2ik + ) and R(k) = —v/(2tk + 7), in agreement with (4.4.267) of Gottfried

and Yan (2003). Note that |T'(k)|*> + |R(k)|*> = 1. The attractive §-function potential was
solved in Problem 2.24, with V(z) = —vyd(z). The bound state energy was found to be
E = —mig/2h* = —h*~?/8m, i.e. k = iv/2, i.e. the poles of T'(k) and R(k).
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2. The first order Born approximation is (k'|V |} = (K'|T|k) ~ (K'|V|k) using (6.3.1)
and (6.3.2). Using (6.2.6), (6.2.7), (6.2.22), and (6.2.23) the total cross section is

mL?

2
ot = A (K |V k) (k|V K
v = () [ VIV IR)

mL3\?
N <ﬁ) /dﬂk, dx ' K|V |x)(x[k) (k|]V[x) (x'[k')
T

mL3 2 3 3 7 / / / 1,/
— <2wh2) /ko, dx d*z V(x)V (x')(K'[x) (x[k) (k[x') (x'[k')

2
= < mQ) /ko/ B P’ V(x)V(x) ek X)) ik (e
2mh

The integral over Qv is easy. Put K/, in the direction of x—x', s0 kK'-(x—x') = k|x—x'| cos Oy
Then [ dQe™ & 6) = 2 f_ll d(cos Oy )e~FPx=xlcoste — 4 gin[k|x — x'|]/k|x —x/|. (Recall
that |k| = k£ = |k/|.) We can reduce the total cross section further if the potential is
spherically symmetric. In this case, every spatial direction x — x’ contributes equally to
the double position integral. So, we can average over all directions k, picking up a factor
(1/47) [ d =) = sin[k|x — x|]/k|x — x'|. The result is

2

Ttot = 24 /d3x " V(r)\V(r')
Th

sin?[k|x — x'|]
k?|x — x/|?
The Optical Theorem (6.2.24), or (6.2.33), using (6.2.22) and (6.3.1), reads

4 2mL3
Otot = ?Imf(kak) - = hzk Im<k|T|k>

The first order Born approximation from (6.3.2) gives zero, since T' =V is real. Therefore

2mL>? 1
ot = — I k| V—e/——F7—-—-Vik
Tt 12k m< ‘ E—H,+ic ' >
2mL? 1
2 ’ "2
= —th]iIm/d?’z d*a’ V(T)V(r’)e_’k'(x_x)h—?G+(X, x')

sin[k|x — x/|] e

klx — x| 4r|x —x/|

4 2
= hkaIm/d?’x &z V(r)\V(r')
2
= | B B V(r)V(r')

wht

sin?[k|x — x'|]
k2|x — x'|2
making use of (6.2.3) and (6.2.11), and the same “averaging over k” argument we used

above. That is, the second order Born approximation gives the same answer for the total
cross section when applied to the Optical Theorem.
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3. The figure is reprinted here from the original paper, along with vertical lines to help read
off the positions of the minima. We determine momentum transfer from ¢ = 2ksin(6/2)
where h2k?/2m = (hc)?k?/mc? = 800 MeV, so k = /800 - 934/200 = 4.32/fm. For a square
well of radius a, the first three minima are at ga = 4.49, 7.73, and 10.9. (See page 401.) So,

Minimum #1 Minimum #2 Minimum #3

Isotope 1.4AY3 | 6 q a 0 q a 0 q a
0Ca 4.79 | 7.95° 1.20 3.76 | 14.2° 2.12 3.65 | 20.9° 3.08 3.54
2Ca 4.87 | 7.85° 1.18 3.80 | 14.0° 2.09 3.70 | 20.5° 3.03 3.60
4Ca 4.94 7.6° 1.14 393 | 13.8° 206 3.75|20.1° 2.97 3.67
®BCa 5.09 7.3° 1.10 4.09 | 13.4° 2.00 3.86 | 19.5° 2.88 3.78

|04 r—rr—r—rr o r T
PROTON ELASTIC SCATTERING

103 0. BOOMeV
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. 1 Caax0,l
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e
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- d "~
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© !
102 I i '
|0‘3 s )
IO—4 ) i 2 A L " A P P — VI t i L ]
2 4 & 8 10 12 el [53 8 20 22 2
6. m(deq)

Several remarks are in order. Firstly, as mentioned in the text, the minimum shifts to
lower angles as the number of neutrons is increased. In other words, the radius increases
with neutron number, just as expected. The quantitative agreement with the liquid drop
formula @ = 1.4AY% is marginal, but you can only expect so much when comparing one
crude approximation (liquid drop) with another (square well). The position of the minima,
though, are reasonably consistent with each other, each leading to a radius that is within
~ 5% of the others for a given isotope.
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4. This problem, low energy scattering from a weak potential, makes a lot of use of the
properties of the spherical Bessel functions. Chapter 10 of the NIST Digital Library of
Mathematical Functions at http://dImf.nist.gov/ is a good online reference.

We need to solve the radial Schrédinger Equation (6.4.55) for w;(r) = rA;(r) in the region
r < R where V = Vj. This is easy, since E — Vy = h*x?/2m, that is A;(r) = j;(kr) and
the logarithmic derivative (6.4.53) “just inside” r = R is 5, = kRj/(kR)/ji(kR). Note that
|Vo| < E, s0 k ~ k and kR < 1 implies that kR < 1. This means we expand both to lowest
order, but this is tricky because (6.4.54) involves the Bessel functions and their derivatives,
which mix different orders. It turns out to be very useful to use the identity

() = L&) ~ fia(o)

where f;(z) is any spherical Bessel function. Therefore, the logarithmic derivative is

KR R : Jir1(KR)
= - kR) = - —(kR) — kR)| =1 — kR —/————
A= e M) = S (o) = ) )
Also, for both the numerator and denominator in (6.4.54) we have
KR S{KR) ~ 5 R = KR L fhR) — fia(kR)| — [1 - s 2T iy
: kR Ji(KR)

Jir1(KR)
kR mfl(kR) — kR fi(kR)

Now ji(x) ~ 2! /(21 + 1)!! for x < 1, so jiz1(kR)/ji(kR) = kR /(21 + 3) to leading order. We
also know that ny(z) = — (20 — 1)!!/2'*! for x < 1. Therefore (6.4.54) becomes

(SRR 4 3) — KR jus (bR)
(kR)>n(kR)/(20 4+ 3) — kR ny1(kR)
(kR)2(ER)' /(20 + 3)!' — (kR)"2 /(21 + 3)!!
—(2l - DW(kR)2/[(2L 4 3)(ER)*1] + (20 + DN/ (kR)!H!
(kR)?+! (kR)? — (kR)? _ (kR)>*3 {"fj _ ]
2L+ 3)N20+ 1)1 (204 320+ D! | k2

tan 51

Q

where we ignore the first term in the denominator for kR < 1. Clearly [ = 0 dominates, and

1 Vo 1. 2mVyR?
—1| = —=(kR)*—= = —k
} 3< ) E 37 R

£V

~ 0 ~ sin oy

tan dyg = %(kR)?’ {

That is, (6.4.40) gives an isotropic angular distribution. The total cross section (6.4.41) is

4 167 m*VER®
oot = 2 gin?dy = —2 0 Yo v

k2 9 I
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The next most important term is the p-wave. The phase shift is

tan d; = —E(kR) % /A 0; ~ sind; <K sindy

With just s- and p-waves, the differential cross section from (6.2.23) and (6.4.40) is

do
a0 kﬂe

which is of the form do/d2 = A+ Bcosf. Since §; < 0y < 1, we have cos(dg — 1) ~ 1 and

A 1
0 gin §p + 3€' sin §y cos 9‘2 = e [Sin2 do + 6 cos(dp — 1) sin &g sin 07 cos 0]

B 6sind;  6-3 5 2 9
— = = kR)* = —-(kR
A sin dg 45 (k) 5( )

5. Use orthogonality of the Legendre polynomials, i.e. f_ll P(x)P,(x)dx = 2mdpm,/(2n+1),
to find an expression for the expansion coefficients in (6.4.40). That is

2m Vy /1 P/(x)dx 2m V1 /1 P(x)dx
_1 2k2

= - L+ p2/2k? — x

0] o _
—e"'sind; = —
: I—2)+u2 k2 p2

- Q)

where o = 1+ 12/2k? > 1 and E = h?k?/2m. For |§;| < 1, € sin 6, ~ &}, so

Vo kIl
E 2 (21 + 1)l

1 (+1){+2) 1 I+ +2)({+3)(1+4) 1

5 =—
: a1 2(2043) ot 2.4-(20+3)(2L+5) oD

All terms on the right are positive, so if V5 > 0 (i.e. repulsive), then §; < 0, but if V < 0,
then § > 0. If A = 27 /k > 1/p, then u/k > 1, so a ~ p?/2k* > 1, and

CE2u 2+ Dot R (20 DI pBF2 (204 1) p2p2its

Vo k I 1 mVp 1! 2022 2511 mV, 21

6. The ground state wave function is 1(x) = Asin(kr)/kr, Wlth k = m/a. (See Section
3.7, especially Page 210.) Use [d*z ¢?(x) = A%(4w/k?) [ sin® kr dr = A?(2ma/k?) =1, so
A% = k?27a = 7/2a3. We need (Az)? = (2?) — (z)? and (Ap,)? = (p2) — (p.)?, but by
spherical symmetry, (x) = 0 = (p,). Putting x = rsin 6 cos ¢, we have

a 22 s 2w
(%) = A2/ r2dr 1220 k:?“/ sin 0d0 Sin29/ dé cos? ¢
0 0 0

kQTQ

B 7Ta2a3(2 —3)4 _a2<1 3)

2a3 12 1272 3 9

272

where I used MATHEMATICA to do the integrals. For (p?) = —h* [ d®z ¥(x)0%(x)/022, we
need to take derivatives with respect to . Since r = (2?4 y?+ 2%)'/2, we have Or/0x = z/r.
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Proceeding straightforwardly, we first find the second derivative of the wave function:

o A {kcosk;r sinkr} r Ax

— = —— [krcos kr — sin kr]|

O kr kr2 | r ki3
0% A 1 T x ) T . -
92 E{[r_?’_gﬁ;] [krcoskr—smkr]—i-r—?)[kcoskr—k rsmkr—kcoskr];}
Al
= 13 {[1 — 3sin* 6 cos® @] [kr cos kr — sin kr] — k*r* sin® f cos® ¢ sin kr }

Now [["sin6 df sin*6 = f_11 du(l — p?) = 4/3 and fozw d¢ cos’¢ = m, so the solid angle
integrals [ dQ[1 — 3sin® @ cos® ¢] = 47 — 3(4/3)7 = 0 and [ d2sin® @ cos® ¢ = 4x /3. Thus

2y = P d —sinkr = B> ——
(p3) 3k0rrkr Tsmr 3 24 |,

4 A% [* ,  sinkrk? dr o [¢ . 2(7?7’) h? w2
sin
a

Therefore (Az)?(Ap,)? = A*?(1 — 3/272) /27 = (h/1.796)> > (h/2).

7. Oddly, this problem is worked out thoroughly in the text, but with a replaced by R, on
pages 416-417. The theorems you “may assume without proof” are in fact derived in the
book. See (6.2.23) and (6.4.40). The s-wave phase shift from (6.4.63) is 60 = —ka. The very
low energy total cross section is o = 4ma? from (6.4.48). There is some discussion about the
difference between this and the geometric cross section in the textbook.

8. We need to evaluate A(b = 1/k) from (6.5.14). For V(r) = Vyexp(—r?/a?),

A(b) = _% /OO Voo~ 0P +:)/a g, — _ mV(; Va2 /oo e _mVOaz/Eefw/az
2RI ) e 2k oo 2k

so 0 = —(mVpay/m/2kh?) exp(—1%/k?a?). Clearly, 6 — 0 “very rapidly,” i.e. exponentially
in the square of [, as [ > ka.

For V(r) = Vyexp(—pur)/pr, rewrite with r? = b + 22, so rdr = zdz and

A(b) = - mn E /Oo e_l"d_z = _ﬁﬁ/m e KT dr S m E/OO —e_ubsds
BT T N T (r2—0)V2  kR*p )y (s2—1)12

MATHEMATICA says that the integral is Ko(ub), the modified Bessel function of the second
kind, zero order, but I can’t find this explicit representation anywhere. I suppose one could
derive it from a contour integration of some of the other forms, but I'm not going to worry
about that. So, & = —(mVy/ukh?)Ko(ul/k) — —(mVy/ukh?)\/7k/ul exp(—pul/k), and once
again, the phase shift goes to zero rapidly for I > k/pu.

We don’t need to know about Ky(z) to find the behavior for I > k/u, i.e. pb = pl/k > 1.
In this case, the integrand only contributes for the minimum value of s, i.e. s =1, and the
exp(—pub) behavior of A(b) is evident.
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9. The left side of the equation in part (a) is just G(x,x’) = —exp(ik|x — x'|)/|x — %', i.e.
the Green’s function (6.2.3) and (6.2.11). Equation (6.2.12) mentions that G(x,x’) satisfies
the Helmholtz Equation for a J-function source, but it is worth proving that here. Write
G(r) = —e*" [Anr with r = |x — X/| so that dr/dz = (x — 2’)/r and then, so long as r # 0,

oG 0G or 1 {zk 1}

Or  Or dx  4rx

o [m - 1} G(r)

r2 r

and similarly for 0G /0y and 0G/0z. This form reduces the tedium to find 9*G/0x? and
then to determine V2G = —k*G. Thus (V2 + k*)G = 0. For r — 0, G(r) — —1/4mr and
(V? + k*)G — V?@G. The rest just follows from an introductory course in electromagnetic

theory. Thatis, [ V2Gd*z = § VG-dA = (1/4nr?)(47r?) = 1. Thus (V2+£?)G = §(x—X).

Use (6.2.12) to find the coefficients (as a function of r) of an expansion of the Green’s function
in spherical harmonics. (Eigenfunction expansions of Green’s functions is discussed in many
books on mathematical physics, but we can get there with our own formalism.) Consider
the transition from (6.2.3) to (6.2.4), where complete sets |k’) and |k”) are inserted. Instead
insert states |alm) and |o/l'm’). A similar collapse happens because Hy (6.1.2) is spherically
symmetric, leaving functions (x|alm) = R (r)Y;"(0, ¢) and sums (or integrals) over a and
o/ of the Lippman-Schwinger operator. Absorb all this into a function g;(r,r’), that is

=323 aln 0. 0¥ (0.6

Another result from mathematical physics is the so-called Closure Relation for spherical
harmonics, namely >, Y;™(Q)Y;™ () = §(Q — ). This allows us to write

6(x—x’):—(5r—7’ ZZYm (O, ¢)

With everything in spherical coordinates, we can now apply (6.2.12). Following (3.6.21), and
equating term by term in [ and m, we have

[d—2+gi+k2— l(l;ﬂ g(r,r') = [1 d (7‘2i> + k- Z(HD} 9 = l<5(r—r)

dr?  rdr r2 dr dr 72 72

For r # »/, this is just the spherical Bessel equation in the variable kr. The solution
must be finite at » — 0 and represent an outgoing spherical wave as r — 00, so we need
ag(r,r') = Cljl(r<)hl(1) (r~) where r~ (rs) is the lesser (greater) of r and 7. Integrating both
sides with r2dr from r =1’ — ¢ to r = 1’ + ¢, followed by ¢ — 0, gives

Cor® | jiCr)kh (k) = i )bl (k)
= 1Ok [ji(kr)ny(kr) — jj(kr)yny(kr)) = iCikr® [(kr)?] =1 so  Cy = —ik

Note that we used the Wronskian W]j;(z),n;(z)] = 272. See http://dImf.nist.gov/10.50.
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From (6.2.2) and (6.2.3) with (6.2.14), we have, as in the text,

(i) = (xli) + T [’ Gl )V () )

but now |¢) = |Elm(+)) and |i) = |Elm) are angular momentum eigenstates, and G(x,x’)
is taken from above. Using (6.4.21b) for (x|i) and the same normalization for (x[),

Ai(k; )Y ™) = 5(kr)Y™(2)
2 2 / !
2 [ it a9t 3 ke Y ) Y QY @V () A o) V()

U'.m!

where r. = 1/, that is within the potential volume, and r is outside. Now
O Oy = (I'm/|Im) = /dQ’(l’m’|Q’)(Q’|lm) = /dQ’YlT",*(Q’)Ylm(Q’)

so the summation collapses and the integral over ¥ is gone, leaving a factor Y;*(Q2) in the
radial integral. Dividing out this factor over the whole equation leaves

omik &
Allir) = i) = 25 k) / Gk YV () Ay (ks )
0

Now take r — 0o. From (B.5.15) and (B.5.19), we see that A" (kr) — elrr=(+0m/2 /kr and
jl(kr) — {ei[kr—(l+1)7r/2] 4 e—i[kr—(l+1)7r/2]}/2kr — {ei[kr—hr/2] _ e—i[kr—lw/Q]}/Qikr' Therefore

—ilm/2 dmik 00 ) ikr —i(kr—Im)
aisr) = S { =2 [ v eaetar| S - S22

R r r
Compare to (6.4.31). The factor in square brackets above, multiplying the outgoing spherical
wave, is written in terms of partial waves as [1 + 2ik fi(k)]. That is,
1 dmik
2ik h?

/0 h jl(kr)V(r)Al(k;r)Ter} _ —ZR—T OOO J(er)V (1) Ay (ks 7)rdr

filk) =
Thus the assertion is proved. The relation f;(k) = e sin;/k is just (6.4.39).

10. We could take a first principles approach, solving the Schrodinger equation and matching
solutions at » = R, but this potential makes it easy to use the results of Problem 9, namely

€% gin ¢ 2m
folk) = R0 = / Jolkr)V () Aok r)r2dr = —jo(kR) Ao(k; R) R?

We determine Ag(k; R) from the integral equation also derived in Problem 9:

2 0 2
Ao(k:R) = Jjo(kR) — Z;—Zkh (kR) / Go(kr YV () Ao (ke 7" di”
0

= jo(kR) — ikvh{" (kR)jo(kR) A (k; R) R?
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which we can solve for Ay(k; R). Note, however, that tandy = I(fo)/R(fo) so it is handy to
find the real and imaginary parts of Ay(k; R) just to within common factors. So make use

of —ih{"(kR) = —i[jo(kR) + ing(kR)] = no(kR) — ijo(kR) = —e*B/kR to write

Aok B) = jo(kR) 1+ Rj(kR)e ™"
o 1+~Rjo(kR)e*E 1+ ~yRjo(kR)e—i*E
= Real Expression x [1+ (y/k) sin(kR) cos(kR) — i(v/k) sin*(kR)]
.2
tand, = (v/k) sin®(kR) 1

1+ (y/k)sin(kR) cos(kR) ~ cot dg

For v > k, or in the case if kR < 1 then (v/k)kR = yR > 1, the second term in the
denominator dominates unity and tan dy = — sin*(kR)/sin(kR) cos(kR) = — tan(kR). Thus
dp = —kR, in agreement with the result (6.4.63) for hard sphere scattering. The resonance
condition cot dy = 0 is satisfied when sin(kR) cos(kR) = —k/~. That is, when kR is near nm
or (n+ 1/2)7 where n is an integer. Resonance also requires that cot dy = 0 pass through
zero “from the positive side” so first consider its behavior away from a zero. Since v > k,
cot dg ~ — cos(kR)/sin(kR). We can make the following table:

Below Above
kR Angle | cos(kR) sin(kR) cotdy | cos(kR) sin(kR) cotdy
(even+ 1/2)m | 90° + + — — + +
(odd +1/2)r | 270° | - - - + - +
(even)m 0° + - + + + -
(odd) 180° | — + + - - -

So we have resonance only for the zeros at kR = nm, for both even and odd n. To find the
energies, put kR = nm — k, R where |k.R| < 1. Therefore

1 1
R sin(kR) cos(kR) = 3 sin(2kR) = —3 sin(2k,.R) ~ —k,R = kR — nm
~
That is, kR(1 +1/yR) = nmw or k = (nw/R)(1 — 1/yR) and the energies are

B - K2 k> _ n2m2h? - 2
2m 2mR? YR

which are the same as for the infinite spherical well, i.e. (3.7.25), up to the factor (1 —
2/vR). Finally, (dcosdy/dE) = (dcosdy/dk)(dk/dE) = (m/h®k)(d cos y/dk). Noting that
sin(kR) = sin(nm — nw/yR) ~ (—1)""'n7/vR, we have, using MATHEMATICA,

d cos by R { N cos(kR)]

dk sin®(kR) sin(kR)

2R cos(nm) (=D 2R 29°R!
(=13 (nm/yR)S  —(=1p" (nm)3 — (nm)?

~
~

Hence T' = —2/[(mR/nnh?)(—27*R*/(n7)?)] = (nm)*h* /m~y3R® — 0 (rapidly) as v — oco.



Copyright, Pearson Education. 95

11. The perturbation is V(x)coswt = V(x)[e™! + e ™| /2 so the first order transition
amplitude from an initial state |i) to a final state | f) is, from (5.7.17) with wy; = (Ey—E;) /A,

l

t
cgcl)(t) = _ﬁ/ e“"fit<f|V(x)]i>§ [t 4 7] dt
0

1 — expli(wy; + w)t] N 1 —expli(wp; — w)t]
wyi +w wp —w

1 .
= Ve |

where we assume the perturbation turns on at ¢ = 0. As discussed in Chapter 5, the only
appreciable contributions after long times come from wy; Fw = 0 or £y = E; £ hw. Following
Section 5.7, in particular (5.7.43), and writing Vy; = (f|V(x)|i), we have

2T
Wi = Vil | (Dl gypna + PED i,

From (6.1.19) p(E) = (L/27)3(mk;/h*)dQ. The incident flux j; = hk;/mL? from (6.1.21).
The cross section do is the transition rate per incident flux, so

do 1 Wiy ¢ _ Q—W‘Vf‘2 ( L>3 mZkf/hQ - m2 Zkf|L3Vf-|2
5 i ‘ i

Q4 g hki/mL® — Anh' Kk

2

where Y ky = kf|g,—g,+no + Kf|E;=E,—nw. Assuming initial and final state plane waves,

L*Vy,

L3 [V () ) = L / d" / 03 () (x| V (30) [ oK)
= /d3$/ ek kY (x') = V(q)

using (6.2.6) and (6.2.7), with q = ks — k;. Since th?/Zm = h2k?/2m =+ hw, we have
1/2 1/2
do_ m? 1\ (2T, 2me) Y

df 47T2h k?l h h

For higher order terms, return to (5.7.17). The second order amplitude 0;2)(75) will have

V(q)?

denominators as in c}l)(t) above, replaced with wy,, £ w + Wy, £ w = wp; £ 2w. In other
words, the final state will get contributions from the second harmonics, that is wy; = £2w.
The third order amplitude would get contributions from the third harmonics, and so on.
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12. We need to calculate the elastic scattering matrix element (k’, 0|V (x,x’)|k, 0) where |0)
is the ground state of the hydrogen atom, and V(x,x’) = —e?/|x| + €?/|x — x/[. (In this
notation, x locates the “fast” electron, while x’ locates the atomic electron.) From (6.2.6)
and (B.6.3) we know that (x, x'|k, 0) = [exp(ik-x)/L3?][2 exp(—7'/a)/a*?\/7]. So, inserting
complete sets of states and defining q = k — k/, we have

1
00l le0) = /d3 /d3’ 0.0l ||xx><x X[k, 0)

_ 3 3,0 ,—2r'/a
_7ra3L3/dx€ |X|/dxe

1 uv o / A 1
= —— 9.1 4 e A/ad = —
7ra3L3{ [See (6.9 0)]}{ 7T/0 rdr'e } Z I

1 1
D= .0) = /d% /d%' (00 /||x,x')<x,x’|k,0)
— /dS /d3 ! qu 6—2r’/a
a3L3 |x — x’|
_ 3L3 /d3§ zq{g /d3ZL‘/ eque—Q’r’/a
Ta
1 47 e 2 ! . /
= — !9 4 d / d iqr'p ,—2r'/a
7ra3L3 q2 { 7T/0 r r /_1 o e (&
4 4m ey , 64m 1 1
_ = r' /a dr’ = -
CL3L3 q3 0 7" € Sln<qr) r L3 q2 (4 + q2(1/2)2
4e? 1 16
K, 0|V(x,x)k,0) = — Bl I A
< ’ | <X7X>| ) > I3 q2|: (4+q2a2)2:|

The differential cross section, following (6.9.6), is therefore

da_L(12m

=1 52> (K, 0|V (x,x') |k, 0)]* = L { _%r

h4 q4 4 + q2a2 2

13. See the comments in the Errata. 1 don’t really know what this problem is doing here,
and it will likely be eliminated in future editions. The original solutions manual refers to
Finkelstein, “Non Relativistic Mechanics” (1973) for background, but I am not familiar with
that book. As I mention in the Frrata, it seems to me that this is about using angle-action
variables to expose the SO(4) symmetry in the Coulomb problem, discussed in Section 4.1
of this textbook. In any case, I don’t find the original solution enlightening, and am not
reproducing it here.



Copyright, Pearson Education. 97

Chapter Seven

1. With E =~ 3kT/2, have A = h/p = he//2(mc?)E = 2n(he) /\/3(mc)kT
=271(2x1077)//3 -4 x 10°-8.6 x 105 - 2.17 m = 8.4A, for helium. As the size of a helium
atom is around 1A, at this temperature, the DeBroglie wavelength spans many atoms, and
that is the key. For heavier elements, the temperature needs to be proportionally smaller to
get the same wavelength, and the atoms are larger, suggesting that even longer wavelengths
are required. However, higher Z noble gases have interactions that prevent their remaining
liquid at very low temperatures. Neon, for example, freezes at 27K.

2. For non-interacting particles, just add up the energies with two (i.e. 2s+ 1) particles per
energy level. If N = 2m is even, then

N/2
1 3 2m — 1 N2
Exm ™ =2x Shw + Shw 4o m2 hw}: > (20— 1) hw = ——hw

=1

For N odd, take the sum above to (N — 1)/2 and add one unit at the top level, so

N —1)? N -1 h N2 +1
E%c?tilN:%hw—i— (QT—i-l) 7('0: 4+ hw

The Fermi Energy (see page 464) is the highest occupied level. This means Ep = (N —1)hw/2
if N is even, and Fr = Nhw/2 if N is odd. For large N, Et,a = N?hw/4 and Er = Nhw/2.

3. First write down the nine states |jm) = > | o |mi,mse)(mi, my|jm) and then inspect
their symmetry under 1 <+ 2. Using Clebsch-Gordan Coefficients from pdg.lbl.gov, we find

m j=2 j=1
2 1,1)

1 711,0) + 5510, 1) 101,00 — %o, 1)
0 | It =1+ /310,00 + 5l =110 i1 -1) = - 1)
-1 75!0,—1>+7§\—1,O> 75]07_1>_7§|_1’0>

along with [j = 0) = \/ig|1, —1) — \/Lg|0,0> + \/%,;| — 1,1). Two spin-one particles must obey
Bose statistics, and since there is no orbital angular momentum, the state must be symmetric
under the exchange my <> mo. Clearly this is true for j = 2 and 7 = 0, but the states are
antisymmetric for 7 = 0. Thus, two identical spin-one particles can only form s-states with
g=0o0rj =2.
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4. If the electron were a spinless boson, then the total wave function (now with no spin
part) must be symmetric, namely

Y(r1,72) = %[%(%)W(%)+¢ﬂ($1)¢a(ﬁﬁ2)] if  a#p

= Ya(r1)Valxe) i a=p

We have only “singlet” parahelium. If we assume that the interaction due to spin is small,
then there is no “triplet” orthohelium and the levels of parahelium remains the same.

5. The rotation operator about the z-axis from (3.1.16) is D(¢) = exp(—iJ,¢/h). Since the
particles at the triangle vertices are identical, D(27/3) returns an indistinguishable state.
Therefore we must have D(27/3)|a) = constant|«). Consider, however, the following:

1 1 2
P23 PIZ
— —

3 2 2 3 1 3

That is, the double permutation operation Py3Pjs is equivalent to a rotation through 27 /3.
Since the particles are spin-zero, P;;j|a) = +|a), and the “constant” must be unity, so

e—iJz(Qﬂ/3)/h’jm> _ 6—i27rm/3|jm> _ +‘]m>
Thus m/3 must be an integer, i.e. m = 0,43, 46, .. ..

6. The particles have spin-one, so the spin states must be symmetric (antisymmetric) if the
spatial wave function is symmetric (antisymmetric). (a) For the symmetric case first,

(i) The state is simply |+)|+)|+). This is obviously |jm) = |3, 3), but let’s prove it.

SRR+ = (S + 2. + 55.)[4) ) +) = 3h|+)|+)|+)
S*|H)+)+) = [ST 42515, + 51,8 +S51_5s,
+52 425,85, + 51,55 +5_Ss,
+55 + 285,55, + 52, S35 + So_ S5, ]|-+H)|+)|+)
= 2424040+2+2+0+0+2+2+40+0R*[+)[+)[+)
= 120%[+)|+)|+) = 3(3 + DR*|+)|+)|+)

(if) The state is just [|0)[+)]+) + [+)[0)|+) + [+)[-+)]0)] = |a) for which S;|a) = 2h|a) is
easy to prove. Also, you can reach this state from S_|+)|+)[+) = [S1_+S52_ +S3_]|+)|+)|+),
again showing that m = 2. Also, since S_ and S? commute, S?|a) oc S2S_[+)|+)|+) =
S_S2|4)[F)|4) = 12R%S_|+)|+)|+), and so |a) = |j = 3,m = 2).
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(iii) The state is all six combinations of the three S, possibilities, that is

18) = —Z= [[H10)[=) + [=)[110) + |0)[ =) [-) + [0)[+)|=) + [=)]0)[+) + [+)[=)|0)]

1
V6
Clearly S.|5) = 0, but we should be suspicious before suggesting this is a j = 0 state, as
this state should include the combination |0)|0)|0). Indeed, if we carried out S?|3) as we did
in (a), then we would find components where all three particles were not in different states.
That is, |3) is not an eigenstate of S2.

(b) Now consider the antisymmetric case. Cases (i) and (ii) are clearly not possible, since
any component with two spins the same will remain the same under particle interchange,
and we need the overall sign to change. The only possible state is

1
) = 7 1010} =) + [=2H)10) + [0} =) [+) = 10)[)[=) = [2)0)[+) = [+)[=)]0)]

Clearly S.|v) = 0, and in this case, because of the minus signs, it is not obvious that S?|v)
will involve components with two spins the same. So, let’s work it out in detail and see.

Silvy
51,8, |y

= 21°ly) = S3h) = Silv)

1,
- %h [=1=)[+)10) + [+)[—)[0)]

)
)
[S1.5%, + 8155, + S2.55.] 1) = —h°|y)
S1,5:_1y) = 2[0+0)]0}]0) + 0 — [+)|0)[—) —[0}|=}|+) — O]A?

S1_8a,17) = 2[|0)[+)[=) + 0+ [0)|=)|+) — 0 — 0 —[0)|0)]0)]n*
S1,85_17) = 2[0+ [0)]+)[=) + [+)]=)]0) — 0 — |0)|0)[0) — 0]A?

) [ ]

) [ ]

) [ ]

S1_85.y) = 2[]0)]0)[0) +0+0 — |=)[4)]0) — 0 = [0)]=)|-+)]K*
S2.85_y) = 2[0+0+]0)]0)[0) — 0 — |=)|-+)|0) — [+)]0)|)]K?
Sa_Ss.ly) = 2[[4)[=)[0) +[=)]0)|+) + 0 —[0)]0)|0) — 0 — O]
“ZSiiSﬁ’ == —452”7>
S%y) = 24+2+2-2—4%y) =0

and, indeed, S = 0.

7. Obviously N is Hermitian, so N|n) = n|n) where 7 is a real number. We know that the
eigenvalues 1 of N cannot be negative since n = (n|N|n) = [(n]a’] [a|n)] = (a|a) > 0 based
on the “positivity postulate” of quantum mechanics. This was our starting point for the
algebra of the simple harmonic oscillator, establishing a minimum value for 7.

Now, consider afln). We have N [af|n)] = alad’ln) = a'[1 = N]|p) = (1 —n) [al|n)].
Therefore af|n) is also an eigenstate of N but with eigenvalue (1 — 1) which must also be
positive. Therefore, there is a mazimum value of n as well.
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8. The number of possible spin states is 2s + 1 = 4 for spin-3/2, so the configuration
would be (15)(25)4(2p)'?; the 2p state can accommodate four electrons in each of 20 +1 = 3
orbital p states. With Z = 10, only two electrons are in the 2p state, so the degeneracy

. 12 : . .

is 9 = 12!/2!10! = 66. We would indeed call this “highly degenerate.” The ground
state should have spin states as symmetric as possible, and spacial states as antisymmetric
as possible. The only antisymmetric spacial states are p-wave, that is [; = I, = 1 with total
orbital angular momentum L = 1. The total spin is S = 3/2+3/2 = 3, that is a spin 7-plet.
For the total angular momentum L and S should be as “antiparallel” as possible, and this

implies that J = 2. Therefore the ground state would be "P,.

9. The single particle wave function is 1, (z) = \/2/Lsin(nmz/L), and the single particle
energy is I, = n?m?h?/2mL?. The triplet spin state is symmetric, so in this case, the spatial
state must be antisymmetric. Therefore (with H = p?/2m + p3/2m),

1
¢gs($1,$2)|triplet - E [th1(z1) 2 () — P(22)b(21)]
mh? An’h? 5m2h?
H wgs(xl’ ‘r2)|triplet = |:2ng + 2mL2:| l/JgS(Il’ x2)’triplet = W wgs(«rly 'IQ)‘triplet

For the singlet spin state, the spatial state is symmetric, so

Vas (1, 22) [gpger. = V1(21) Y1 (2)

T2h? T2h? T2h?
H ¢gs($lax2)|singlet = |:2mL2 + 2mL2:| ¢gs($17372)|sing1et = ng ¢gs($1,x2)|sing1et

In first order perturbation theory, the energy shift is

AE = (gs|V]gs) = /d% /dl‘2 Vs (w1, 22)V (21, 02) Vg (21, 72) = —)x/dx wzs(x,:c)

In the triplet case, obviously AE = 0. The antisymmetric spatial wave function never allows
the two particles to be at the same place, so they never feel the d-function potential. On the
other hand, in the singlet case,

2 2 L .4 (TX 2 2 3L 3\
Algsinglet = -\ (Z) /(; Sin <T) de = —\ (E) ? = _i
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10. To prove the orthogonality relations (7.6.11), start with the definitions

1
s = :FE ( oM 4 el(()> so we have

A 1 " 1 e

AN

5 [éf{” e+ ixel! el — irel? - ol + Ve - o)
AN

= S ELH0 -0

= 41 A=V
= 0 ifN£N

S 1 " 1 .
€\ X eiky — |:—/\E ( l({l /\zel(f))] X [_A/ﬁ <e(ik + Ni eik>]

AN
= A [l x el inel) x e —ixel? x o) + ael? x o8]

AN - -
- = 0 iNk & ik + 0]
= +ik  ifA=N
=0 if\ # N
The first result (7.6.11a) serves to collapse the two sums over A and )\ into one, when

calculating |E|> = E* - E from (7.6.14), and the integral (7.6.15) collapses the two sums over
k and k’ into one, leading to (7.6.16). The expression for the magnetic field is

B( ) V x A(X t Zwk Ak A€ —iwrt=kex) _ Ali’)\ei(wktik'x)} lA( X éf(/\)

which is very similar to (7.6.14), differing by the presence of k x € instead of ey . But

! 1
k X &y = k x &) + ik x A(ﬂ CF [ 5 zefj] = B

il V2
so that the calculation of |B|?> = B* - B carries through directly as for the electric field. The

cross terms, however, have opposite sign, and therefore cancel when adding the contributions
to the energy from electric and magnetic fields, leading to (7.6.17).
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Chapter Eight

1. (a) (Note the typo in the exponent.) m,c* = (1.67 x 10727 kg)(3.00 x 10® m/s)? =
1.5 x 1071 joule (1 eV/1.60 x 107! joule = 9.39 x 10® eV = 0.939 GeV.

(b) E = pc ~ (h/1 fm)c = 200 MeV - fm/1 fm = 200 MeV, which is about the same as the
pion mass. The point is that, at these distances, mass and energy are not easily distinguished.
That is, in this regime (called “particle physics”) the formalism has to be relativistic.

(c) Using “[a]” to mean “dimensions of a”, i.e. M, L, or T for mass, length or time, we note
that [G] = L3M T2, [h] = ML*T~!, and [c] = LT~!. Writing Mp = G*1i¢* we must have
l=—2+4y,0=3x4+2y+z,and 0= —-2x—y—2,s0x =—1/2, y=1/2, and z = 1/2. So
Mpc® = \/hc® /G = /(1.05 x 10734)(3 x 10%)5/(6.67 x 10-11) = 1.96x 10° j=1.2x 10" GeV.

2. This problem is trivial, but the implications are important. Since

10 0 0 10 0 O 1000
0O -1 0 0 6o -1 0 O (0100
0 0 -1 0 0 0 -1 0| (0010
0 0 0 -1 0 0 0 -1 0001

the metric tensor is its own inverse, i.e. n**, = 6. It is therefore simple to show that
the contravariant form of the metric follows appropriately from the covariant form, that
is 7"y, = 0T = nP* = n since it is also symmetric. Also atb, = a,n**b yy, =
a,b o} = a, b’ = a,bt.

3. For (8.1.11) to be a conserved current, we must show that d,j* = 0:

0" = 5 0,V 0"D) — 3, ("9)' W)

- ﬁ [(0,97)(0"0) + U(&°W) — (™) ¥ — (9"0)" (9, 9))]
_ L (U (=m*¥) — (=m* ) W] =0

2m

4. This is a silly, trivial problem. The Klein-Gordon equation basically comes from writing
E? = p? + m? with E replaced by i9° and p replaced by —iV. In other words

(B2 —p?] W = [—(8°)? + V2] U = —0"0,0 = m?>¥  or (8", +m*)¥ =0

which is (8.1.8). This can be read as replacing p#p, = E? — p? with the operator —9*9,,,
ie. pt with —i0*. So, the minimal electromagnetic substitution p* — p* — e A" becomes
—10" — —iO" — e AP = —i(O" — ieAM) = —iD* where D* = 0" — ieA*. (Did I make a sign
error in the definition of D* in the textbook? I guess so.)
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5. Rewrite (8.1.14) using D, D* = D} — D? as D}V = D?*¥ — m?V. Then, using (8.1.15),
1 1 7 1 m

D = —-DV— —D*W=_DV—-—D?V+—V
Do = Dl =g Dy =g Pl =g DR

1 : 1
- D+ 2 |us LDU| = —— DUt ms
2m 2 m 2m

; 1 ; 1
and iD= %Dt\ll +5-D}v = %Dt\p + 5D - %\11

1 ) 1
= +— D 2|y "D =+ DV my
2m 2 m 2m

which are (8.1.16) since ¥ = ¢ + x. These two equations obviously become (8.1.18) since
1 0 . 1 0 |0 — 1 1
7'3—{0 _1} and 734—27'2—[0 _1]—1%[2. O}_{—l _1]

6. Write the solutions as
T(w,t) = ( Z ) e P

which results in the matrix equation

2
a)_|p° 1 1
E(b)_{Zm(—l _1)+m
%er—E % a\ (0

_% —%—m—E b ) \0

Take the determinant to get the characteristic equation
2 2 2\ 2
—(Eym) v (L) =0
2m 2m

2

E2:22p—mm+m2:p2+m2

or

so that

in which case the energy eigenvalues are

E =+E, where E,=+/p>+m?

In order to find the eigenfunctions, first rewrite the characteristic equation by multiplying
through by 2m and also writing p* = E> —m?, so

E§+m2—2mE Eg—m2 a) (0
mQ—Eg —E?> —m?—-2mEFE b ) \0

p
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In the case of positive energy eigenvalues E = +E,, we have

[ ey LB [ ] -0

which implies that (E,—m)a™ +(E,+m)b" = 0. Normalizing using the relation TTr3Y = +1
we have

(@) = (07 = @) 1= 2] = @) [ | =

(Ep +m)? E, +m)?
in which case
a+—Ep+m and b+:m_Ep
2\/mkE, 2\/mk,
Similarly, for negative energy eigenvalues E' = —E,, we have
(E, +m)? (E,+m)(E, —m) a”
2 ~ =0
(m — Ep)(m + Ej) —(Ep —m) b
which implies that (£, +m)a™ + (E, —m)b~ = 0. This time we normalize using the relation

YT = —1 and therefore

in which case B
a4 = —— and h- = 2L m

2\/mkE, 2/mkE,

7. First, a mea culpa. I wrote this problem (from Landau’s book) years before the manuscript
was completed and I came to work out this solution. There are a few mistakes, I realize,
in the problem and a little in the text. One has to do with the sign of e, which in this
book (unlike any others I know) is negative. Therefore D, = 0, —ieA,, (see problem 4) and
Ay = & = —Zle|/r = +Ze/r. In the problem statement, I misused k in the argument of
u(r) and also in the definition of p. Also, I wrote “Work the upper component”, but I don’t
recall why. It may be the default when using the positive energy solution.

Anyway, we start with the Klein-Gordon Equation (8.1.14), namely
[D,.D" +m?| ¥(x,t) =0

where D, = 9, —ieA,. With A =0 and e4y = Ze?/r = Za/r, this becomes

2
(02 i
r

U(x,t) =0
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Next, as suggested, put ¥(x,t) = Ne *#[u;(r)/r]Yin (0, ¢). Then

r

(E + @> + V2 - m2] ulir) Yim(ga gb) =0

From (3.6.21) the Laplacian V? can be written as

_ P20 1,

2 [
V_8r2 ror r?

where, in this context, L? is a differential operator in 6 and ¢. Therefore

(E+@)2_m2_zu+1)

r 72

u+1d2u_0
roordr?

Finally, with 4* = 4(m? — E?) and p = vr, this becomes

&u {23%_1 “”1)—(20‘)2%:0

dp? w4 p?

For p — oo, this becomes d*u/dp* = u/4 or u(p) = exp(£p/2). Only the negative sign gives
a normalizable solution, so we write u(p) = w(p) exp(—p/2) in which case

dw  dw 2EZa I(l+1) — (Za)?
— ——+ - ~ w=0
dp* dp P p

Now substitute w(p) = Z;’io C,hp"" and collect terms into the same power of p by redefining
the index of summation. This gives

[k(k —1) = I+ 1) + (Za)})Cop" 2
+30y Uk +a+1)(k+q) =11 +1)+(Za)’|Con

2EZ

This series is set to zero term by term. Solving k(k — 1) — (1 + 1) + (Z«a)? = 0 for k gives

(l + %)2 — (Za)?

Near the origin, the wave function goes like u(r)/r oc r*=1 so the expectation value of kinetic
energy goes like 7~ 17F=312 = ¢2*=2_ Consider the negative sign solution for k. For [ = 0, k is
close to zero, and negative for nonzero [, so the kinetic energy diverges too rapidly. For the
positive sign solution, with Za < 1, k ~ [+1 and the wave function goes like 7!, which is the

1/2
11 1
k=55 [1+4l(l+1)—4(Za)2]1/2:§j:

k—
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nonrelativistic result from the Schrodinger equation. All this points to taking the positive
sign in the solution for k.

Now set the higher power terms of p to zero. We have

Cy~ =G, N
k+q+D)k+q) —l(l+1)+(Za)? ¢ ¢ as ¢ — 00

Cq+1 =
so that the series approaches e”. In other words, the wave function is proportional to e*#/2
for large p which is unacceptably divergent. Let the series terminate at ¢ = N, then
k+N—-2EZa/y=k+ N —EZa/vVm? — E? =0

Note that N = 0 is possible. As in (3.7.51), then, define the principle quantum number
n=N=1+1,and so (m? — E*)(k+n —1—1)? = E*(Za)?. Solving for E we find

" .
(1+<Za>2[n—z—%+¢<z+%>2—<w} )

A Taylor expansion of this expression is straightforward, but I used MAPLE instead:

m(Za)? [ 3 1 9
2n? [4_712 Con(l+ 1/2)] (Za)
m(Za)? 3 n+3(1+1/2) 5 A
2n? [2n3(l—|—1/2) C4n2(1+1/2)3 8t (Za)+---

The first term is just the rest energy, the second is the Balmer formula, and the third is the
relativistic correction to the kinetic energy; the spin-orbit term is, of course, missing. (See
the solution to Problem 16.)

Jenkins and Kunselman give a large number of transitions, both experimental values and
Klein-Gordon solutions, for 7= atoms. For example, the 3D — 2P transition in *’Co is
384.6 + 1.0 keV, while the “Klein-Gordon energy” is listed as 378.6 keV. With m = m, =
139.57 MeV and a = 1/137.036 (from PDG 2010) and Z = 27, the Balmer transition energy
is —2709.1 x (1/9 — 1/4) = 376.3 keV, and the relativistic correction to the kinetic energy
adds to this an amount

3 1 1

3
BkeVX |—————=+- 27a)? = 1.4 keV
376.3 keV x 3% 16 15/2—|—3 X (27a) e

for a total (to first order) transition energy 377.7 keV. The next order correction will be
smaller by ~ (Za)? = 4/100 and will not account for the difference between this and the
number in the paper; theirs is likely due to older values for the pion mass.
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8. All of these follow from equations (8.2.4), and Tr(AB) = Tr(BA). For example
Tr(8) = Tr(7") = =Tr(v'7"7") = =Tr(v'7"") = +Tr(y%9'9") = =Tr(y")

and so Tr(7°) = 0. In other words, insert an appropriate v* twice to get a factor £1, then
split the pair using the commutativity property above, then reverse the order using (8.2.4c)
to pick up a minus sign, then contract the two v* that you inserted in the first place. You
always get that the trace equals its own negative, so must be zero.

9. We are to construct the v matrices from

co[25] e[

where

so that . '
70 =p and v ="

and we can write the v matrices explicitly as

10 0 0]
o |01 0 o0
T T o0 -1 0
(00 0 —1 |
10 0 07][0o001 0 00 1
. |01 0 0 0010]| 0o o1of| [ 0 ot
T T 100 -1 o0 0100 0—100_[—010]
|00 0 -1][1000 -1 000
10 0 0[O0 00 —i 000 —i
> |01 0 o0 O 0di Of | 004 0| [ 0 o°
T T oo -1 0 0—@00_01'00_{—020}
(00 0 -1][4% 00 0 - 00 0
10 0 O0][O 01 0O 001 0
5 |01 0 o0 0 00 —1 /| 000 -1 [ 0 o°
T T oo -1 0 1000_—1000_{—030]
|00 0 -1][0-10 0 010 0

It is simple enough to multiply out the 4 x 4 matrices, or even to use the compact 2 x 2 form
we derive here, and show that the Clifford Algebra is satisfied.

10. The Schrodinger equation with the Dirac Hamiltonian is
iV = HY = (a-p+ fm)¥
= —io- VU + mU
so that —iUl = +i(VUT) . a4+ gmU!
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Note that a and 3 are Hermitian. Now take the time derivative of the probability density

% = 0(VT0) = (00U + U9 U = [-(VUT) . a¥ — Ve - VU] = -V - (Val)

Therefore p = W satisfies the continuity equation for the current j = ¥TaW.

11. As indicated in the text, this decouples into two eigenvalue problems, one for u; and us,
and the other for uy and uy. That is, we have

A1 g e ) I R | R
p —m Us Uus -p —-m Uy Ug
The first equation implies that (m — E)(—m — E) —p? = —(m? — E?) — p?> = 0 which implies

that £ = +FE, where E, = \/p? +m?. The second gives the same characteristic equation,
so the eigenvalues are once again £ = +1,.

12. Since j* = Uy*U with ¥ = U400 = Ui 0400 = U1 and j = U040 = oW, So,
for if U has four (real) components a, b, ¢, and d, then

j0:a2+b2—|—02+d2
[0 0 0 1 a
L oo010|b]|
it = [a b c d] 010 0 . = 2(ad + be)
1 000]|d
[0 0 0 —i a
0 00 i 0 b|
;o= labed]ly S oo e |70
i 0 0 d
[0 0 1 0 a
. 00 0 —t||bo| .
> = [a b c d] 1 0 0 0 C—Q(ac bd)
0 -10 0 ||d

For each of the spinors (8.2.22), the (normalized) probability density is

o E,+m p?
0=2F 1+—]:1
/ 2E, { (Ep +m)?

that is, a constant, independent of momentum. (Note that the exponential plane wave factors
multiply to one in any combination of WTW.) Also for each of the spinors, j! = 0. For both
positive energy solutions ug) (p) and ug-f) (p), we find

,3:Ep+m 2p D

2E, E,+m E,
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that is, the velocity of the particle. For both negative energy solutions u(_)(p) and ug-;) (p),
we find

2E, E,+m K,

that is, the velocity of the particle moving in the direction opposite from the momentum.

.3:Ep+m —2p D

13. Work out Up = 12 as follows:

0 ot 0 o —olo3 0 (o 0 5
UT_(—Ul 0)(—03 0)_< 0 —ala?’)_z(o 02)_20 ®1
where (3.2.34) and (3.2.35) imply that olo® = igi5,0% = —io?.

14. Refer to (9) for the v matrices in explicit form. The positive helicity, positive energy
electron free particle Dirac wave function is

U(x,t) = uf) (p)e " = 0 it p)
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We can therefore construct the following

1
PUGH) ="U(x1) = | _ (J:%,er) Byt p)
0
- 0 -
Cu(xt) =i () = | PEREI e
1
- 0 -
CPY(x,t) = iU (—x,t) = p/(E%+m) i Ept+px)
1
01 00 i 0
TU D) =Tt = | o0 o | T = ! H(Ept—px)
00 -170 | —p/(Ep+m)
0
PTY(x,t) = _01 o Hi(Ept+px)
L p/(Ep+m) |
[ p/(Ey+m) ]
CPTU(x,t) = (1) o—i(Eyt+px)
L 0 ]

We see that CPTV(x,t) is the wave function for a negative energy, right-handed electron
with momentum —p. This is the “hole” that we call a positron.

15. This is also a silly problem, with the solution pretty much outlined in the text. For large
i, (8.4.39) shows that b; is proportional to a;. Furthermore, for large i, equations (8.4.38)
show that a; is proportional to +1/i. Therefore, each of the series (8.4.32) or (8.4.33) look
like 2°/i!, that is e® for large z. As they are multiplied by factors exp[—(1 — €2)¥/2z] but
e < 1, the functions u(x) and v(z) will grow without bound for large = unless the series
terminates.
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16. First, expand the second term in the denominator of (8.4.43) to second order in (Za)?:

e (GO
- oo o) = G e

where n = j +1/2+n’ as defined in the text. Now on to (8.4.43). Recall that

1 3
(1+x)72 = 1—§x—l—§x2—l—--- and, so
1(Za)? (Za)? 3(Za)t
E = 21— = 1 z

mc{ 2 12 [+n(j+1/2) Ty T
, mc2(Za)? md(Za)t 1 3
= mc — — , - —
2n? 2n? n(j+1/2) 4n?

In other words, to this order, the energy is shifted by an amount

1 3
A= By(Za) |— 2
oze) {n(j +1/2) W]
where Fy = —mc?(Za)?/2n? is the energy level to lowest order. Perturbatively, the energy

shift is given by the sum of the relativistic correction to the kinetic energy (5.3.10) and the
spin-orbit energy (5.3.31). That is, we expect A = Ay + A, where

3 1

Arel Eo(ZOé)z |:—

1

it 12)

|

)

[ for j=1+1/2

and Ago —FEy(Za)?

onl(l+1)(1 + 1/2

Adding I-dependent terms for j =14 1/2 gives

(-

) [+1) for j=1-1/2

1 1 1 1 1
_ — 92— —
n(l+1/2) 2n(l+1)(1+1/2) 2nj { j—|—1/2} n(j+1/2)
Adding I-dependent terms for j = [ — 1/2 gives
1 1 1 1 1
¥ — o 1 e
n(l+1/2)  2nl(l+1/2) 2n(j+1) Jj+1/2 n(j+1/2)
Therefore, for both j =1+ 1/2 we find
3 1
Are Aso = Fy(Z 2| -—= TSN
R ]
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in agreement with our second order expansion of the Dirac energy level.

17. For (a) and (b) we can make the comparison using the second order approximation
derived in Problem 16. However, we need to take into account that the energies of the two
states with the same j but different [ are not the same. See the discussion of Lamb Shift,
part (d) of this problem. If we just average those two levels in each case, we find (in eV),

n o j1 Jo Experiment Theory
2 1/2 3/2 4.318 x 107 4.528 x 107°
4 5/2 T7/2 9.4338985 x 107 9.4338739 x 1077

Clearly, Dirac’s theory does a much better job for the higher lying energy levels. As for the
1S — 25 transition energy, the question is leading. If we tabulate the answer for the Balmer
formula and for the Dirac formula using the next order approximation from Problem 16, and
then also the exact Dirac formula, we find (in cm™1)

Balmer 82302.98684444
Dirac (approx) 82303.99122362
Dirac (exact)  82303.99125026
Experiment 82258.95439928

The Dirac formula makes a small correction to the Balmer formula, but even the exact form
for Dirac is (relatively) far from the precise value. Now the Lamb Shift is a direct violation
of the Dirac formula, resulting from quantum field effects. It shows up six times in the table,
for any two states with the same n and j but different [ values. We have (in (in cm™1)

n  Splitting Value

2 SP 0.0353
3 SP 0.0105
3 PD 1.78 x 10~*
4 SP 0.00444
4 PD 7.631 x 1075
4 DF 2.700 x 1075

The Lamb Shift gets smaller with increasing n, and apparently very much smaller for higher
angular momenta. The moral of the story is that quantum field theory is important for
understanding the energy levels of the hydrogen atom, especially for the lower lying ones.

Following is the MATLAB code used to calculate the numbers in this solution:
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clear all

%Fundamental constants from 2010 PDG
hc=2%pi*197.3269631*1.0E6*1.0E-13; %From h-bar c
alpha=1/137.035999679;

mc2=0.510998910E6;

A

EOnl=-mc2*alpha~2/2;

A

%Analyzes precision hydrogen atomic energy differences

A

load EnljHAtom.dat

n=EnljHAtom(:,1);

1=EnljHAtom(:,2);

j2=2xEnljHAtom(:,3);

EDel=hc*EnljHAtom(:,4);

clear EnljHAtom

b

% Fine structure split in n=2, j=1/2 and 3/2, using 1st order expression
nset=2

DEexpt=EDel (find (n==nset & j2==3))-mean(EDel(find(n==nset & j2==1)))
DEcalc=(EOnl/nset~2)*alpha”2*(1/2-1) /nset

A

% Fine structure split in n=4, j=5/2 and 7/2, using lst order expression
nset=4

DEexpt=EDel (find (n==nset & j2==7))-mean(EDel(find(n==nset & j2==5)))
DEcalc=(EOnl/nset~2)*alpha~2*(1/4-1/3) /nset

A

% 1S-2S energy difference using balmer, approximate, and exact formulas
format (’long’)

DE12balmr=EOn1*(1/4-1) /hc
DE12apprx=(EOn1/4)*(1+alpha~2%(1/2-3/16))-EOni* (1+alpha~2*(1-3/4));
DE12apprx=DE12apprx/hc
DE12exact=mc2*(1/sqrt(1+alpha”2/(sqrt(1-alpha”2)+1)"2)-1/sqrt(l+alpha~2/(1-alpha”2)));
DE12exact=DE12exact/hc

A

% Lamb Shift data

LS2SP=EDel(find(n==2 & j2==1 & 1==0))-EDel(find(n==2 & j2==1 & 1==1));
LS2SP=LS2SP/hc

b

LS3SP=EDel(find(n==3 & j2==1 & 1==0))-EDel(find(n==3 & j2==1 & 1==1));
LS3SP=LS3SP/hc

LS3PD=EDel(find(n==3 & j2==3 & 1==1))-EDel(find(n==3 & j2==3 & 1==2));
LS3PD=LS3PD/hc

b

LS4SP=EDel(find(n==4 & j2==1 & 1==0))-EDel(find(n==4 & j2==1 & 1==1));
LS4SP=LS4SP/hc

LS4PD=EDel(find(n==4 & j2==3 & 1==1))-EDel(find(n==4 & j2==3 & 1==2));
LS4PD=LS4PD/hc

LSADF=EDel (find(n==4 & j2==5 & 1==2))-EDel(find(n==4 & j2==5 & 1==3));
LS4DF=LS4DF/hc



