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Chapter One

1. AC{D,B} = ACDB +ACBD, A{C,B}D = ACBD +ABCD, C{D,A}B = CDAB +
CADB, and {C,A}DB = CADB+ACDB. Therefore−AC{D,B}+A{C,B}D−C{D,A}B+
{C,A}DB = −ACDB + ABCD − CDAB + ACDB = ABCD − CDAB = [AB,CD]

In preparing this solution manual, I have realized that problems 2 and 3 in are misplaced
in this chapter. They belong in Chapter Three. The Pauli matrices are not even defined in
Chapter One, nor is the math used in previous solution manual. – Jim Napolitano

2. (a) Tr(X) = a0Tr(1) +
�

�
Tr(σ�)a� = 2a0 since Tr(σ�) = 0. Also

Tr(σkX) = a0Tr(σk) +
�

�
Tr(σkσ�)a� =

1

2

�
�
Tr(σkσ� + σ�σk)a� =

�
�
δk�Tr(1)a� = 2ak. So,

a0 = 1

2
Tr(X) and ak = 1

2
Tr(σkX). (b) Just do the algebra to find a0 = (X11 + X22)/2,

a1 = (X12 +X21)/2, a2 = i(−X21 +X12)/2, and a3 = (X11 −X22)/2.

3. Since det(σ · a) = −a2
z
− (a2

x
+ a2

y
) = −|a|2, the cognoscenti realize that this problem

really has to do with rotation operators. From this result, and (3.2.44), we write

det

�
exp

�
±
iσ · n̂φ

2

��
= cos

�
φ

2

�
± i sin

�
φ

2

�

and multiplying out determinants makes it clear that det(σ · a�) = det(σ · a). Similarly, use
(3.2.44) to explicitly write out the matrix σ · a� and equate the elements to those of σ · a.
With n̂ in the z-direction, it is clear that we have just performed a rotation (of the spin
vector) through the angle φ.

4. (a) Tr(XY ) ≡
�

a
�a|XY |a� =

�
a

�
b
�a|X|b��b|Y |a� by inserting the identity operator.

Then commute and reverse, so Tr(XY ) =
�

b

�
a
�b|Y |a��a|X|b� =

�
b
�b|Y X|b� = Tr(Y X).

(b) XY |α� = X[Y |α�] is dual to �α|(XY )†, but Y |α� ≡ |β� is dual to �α|Y † ≡ �β| and X|β�
is dual to �β|X† so that X[Y |α�] is dual to �α|Y †X†. Therefore (XY )† = Y †X†.
(c) exp[if(A)] =

�
a
exp[if(A)]|a��a| =

�
a
exp[if(a)]|a��a|

(d)
�

a
ψ∗
a
(x�)ψa(x��) =

�
a
�x�|a�∗�x��|a� =

�
a
�x��|a��a|x�� = �x��|x�� = δ(x�� − x

�)

5. For basis kets |ai�, matrix elements of X ≡ |α��β| are Xij = �ai|α��β|aj� = �ai|α��aj|β�∗.
For spin-1/2 in the | ± z� basis, �+|Sz = h̄/2� = 1, �−|Sz = h̄/2� = 0, and, using (1.4.17a),
�±|Sx = h̄/2� = 1/

√
2. Therefore

|Sz = h̄/2��Sx = h̄/2|
.
=

1
√
2

�
1 1
0 0

�

6. A[|i�+ |j�] = ai|i�+aj|j� �= [|i�+ |j�] so in general it is not an eigenvector, unless ai = aj.
That is, |i�+ |j� is not an eigenvector of A unless the eigenvalues are degenerate.
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7. Since the product is over a complete set, the operator
�

a�(A− a�) will always encounter
a state |ai� such that a� = ai in which case the result is zero. Hence for any state |α�

�

a�

(A− a�)|α� =
�

a�

(A− a�)
�

i

|ai��ai|α� =
�

i

�

a�

(ai − a�)|ai��ai|α� =
�

i

0 = 0

If the product instead is over all a� �= aj then the only surviving term in the sum is
�

a�

(aj − a�)|ai��ai|α�

and dividing by the factors (aj −a�) just gives the projection of |α� on the direction |a��. For
the operator A ≡ Sz and {|a��} ≡ {|+�, |−�}, we have

�

a�

(A− a�) =

�
Sz −

h̄

2

��
Sz +

h̄

2

�

and
�

a� �=a��

A− a�

a�� − a�
=

Sz + h̄/2

h̄
for a�� = +

h̄

2

or =
Sz − h̄/2

−h̄
for a�� = −

h̄

2

It is trivial to see that the first operator is the null operator. For the second and third, you
can work these out explicitly using (1.3.35) and (1.3.36), for example

Sz + h̄/2

h̄
=

1

h̄

�
Sz +

h̄

2
1

�
=

1

2
[(|+��+|)− (|−��−|) + (|+��+|) + (|−��−|)] = |+��+|

which is just the projection operator for the state |+�.

8. I don’t see any way to do this problem other than by brute force, and neither did the
previous solutions manual. So, make use of �+|+� = 1 = �−|−� and�+|−� = 0 = �−|+� and
carry through six independent calculations of [Si, Sj] (along with [Si, Sj] = −[Sj, Si]) and
the six for {Si, Sj} (along with {Si, Sj} = +{Sj, Si}).

9. From the figure n̂ = î cosα sin β + ĵ sinα sin β + k̂ cos β so we need to find the matrix
representation of the operator S · n̂ = Sx cosα sin β+Sy sinα sin β+Sz cos β. This means we
need the matrix representations of Sx, Sy, and Sz. Get these from the prescription (1.3.19)
and the operators represented as outer products in (1.4.18) and (1.3.36), along with the
association (1.3.39a) to define which element is which. Thus

Sx

.
=

h̄

2

�
0 1
1 0

�
Sy

.
=

h̄

2

�
0 −i
i 0

�
Sz

.
=

h̄

2

�
1 0
0 −1

�

We therefore need to find the (normalized) eigenvector for the matrix
�

cos β cosα sin β − i sinα sin β
cosα sin β + i sinα sin β − cos β

�
=

�
cos β e−iα sin β

eiα sin β − cos β

�
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with eigenvalue +1. If the upper and lower elements of the eigenvector are a and b, respec-
tively, then we have the equations |a|2 + |b|2 = 1 and

a cos β + be−iα sin β = a

aeiα sin β − b cos β = b

Choose the phase so that a is real and positive. Work with the first equation. (The two
equations should be equivalent, since we picked a valid eigenvalue. You should check.) Then

a2(1− cos β)2 = |b|2 sin2 β = (1− a2) sin2 β

4a2 sin4(β/2) = (1− a2)4 sin2(β/2) cos2(β/2)

a2[sin2(β/2) + cos2(β/2)] = cos2(β/2)

a = cos(β/2)

and so b = aeiα
1− cos β

sin β
= cos(β/2)eiα

2 sin2(β/2)

2 sin(β/2) cos(β/2)

= eiα sin(β/2)

which agrees with the answer given in the problem.

10. Use simple matrix techniques for this problem. The matrix representation for H is

H
.
=

�
a a
a −a

�

Eigenvalues E satisfy (a−E)(−a−E)− a2 = −2a2 +E2 = 0 or E = ±a
√
2. Let x1 and x2

be the two elements of the eigenvector. For E = +a
√
2 ≡ E(1), (1−

√
2)x(1)

1
+ x(1)

2
= 0, and

for E = −a
√
2 ≡ E(2), (1 +

√
2)x(2)

1
+ x(2)

2
= 0. So the eigenstates are represented by

|E(1)
�
.
= N (1)

�
1

√
2− 1

�
and |E(2)

�
.
= N (2)

�
−1

√
2 + 1

�

where N (1)2 = 1/(4− 2
√
2) and N (2)2 = 1/(4 + 2

√
2).

11. It is of course possible to solve this using simple matrix techniques. For example, the
characteristic equation and eigenvalues are

0 = (H11 − λ)(H22 − λ)−H2

12

λ =
H11 +H22

2
±

��
H11 −H22

2

�2

+H2

12

�1/2

≡ λ±

You can go ahead and solve for the eigenvectors, but it is tedious and messy. However, there
is a strong hint given that you can make use of spin algebra to solve this problem, another
two-state system. The Hamiltonian can be rewritten as

H
.
= A1+Bσz + Cσx
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where A ≡ (H11 + H22)/2, B ≡ (H11 − H22)/2, and C ≡ H12. The eigenvalues of the first
term are both A, and the eigenvalues for the sum of the second and third terms are those
of ±(2/h̄) times a spin vector multiplied by

√
B2 + C2. In other words, the eigenvalues of

the full Hamiltonian are just A±
√
B2 + C2 in full agreement with what we got with usual

matrix techniques, above. From the hint (or Problem 9) the eigenvectors must be

|λ+� = cos
β

2
|1�+ sin

β

2
|2� and |λ−� = − sin

β

2
|1�+ cos

β

2
|2�

where α = 0, tan β = C/B = 2H12/(H11 −H22), and we do β → π − β to “flip the spin.”

12. Using the result of Problem 9, the probability of measuring +h̄/2 is

����

�
1
√
2
�+|+

1
√
2
�−|

� �
cos

γ

2
|+�+ sin

γ

2
|−�

�����
2

=
1

2

��
1 + cos γ

2
+

�
1− cos γ

2

�2

=
1 + sin γ

2

The results for γ = 0 (i.e. |+�), γ = π/2 (i.e. |Sx+�), and γ = π (i.e. |−�) are 1/2, 1, and
1/2, as expected. Now �(Sx − �Sx�)2� = �S2

x
� − �Sx�

2, but S2

x
= h̄2/4 from Problem 8 and

�Sx� =
�
cos

γ

2
�+|+ sin

γ

2
�−|

� h̄
2
[|+��−|+ |−��+|]

�
cos

γ

2
|+�+ sin

γ

2
|−�

�

=
h̄

2

�
cos

γ

2
�−|+ sin

γ

2
�+|

� �
cos

γ

2
|+�+ sin

γ

2
|−�

�
= h̄ cos

γ

2
sin

γ

2
=

h̄

2
sin γ

so �(Sx − �Sx�)2� = h̄2(1− sin2 γ)/4 = h̄2 cos2 γ/4 = h̄2/4, 0, h̄24 for γ = 0, π/2, π.

13. All atoms are in the state |+� after emerging from the first apparatus. The second
apparatus projects out the state |Sn+�. That is, it acts as the projection operator

|Sn+��Sn + | =

�
cos

β

2
|+�+ sin

β

2
|−�

� �
cos

β

2
�+|+ sin

β

2
�−|

�

and the third apparatus projects out |−�. Therefore, the probability of measuring −h̄/2
after the third apparatus is

P (β) = |�+|Sn+��Sn + |−�|
2 = cos2

β

2
sin2

β

2
=

1

4
sin2 β

The maximum transmission is for β = 90◦, when 25% of the atoms make it through.

14. The characteristic equation is −λ3 − 2(−λ)(1/
√
2)2 = λ(1− λ2) = 0 so the eigenvalues

are λ = 0,±1 and there is no degeneracy. The eigenvectors corresponding to these are

1
√
2




−1
0
1



 1

2




1

√
2
1



 1

2




1

−
√
2
1





The matrix algebra is not hard, but I did this with matlab using
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M=[[0 1 0];[1 0 1];[0 1 0]]/sqrt(2)

[V,D]=eig(M)

These are the eigenvectors corresponding to the a spin-one system, for a measurement in
the x-direction in terms of a basis defined in the z-direction. I’m not sure if there is enough
information in Chapter One, though, in order to deduce this.

15. The answer is yes. The identity operator is 1 =
�

a�,b� |a
�, b���a�, b�| so

AB = AB1 = AB
�

a�,b�

|a�, b���a�, b�| = A
�

a�,b�

b�|a�, b���a�, b�| =
�

a�,b�

b�a�|a�, b���a�, b�| = BA

Completeness is powerful. It is important to note that the sum must be over both a� and b�

in order to span the complete set of sets.

16. Since AB = −BA and AB|a, b� = ab|a, b� = BA|a, b�, we must have ab = −ba where
both a and b are real numbers. This can only be satisfied if a = 0 or b = 0 or both.

17. Assume there is no degeneracy and look for an inconsistency with our assumptions. If
|n� is a nondegenerate energy eigenstate with eigenvalue En, then it is the only state with this
energy. Since [H.A1] = 0, we must have HA1|n� = A1H|n� = EnA1|n�. That is, A1|n� is an
eigenstate of energy with eigenvalue En. Since H and A1 commute, though, they may have
simultaneous eigenstates. Therefore, A1|n� = a1|n� since there is only one energy eigenstate.

Similarly, A2|n� is also an eigenstate of energy with eigenvalue En, and A2|n� = a2|n�. But
A1A2|n� = a2A1|n� = a2a1|n� and A2A1|n� = a1a2|n�, where a1 and a2 are real numbers.
This cannot be true, in general, if A1A2 �= A2A1 so our assumption of “no degeneracy” must
be wrong. There is an out, though, if a1 = 0 or a2 = 0, since one operator acts on zero.

The example given is from a “central forces” Hamiltonian. (See Chapter Three.) The Hamil-
tonian commutes with the orbital angular momentum operators Lx and Ly, but [Lx, Ly] �= 0.
Therefore, in general, there is a degeneracy in these problems. The degeneracy is avoided,
though for S-states, where the quantum numbers of Lx and Ly are both necessarily zero.

18. The positivity postulate says that �γ|γ� ≥ 0, and we apply this to |γ� ≡ |α�+λ|β�. The
text shows how to apply this to prove the Schwarz Innequality �α|α��β|β� ≥ |�α|β�|2, from
which one derives the generalized uncertainty relation (1.4.53), namely

�(∆A)2(∆B)2� ≥
1

4
|�[A,B]�|2

Note that [∆A,∆B] = [A−�A�, B−�B�] = [A,B]. Taking ∆A|α� = λ∆B|α� with λ∗ = −λ,
as suggested, so �α|∆A = −λ�α|∆B, for a particular state |α�. Then

�α|[A,B]|α� = �α|∆A∆B −∆B∆A|α� = −2λ�α|(∆B)2|α�
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and the equality is clearly satisfied in (1.4.53). We are now asked to verify this relationship
for a state |α� that is a gaussian wave packet when expressed as a wave function �x�|α�. Use

�x�
|∆x|α� = �x�

|x|α� − �x��x�
|α� = (x�

− �x�)�x�
|α�

and �x�
|∆p|α� = �x�

|p|α� − �p��x�
|α� =

h̄

i

d

dx� �x
�
|α� − �p��x�

|α�

with �x�
|α� = (2πd2)−1/4 exp

�
i�p�x�

h̄
−

(x� − �x�)2

4d2

�

to get
h̄

i

d

dx� �x
�
|α� =

�
�p� −

h̄

i

1

2d2
(x�

− �x�)

�
�x�

|α�

and so �x�
|∆p|α� = i

h̄

2d2
(x�

− �x�)�x�
|α� = λ�x�

|∆x|α�

where λ is a purely imaginary number. The conjecture is satisfied.

It is very simple to show that this condition is satisfied for the ground state of the harmonic
oscillator. Refer to (2.3.24) and (2.3.25). Clearly �x� = 0 = �p� for any eigenstate |n�, and
x|0� is proportional to p|0�, with a proportionality constant that is purely imaginary.

19. Note the obvious typographical error, i.e. Sx

2
should be S2

x
. Have S2

x
= h̄2/4 = S2

y
=

S2

z
, also [Sx, Sy] = ih̄Sz, all from Problem 8. Now �Sx� = �Sy� = 0 for the |+� state.

Then �(∆Sx)2� = h̄2/4 = �(∆Sy)2�, and �(∆Sx)2�(∆Sy)2 = h̄4/16. Also |�[Sx, Sy]�|2/4 =
h̄2
|�Sz�|

2/4 = h̄4/16 and the generalized uncertainty principle is satisfied by the equality. On
the other hand, for the |Sx+� state, �(∆Sx)2� = 0 and �Sz� = 0, and again the generalized
uncertainty principle is satisfied with an equality.

20. Refer to Problems 8 and 9. Parameterize the state as |� = cos β

2
|+�+ eiα sin β

2
|−�, so

�Sx� =
h̄

2

�
cos

β

2
�+|+ e−iα sin

β

2
�−|

�
[|+��−|+ |−��+|]

�
cos

β

2
|+�+ eiα sin

β

2
|−�

�

=
h̄

2
sin

β

2
cos

β

2
(eiα + e−iα) =

h̄

2
sin β cosα

�(∆Sx)
2
� = �S2

x
� − �Sx�

2 =
h̄2

4
(1− sin2 β cos2 α) (see prob 12)

�Sy� = i
h̄

2

�
cos

β

2
�+|+ e−iα sin

β

2
�−|

�
[−|+��−|+ |−��+|]

�
cos

β

2
|+�+ eiα sin

β

2
|−�

�

= i
h̄

2
sin

β

2
cos

β

2
(eiα − e−iα) = −

h̄

2
sin β sinα

�(∆Sy)
2
� = �S2

y
� − �Sy�

2 =
h̄2

4
(1− sin2 β sin2 α)



Copyright, Pearson Education. 8

Therefore, the left side of the uncertainty relation is

�(∆Sx)
2
��(∆Sy)

2
� =

h̄4

16
(1− sin2 β cos2 α)(1− sin2 β sin2 α)

=
h̄4

16

�
1− sin2 β +

1

4
sin4 β sin2 2α

�

=
h̄4

16

�
cos2 β +

1

4
sin4 β sin2 2α

�
≡ P (α, β)

which is clearly maximized when sin 2α = ±1 for any value of β. In other words, the
uncertainty product is a maximum when the state is pointing in a direction that is 45◦ with
respect to the x or y axes in any quadrant, for any tilt angle β relative to the z-axis. This
makes sense. The maximum tilt angle is derived from

∂P

∂β
∝ −2 cos β sin β + sin3 β cos β(1) = cos β sin β(−2 + sin2 β) = 0

or sin β = ±1/
√
2, that is, 45◦ with respect to the z-axis. It all hangs together. The

maximum uncertainty product is

�(∆Sx)
2
��(∆Sy)

2
� =

h̄4

16

�
1

2
+

1

4

1

4

�
=

9

256
h̄4

The right side of the uncertainty relation is |�[Sx, Sy]�|2/4 = h̄2
|�Sz�|

2/4, so we also need

�Sz� =
h̄

2

�
cos2

β

2
− sin2

β

2

�
=

h̄

2
cos β

so the value of the right hand side at maximum is

h̄2

4
|�Sz�|

2 =
h̄2

4

h̄2

4

1

2
=

8

256
h̄4

and the uncertainty principle is indeed satisfied.

21. The wave function is �x|n� =
�
2/a sin(nπx/a) for n = 1, 2, 3, . . ., so we calculate

�x|x|n� =

�
a

0

�n|x�x�x|n�dx =
a

2

�x|x2
|n� =

�
a

0

�n|x�x2
�x|n�dx =

a2

6

�
−

3

n2π2
+ 2

�

(∆x)2 =
a2

6

�
−

3

n2π2
+ 2−

6

4

�
=

a2

6

�
−

3

n2π2
+

1

2

�

�x|p|n� =

�
a

0

�n|x�
h̄

i

d

dx
�x|n�dx = 0

�x|p2|n� = −h̄2

�
a

0

�n|x�
d2

dx2
�x|n�dx =

n2π2h̄2

a2
= (∆p)2
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(I did these with maple.) Since [x, p] = ih̄, we compare (∆x)2(∆p)2 to h̄2/4 with

(∆x)2(∆p)2 =
h̄2

6

�
−3 +

n2π2

2

�
=

h̄2

4

�
n2π2

3
− 2

�

which shows that the uncertainty principle is satisfied, since nπ2/3 > nπ > 3 for all n.

22. We’re looking for a “rough order of magnitude” estimate, so go crazy with the approx-
imations. Model the ice pick as a mass m and length L, standing vertically on the point,
i.e. and inverted pendulum. The angular acceleration is θ̈, the moment of inertia is mL2

and the torque is mgL sin θ where θ is the angle from the vertical. So mL2θ̈ = mgL sin θ or
θ̈ =

�
g/L sin θ. Since θ � 0 as the pick starts to fall, take sin θ = θ so

θ(t) = A exp

��
g

L
t

�
+B exp

�
−

�
g

L
t

�

x0 ≡ θ(0)L = (A+B)L

p0 ≡ mθ̇(0)L = m

�
g

L
(A− B)L =

�
m2gL(A− B)

Let the uncertainty principle relate x0 and p0, i.e. x0p0 =
�
m2gL3(A2 − B2) = h̄. Now

ignore B; the exponential decay will become irrelevant quickly. You can notice that the
pick is falling when it is tilting by something like 1◦ = π/180, so solve for a time T where
θ(T ) = π/180. Then

T =

�
L

g
ln

π/180

A
=

�
L

g

�
1

4
ln

m2gL3

h̄2
− ln

180

π

�

Take L = 10 cm, so
�

L/g ≈ 0.1 sec, but the action is in the logarithms. (It is worth your
time to confirm that the argument of the logarithm in the first term is indeed dimensionless.)
Now ln(180/π) ≈ 4 but the first term appears to be much larger. This is good, since it means
that quantum mechanics is driving the result. For m = 0.1 kg, find m2gL3/h̄2 = 1064, and
so T = 0.1 sec× (147/4− 4) ∼ 3 sec. I’d say that’s a surprising and interesting result.

23. The eigenvalues of A are obviously ±a, with −a twice. The characteristic equation for
B is (b− λ)(−λ)2 − (b− λ)(ib)(−ib) = (b− λ)(λ2 − b2) = 0, so its eigenvalues are ±b with b
twice. (Yes, B has degenerate eigenvalues.) It is easy enough to show that

AB =




ab 0 0
0 0 iab
0 −iab 0



 = BA

so A and B commute, and therefore must have simultaneous eigenvectors. To find these,
write the eigenvector components as ui, i = 1, 2, 3. Clearly, the basis states |1�, |2�, and |3�
are eigenvectors of A with eigenvalues a, −a, and −a respectively. So, do the math to find
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the eigenvectors for B in this basis. Presumably, some freedom will appear that allows us
to linear combinations that are also eigenvectors of A. One of these is obviously |1� ≡ |a, b�,
so just work with the reduced 2× 2 basis of states |2� and |3�. Indeed, both of these states
have eigenvalues a for A, so one linear combinations should have eigenvalue +b for B, and
orthogonal combination with eigenvalue −b.

Let the eigenvector components be u2 and u3. Then, for eigenvalue +b,

−ibu3 = +bu2 and ibu2 = +bu3

both of which imply u3 = iu2. For eigenvalue −b,

−ibu3 = −bu2 and ibu2 = −bu3

both of which imply u3 = −iu2. Choosing u2 to be real, then (“No, the eigenvalue alone
does not completely characterize the eigenket.”) we have the set of simultaneous eigenstates

Eigenvalue of
A B Eigenstate
a b |1�
−a b 1√

2
(|2�+ i|3�)

−a −b 1√
2
(|2� − i|3�)

24. This problem also appears to belong in Chapter Three. The Pauli matrices are not
defined in Chapter One, but perhaps one could simply define these matrices, here and in
Problems 2 and 3.
Operating on the spinor representation of |+� with (1

√
2)(1 + iσx) gives

1
√
2

��
1 0
0 1

�
+ i

�
0 1
1 0

���
1
0

�
=

1
√
2

�
1 i
i 1

��
1
0

�
=

1
√
2

�
1
i

�

So, for an operator U such that U
.
= (1

√
2)(1+ iσx), we observe that U |+� = |Sy; +�, defined

in (1.4.17b). Similarly operating on the spinor representation of |−� gives

1
√
2

��
1 0
0 1

�
+ i

�
0 1
1 0

���
0
1

�
=

1
√
2

�
1 i
i 1

��
0
1

�
=

1
√
2

�
i
1

�
=

i
√
2

�
1
−i

�

that is, U |−� = i|Sy;−�. This is what we would mean by a “rotation” about the x-axis by
90◦. The sense of the rotation is about the +x direction vector, so this would actually be
a rotation of −π/2. (See the diagram following Problem Nine.) The phase factor i = eiπ/2

does not affect this conclusions, and in fact leads to observable quantum mechanical effects.
(This is all discussed in Chapter Three.) The matrix elements of Sz in the Sy basis are then

�Sy; +|Sz|Sy; +� = �+|U †SzU |+�

�Sy; +|Sz|Sy;−� = −i�+|U †SzU |−�

�Sy;−|Sz|Sy; +� = i�−|U †SzU |+�

�Sy;−|Sz|Sy;−� = �−|U †SzU |−�
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Note that σ†
x
= σx and σ2

x
= 1, so U †U

.
= (1

√
2)(1− iσx)(1

√
2)(1 + iσx) = (1/2)(1 + σ2

x
) = 1

and U is therefore unitary. (This is no accident, as will be discussed when rotation operators
are presented in Chapter Three.) Furthermore σzσx = −σxσz, so

U †SzU
.
=

1
√
2
(1− iσx)

h̄

2
σz

1
√
2
(1 + iσx) =

h̄

2

1

2
(1− iσx)

2σz = −i
h̄

2
σxσz

= −i
h̄

2

�
0 1
1 0

��
1 0
0 −1

�
=

h̄

2

�
0 i
−i 0

�

so Sz

.
=

h̄

2

�
0 1
1 0

�
=

h̄

2
σx

in the |Sy;±� basis. This can be easily checked directly with (1.4.17b), that is

Sz|Sy;±� =
h̄

2

1
√
2
[|+� ∓ i|−� =

h̄

2
|Sy;∓�

There seems to be a mistake in the old solution manual, finding Sz = (h̄/2)σy instead of σx.

25. Transforming to another representation, say the basis |c�, we carry out the calculation

�c�|A|c��� =
�

b�

�

b��

�c�|b���b�|A|b����b��|c���

There is no principle which says that the �c�|b�� need to be real, so �c�|A|c��� is not necessarily
real if �b�|A|b��� is real. The problem alludes to Problem 24 as an example, but not that
specific question (assuming my solution is correct.) Still, it is obvious, for example, that the
operator Sy is “real” in the |Sy;±� basis, but is not in the |±� basis.

For another example, also suggested in the text, if you calculate

�p�|x|p��� =

�
�p�|x|x�

��x�
|p���dx� =

�
x�
�p�|x�

��x�
|p���dx� =

1

2πh̄

�
x�ei(p

��−p
�)x�

/h̄dx�

and then define q ≡ p�� − p� and y ≡ x�/h̄, then

�p�|x|p��� =
h̄

2πi

d

dq

�
eiqydy =

h̄

i

d

dq
δ(q)

so you can also see that although x is real in the |x�� basis, it is not so in the |p�� basis.

26. From (1.4.17a), |Sx;±� = (|+�± |−�)/
√
2, so clearly

U
.
=

1
√
2

�
1 1
1 −1

�
=

�
1/
√
2 1/

√
2

0 0

�
+

�
0 0

1/
√
2 −1/

√
2

�

=

�
1/
√
2

1/
√
2

�
[1 0] +

�
1/
√
2

−1/
√
2

�
[0 1]

=⇒ = |Sx : +��+|+ |Sx : −��−|
.
=

�

r

|b(r)��a(r)|
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27. The idea here is simple. Just insert a complete set of states. Firstly,

�b��|f(A)|b�� =
�

a�

�b��|f(A)|a���a�|b�� =
�

a�

f(a�)�b��|a���a�|b��

The numbers �a�|b�� (and �b��|a��) constitute the “transformation matrix” between the two
sets of basis states. Similarly for the continuum case,

�p
��
|F (r)|p�

� =

�
�p

��
|F (r)|x�

��x
�
|p

�
�d3x� =

�
F (r�)�p��

|x
�
��x

�
|p

�
�d3x�

=
1

(2πh̄)3

�
F (r�)ei(p

�−p��)·x�
/h̄d3x�

The angular parts of the integral can be done explicitly. Let q ≡ p
� − p

�� define the “z”-
direction. Then

�p
��
|F (r)|p�

� =
2π

(2πh̄)3

�
dr�F (r�)

�
π

0

sin θdθeiqr
� cos θ/h̄ =

1

4π2h̄3

�
dr�F (r�)

�
1

−1

dµ eiqr
�
µ/h̄

=
1

4π2h̄3

�
dr�F (r�)

h̄

iqr�
2i sin(qr�/h̄) =

1

2π2h̄2

�
dr�F (r�)

sin(qr�/h̄)

qr�

28. For functions f(q, p) and g(q, p), where q and p are conjugate position and momentum,
respectively, the Poisson bracket from classical physics is

[f, g]classical =
∂f

∂q

∂g

∂p
−

∂f

∂p

∂g

∂q
so [x, F (px)]classical =

∂F

∂px

Using (1.6.47), then, we have
�
x, exp

�
ipxa

h̄

��
= ih̄

�
x, exp

�
ipxa

h̄

��

classical

= ih̄
∂

∂px
exp

�
ipxa

h̄

�
= −a exp

�
ipxa

h̄

�

To show that exp(ipxa/h̄)|x�� is an eigenstate of position, act on it with x. So

x exp

�
ipxa

h̄

�
|x�

� =

�
exp

�
ipxa

h̄

�
x− a exp

�
ipxa

h̄

��
|x�

� = (x�
− a) exp

�
ipxa

h̄

�
|x�

�

In other words, exp(ipxa/h̄)|x�� is an eigenstate of x with eigenvalue x� − a. That is
exp(ipxa/h̄)|x�� is the translation operator with ∆x� = −a, but we knew that. See (1.6.36).

29. I wouldn’t say this is “easily derived”, but it is straightforward. Expressing G(p) as a
power series means G(p) =

�
nm�

anm�pni p
m

j
p�
k
. Now

[xi, p
n

i
] = xipip

n−1

i
− pn

i
xi = ih̄pn−1

i
+ pixip

n−1

i
− pn

i
xi

= 2ih̄pn−1

i
+ p2

i
xip

n−2

i
− pn

i
xi

. . .

= nih̄pn−1

i

so [xi, G(p)] = ih̄
∂G

∂pi
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The procedure is essentially identical to prove that [pi, F (x)] = −ih̄∂F/∂xi. As for

[x2, p2] = x2p2 − p2x2 = x2p2 − xp2x+ xp2x− p2x2 = x[x, p2] + [x, p2]x

make use of [x, p2] = ih̄∂(p2)/∂p = 2ih̄p so that [x2, p2] = 2ih̄(xp+px). The classical Poisson
bracket is [x2, p2]classical = (2x)(2p) − 0 = 4xp and so [x2, p2] = ih̄[x2, p2]classical when we let
the (classical quantities) x and p commute.

30. This is very similar to problem 28. Using problem 29,

[xi,J (l)] =

�
xi, exp

�
−ip · l

h̄

��
= ih̄

∂

∂pi
exp

�
−ip · l

h̄

�
= li exp

�
−ip · l

h̄

�
= liJ (l)

We can use this result to calculate the expectation value of xi. First note that

J
†(l) [xi,J (l)] = J

†(l)xiJ (l)− J
†(l)J (l)xi = J

†(l)xiJ (l)− xi

= J
†(l)liJ (l) = li

Therefore, under translation,

�xi� = �α|xi|α� → �α|J †(l)xiJ (l)|α� = �α|J †(l)xiJ (l)|α� = �α|(xi + li)|α� = �xi�+ li

which is exactly what you expect from a translation operator.

31. This is a continued rehash of the last few problems. Since [x,J (dx�)] = dx
� by (1.6.25),

and since J †[x,J ] = J †
xJ −x, we have J †(dx�)xJ (dx�) = x+J †(dx�)dx� = x+dx

� since
we only keep the lowest order in dx

�. Therefore �x� → �x� + dx
�. Similarly, from (1.6.45),

[p,J (dx�)] = 0, so J †[p,J ] = J †
pJ − p = 0. That is J †

pJ = p and �p� → �p�.

32. These are all straightforward. In the following, all integrals are taken with limits from
−∞ to ∞. One thing to keep in mind is that odd integrands give zero for the integral, so
the right change of variables can be very useful. Also recall that

�
exp(−ax2)dx =

�
π/a,

and
�
x2 exp(−ax2)dx = −(d/da)

�
exp(−ax2)dx =

√
π/2a3/2. So, for the x-space case,

�p� =

�
�α|x�

��x�
|p|α�dx� =

�
�α|x�

�
h̄

i

d

dx� �x
�
|α�dx� =

1

d
√
π

�
h̄k exp

�
−
x�2

d2

�
dx� = h̄k

�p2� = −h̄2

�
�α|x�

�
d2

dx�2 �x
�
|α�dx�

= −
h̄2

d
√
π

�
exp

�
−ikx�

−
x�2

2d2

�
d

dx�

��
ik −

x�

d2

�
exp

�
ikx�

−
x�2

2d2

��
dx�

= −
h̄2

d
√
π

� �
−

1

d2
+

�
ik −

x�

d2

�2
�
exp

�
−
x�2

d2

�
dx�

= h̄2

�
1

d2
+ k2

�
−

h̄2

d5
√
π

�
x�2 exp

�
−
x�2

d2

�
dx� = h̄2

�
1

d2
+ k2

�
−

h̄2

2d2
=

h̄2

2d2
+ h̄2k2
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Using instead the momentum space wave function (1.7.42), we have

�p� =

�
�α|p|p���p�|α�dp� =

�
p�|�p�|α�|2dp�

=
d

h̄
√
π

�
p� exp

�
−
(p� − h̄k)2d2

h̄2

�
dp� =

d

h̄
√
π

�
(q + h̄k) exp

�
−
q2d2

h̄2

�
dq = h̄k

�p2� =
d

h̄
√
π

�
(q + h̄k)2 exp

�
−
q2d2

h̄2

�
dq =

d

h̄
√
π

√
π

2

h̄3

d3
+ (h̄k)2 =

h̄2

2d2
+ h̄2k2

33. I can’t help but think this problem can be done by creating a “momentum translation”
operator, but instead I will follow the original solution manual. This approach uses the
position space representation and Fourier transform to arrive the answer. Start with

�p�|x|p��� =

�
�p�|x|x�

��x�
|p���dx� =

�
x�
�p�|x�

��x�
|p���dx�

=
1

2πh̄

�
x� exp

�
−i

(p� − p��) · x�

h̄

�
dx� = i

∂

∂p�
1

2π

�
exp

�
−i

(p� − p��) · x�

h̄

�
dx�

= ih̄
∂

∂p�
δ(p� − p��)

Now find �p�|x|α� by inserting a complete set of states |p���, that is

�p�|x|α� =

�
�p�|x|p����p��|α�dp�� = ih̄

∂

∂p�

�
δ(p� − p��)�p��|α�dp�� = ih̄

∂

∂p�
�p�|α�

Given this, the next expression is simple to prove, namely

�β|x|α� =

�
dp��β|p���p�|x|α� =

�
dp�φ∗

β
(p�)ih̄

∂

∂p�
φα(p

�)

using the standard definition φγ(p�) ≡ �p�|γ�.

Certainly the operator T (Ξ) ≡ exp(ixΞ/h̄) looks like a momentum translation operator. So,
we should try to work out pT (Ξ)|p�� = p exp(ixΞ/h̄)|p�� and see if we get |p� + Ξ�. Take a
lesson from problem 28, and make use of the result from problem 29, and we have

pT (Ξ)|p�� = {T (Ξ)p+ [p, T (Ξ)]}|p�� =

�
p�T (Ξ)− ih̄

∂

∂x
T (Ξ)

�
|p�� = (p� + Ξ)T (Ξ)|p��

and, indeed, T (Ξ)|p�� is an eigenstate of p with eigenvalue p� + Ξ. In fact, this could have
been done first, and then write down the translation operator for infinitesimal momenta, and
derive the expression for �p�|x|α� the same way as done in the text for infinitesimal spacial
translations. (I like this way of wording the problem, and maybe it will be changed in the
next edition.)
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Chapter Two

1. The equation of motion for an operator in the Heisenberg picture is given by (2.2.19), so

Ṡx =
1

ih̄
[Sx, H] = −

1

ih̄

eB

mc
[Sx, Sz] =

eB

mc
Sy Ṡy = −

eB

mc
Sx Ṡz = 0

and S̈x,y = −ω2Sx,y for ω ≡ eB/mc. Thus Sx and Sy are sinusoidal with frequency ω and Sz

is a constant.

2. The Hamiltonian is not Hermitian, so the time evolution operator will not be unitary, and
probability will not be conserved as a state evolves in time. As suggested, set H11 = H22 = 0.
Then H = a|1��2| in which case H2 = a2|1��2|1��1| = 0. Since H is time-independent,

U(t) = exp

�
−
i

h̄
Ht

�
= 1−

i

h̄
Ht = 1−

i

h̄
at|1��2|

even for finite times t. Thus a state |α, t� ≡ U(t)|2� = |2� − (iat/h̄)|1� has a time-dependent
norm. Indeed �α|α� = 1 + a2t2/h̄2 which is nonsense. In words, it says that if you start out
in the state |2�, then the probability of finding the system in this state is unity at t = 0 and
then grows with time. You can be more formal, and talk about an initial state c1|1�+ c2|2�,
but the bottom line is the same; probability is no longer conserved in time.

3. We have n̂ = sin βx̂ + cos βẑ and S
.
= (h̄/2)σ, so S · n

.
= (h̄/2)(sin βσx + cos βσz) and

we want to solve the matrix equation S · nψ = (h̄/2)ψ in order to find the initial state
column vector ψ. This is, once again, a problem whose solution best makes use of the Pauli
matrices, which are not introduced until Section 3.2. On the other hand, we can also make
use of Problem 1.9 to write down the initial state. Either way, we find

|α, t = 0� = cos

�
β

2

�
|+�+ sin

�
β

2

�
|−� so,

|α, t� = exp

�
−
i

h̄

eB

mc
tSz

�
|α, t = 0� = e−iωt/2 cos

�
β

2

�
|+�+ eiωt/2 sin

�
β

2

�
|−�

for ω ≡ eB/mc. From (1.4.17a), the state |Sx; +� = (1/
√
2)|+�+ (1/

√
2)|−�, so

|�Sx; +|α, t�|2 =

����
1
√
2
e−iωt/2 cos

�
β

2

�
+

1
√
2
eiωt/2 sin

�
β

2

�����
2

=
1

2
cos2

�
β

2

�
+

1

2

�
eiωt + e−iωt

�
cos

�
β

2

�
sin

�
β

2

�
+

1

2
sin2

�
β

2

�

=
1

2
+

1

2
cos(ωt) sin β =

1

2
(1 + sin β cosωt)

which makes sense. For β = 0, the initial state is a z-eigenket, and there is no precession,
so you just get 1/2 for the probability of measuring Sx in the positive direction. The same
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works out for β = π. For β = π/2, the initial state is |Sx; +� so the probabilty is +1 at t = 0
and 0 at t = π/ω = T/2. Now from (1.4.18a), Sx = (h̄/2)[|+��−|+ |−��+|], so

�α, t|Sx|α, t� =

�
eiωt/2 cos

�
β

2

�
�+|+ e−iωt/2 sin

�
β

2

�
�−|

�

h̄

2

�
eiωt/2 sin

�
β

2

�
|+�+ e−iωt/2 cos

�
β

2

�
|−�

�

=
h̄

2
sin

�
β

2

�
cos

�
β

2

��
eiωt + e−ωt

�
=

h̄

2
sin β cosωt

Again, this makes perfect sense. The expectation value is zero for β = 0 and β = π, but for
β = π/2, you get the classical precession of a vector that lies in the xy-plane.

4. First, restating equations from the textbook,

|νe� = cos θ|ν1� − sin θ|ν2�

|νµ� = sin θ|ν1�+ cos θ|ν2�

and E = pc

�
1 +

m2c2

2p2

�

Now, let the initial state |νe� evolve in time to become a state |α, t� in the usual fashion

|α, t� = e−iHt/h̄
|νe�

= cos θe−iE1t/h̄|ν1� − sin θe−iE2t/h̄|ν2�

= e−ipct/h̄

�
e−im

2
1c

3
t/2ph̄ cos θ|ν1� − e−im

2
2c

3
t/2ph̄ sin θ|ν2�

�

The probability that this state is observed to be a |νe� is

P (νe → νe) = |�νe|α, t�|
2 =

���e−im
2
1c

3
t/2ph̄ cos2 θ + e−im

2
2c

3
t/2ph̄ sin2 θ

���
2

=
���cos2 θ + ei∆m

2
c
3
t/2ph̄ sin2 θ

���
2

= cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos

�
∆m2c3t

2ph̄

�

= 1− sin2 2θ sin2

�
∆m2c3t

4ph̄

�

Writing the nominal neutrino energy as E = pc and the flight distance L = ct we have

P (νe → νe) = 1− sin2 2θ sin2

�
∆m2c4

L

4Eh̄c

�

It is quite customary to ignore the factor of c4 and agree to measure mass in units of energy,
typically eV.
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The neutrino oscillation probability from KamLAND is plotted here:

of these backgrounds is assumed to be flat to at least
30 MeV based on a simulation following [12]. The atmos-
pheric ! spectrum [13] and interactions were modeled
using NUANCE [14]. We expect fewer than 9 neutron and
atmospheric ! events in the data-set. We observe 15 events
in the energy range 8.5–30 MeV, consistent with the limit
reported previously [15].

The accidental coincidence background above 0.9 MeV
is measured with a 10- to 20-s delayed-coincidence win-
dow to be 80:5! 0:1 events. Other backgrounds from (",
n) interactions and spontaneous fission are negligible.

Antineutrinos produced in the decay chains of 232Th and
238U in the Earth’s interior are limited to prompt energies
below 2.6 MeV. The expected geoneutrino flux at the
KamLAND location is estimated with a geological refer-
ence model [9], which assumes a radiogenic heat pro-
duction rate of 16 TW from the U and Th-decay chains.
The calculated !!e fluxes for U and Th-decay, including
a suppression factor of 0.57 due to neutrino oscillation,
are 2:24" 106 cm#2 s#1 (56.6 events) and 1:90"
106 cm#2 s#1 (13.1 events), respectively.

With no !!e disappearance, we expect 2179! 89$syst%
events from reactors. The backgrounds in the reactor en-
ergy region listed in Table II sum to 276:1! 23:5; we also
expect geoneutrinos. We observe 1609 events.

Figure 1 shows the prompt energy spectrum of selected
!!e events and the fitted backgrounds. The unbinned data
are assessed with a maximum likelihood fit to two-flavor
neutrino oscillation (with #13 & 0), simultaneously fitting

the geoneutrino contribution. The method incorporates the
absolute time of the event and accounts for time variations
in the reactor flux. Earth-matter oscillation effects are
included. The best fit is shown in Fig. 1. The joint con-
fidence intervals give "m2

21 & 7:58'0:14
#0:13$stat%'0:15

#0:15$syst% "
10#5 eV2 and tan2#12 & 0:56'0:10

#0:07$stat%'0:10
#0:06$syst% for

tan2#12 < 1. A scaled reactor spectrum with no distortion
from neutrino oscillation is excluded at more than 5$. An
independent analysis using cuts similar to Ref. [2] gives
"m2

21 & 7:66'0:22
#0:20 " 10#5 eV2 and tan2#12 & 0:52'0:16

#0:10.
The allowed contours in the neutrino oscillation parame-

ter space, including "%2-profiles, are shown in Fig. 2. Only
the so-called LMA-I region remains, while other regions
previously allowed by KamLAND at (2:2$ are disfavored
at more than 4$. For three-neutrino oscillation, the data
give the same result for "m2

21, but a slightly larger uncer-
tainty on #12. Incorporating the results of SNO [16] and
solar flux experiments [17] in a two-neutrino analysis with
KamLAND assuming CPT invariance, gives "m2

21 &
7:59'0:21

#0:21 " 10#5 eV2 and tan2#12 & 0:47'0:06
#0:05.

To determine the number of geoneutrinos, we fit the
normalization of the !!e energy spectrum from the U and
Th-decay chains simultaneously with the neutrino oscilla-
tion parameters using the KamLAND and solar data. There
is a strong anticorrelation between the U and Th-decay
chain geoneutrinos, and an unconstrained fit of the indi-
vidual contributions does not give meaningful results.
Fixing the Th/U mass ratio to 3.9 from planetary data
[18], we obtain a combined U' Th best fit value of $4:4!
1:6% " 106 cm#2 s#1 (73! 27 events), in agreement with
the reference model.

The KamLAND data, together with the solar ! data, set
an upper limit of 6.2 TW (90% C.L.) for a !!e reactor source
at the Earth’s center [19], assuming that the reactor pro-
duces a spectrum identical to that of a slow neutron artifi-
cial reactor.

The ratio of the background-subtracted !!e candidate
events, including the subtraction of geoneutrinos, to no-
oscillation expectation is plotted in Fig. 3 as a function of
L0=E. The spectrum indicates almost two cycles of the
periodic feature expected from neutrino oscillation.

In conclusion, KamLAND confirms neutrino oscillation,
providing the most precise value of "m2

21 to date and
improving the precision of tan2#12 in combination with
solar ! data. The indication of an excess of low-energy
antineutrinos consistent with an interpretation as geo-
neutrinos persists.

The KamLAND experiment is supported by the
Japanese Ministry of Education, Culture, Sports, Science
and Technology, and under the United States Department
of Energy Office Grant No. DEFG03-00ER41138 and
other DOE grants to individual institutions. The reactor
data are provided by courtesy of the following electric
associations in Japan: Hokkaido, Tohoku, Tokyo,
Hokuriku, Chubu, Kansai, Chugoku, Shikoku, and
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FIG. 3 (color). Ratio of the background and geoneutrino-
subtracted !!e spectrum to the expectation for no-oscillation as
a function of L0=E. L0 is the effective baseline taken as a flux-
weighted average (L0 & 180 km). The energy bins are equal
probability bins of the best fit including all backgrounds (see
Fig. 1). The histogram and curve show the expectation account-
ing for the distances to the individual reactors, time-dependent
flux variations, and efficiencies. The error bars are statistical
only and do not include, for example, correlated systematic
uncertainties in the energy scale.

PRL 100, 221803 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
6 JUNE 2008

221803-4

The minimum in the oscillation probability directly gives us sin2 2θ, that is

1− sin2 2θ ≈ 0.4 so θ ≈ 25◦

The wavelength gives the mass difference parameter. We have

40
km

MeV
= 2π

4h̄c

∆m2
=

8π × 200 MeV fm

∆m2

where we explicitly agree to measure ∆m2 in eV2. Therefore

∆m2 = 40π × 1012eV2
× 10−15/103 = 1.2× 10−4 eV2

The results from a detailed analysis by the collaboration, in Phys.Rev.Lett.100(2008)221803,
are tan2 θ = 0.56 (θ = 37◦) and ∆m2 = 7.6 × 10−5 eV2. The full analysis not only includes
the fact that the source reactors are at varying distances (although clustered at a nominal
distance), but also that neutrino oscillations are over three generations.

5. Note: This problem is worked through rather thoroughly in the text. See page 85.
First, ẋ = (1/ih̄)[x,H] = (1/ih̄)[x, p2/2m] = p/m (using Problem 1.29). However ṗ =
(1/ih̄)[p, p2/2m] = 0 so p(t) = p(0), a constant. Therefore x(t) = x(0) + p(0)t/m, and
[x(t), x(0)] = [x(0) + p(0)t/m, x(0)] = [p(0), x(0)]t/m = −ih̄t/m. By the generalized uncer-
tainty principle(1.4.53), this means that the uncertainty in position grows with time. This
conclusion is also a consequence of a study of “wave packets.”
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6. This is the proof of the so-called “dipole sum rule.” Using Problem 1.29,

[H, x] =

�
p2

2m
+ V (x), x

�
= −ih̄

p

m
so [[H, x], x] = −

h̄2

m

Now [[H, x], x] = [H, x]x − x[H, x] = Hx2 − xHx − xHx + x2H = Hx2 + x2H − 2xHx,
and so �a��|[[H, x], x]|a��� = 2E ���a��|x2|a��� − 2�a��|xHx|a��� = −h̄2/m from above. Inserting a
complete set of states |a�� into each of the two terms on the left, we come up with

h̄2

2m
= �a��|xHx|a��� − E ��

�a��|x2
|a���

=
�

a�

[�a��|xH|a���a�|x|a��� − E ��
�a��|x|a���a�|x|a���] =

�

a�

(E �
− E ��)|�a��|x|a��|2

7. We solve this in the Heisenberg picture, letting the operators be time dependent. Then

d

dt
x · p =

1

ih̄
[x · p, H] =

1

ih̄

�
xpx + ypy + zpz,

1

2m
(p2

x
+ p2

y
+ p2

z
) + V (x)

�

=
1

2ih̄m

�
[x, p2

x
]px + [y, p2

y
]py + [z, p2

z
]pz

�
+

1

ih̄
x · [p, V (x)]

=
1

m
(p2

x
+ p2

y
+ p2

z
)− x

∂V

∂x
− y

∂V

∂y
− z

∂V

∂z
=

p
2

m
− x ·∇V

using (2.2.23). What does this mean if dx ·p/dt = 0? The original solution manual is elusive,
so I’m not sure what Sakurai was getting at. In Chapter Three, we show that for the orbital
angular momentum operator L, one has L

2 = x
2
p
2 − (x · p)2 + ih̄x · p, so it appears that

there is a link between this quantity and conservation of angular momentum. So,. . . ?

8. Firstly, �(∆x)2� = �x2� − �x�2 and (from Problem 5 above) x(t) = x(0) + (p(0)/m)t, so
�x(t)� = �x(0)�+ (�p(0)�/m)t = 0 and �(∆x)2� = �x2� at all times. Therefore we want

�(∆x)2� = �x2(t)� = �x2(0)�+
t

m
�x(0)p(0) + p(0)x(0)�+

t2

m2
�p2(0)�

where the expectation value can be calculated for the state at t = 0. For this (minimum
uncertainty) state, we have ∆x = x(0) − �x(0)� = x(0) and ∆p = p(0) − �p(0)� = p(0), so
from Problem 1.18(b) we have ∆p(0)|� = ia∆x(0)|� where a is real. Therefore

�(∆x)2� = �x2(0)�+
t

m

�
ia�x2(0)� − ia�x2(0)�

�
+

t2

m2
(−ia)(ia)�x2(0)� = �x2(0)�

�
1 +

a2t2

m2

�

where h̄2/4 = �(∆x)2��(∆p)2� = a2�x2(0)� sets a2 = h̄2/4�(∆x)2�|t=0. San Fu Tuan’s original
solution manual states that this agrees with the expansion of wave packets calculated using
wave mechanics. This point should probably be investigated further.
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9. The matrix representation ofH in the |a��, |a��� basis isH =

�
0 δ
δ 0

�
, so the characteristic

equation for the eigenvalues is (−E)2−δ2 = 0 and E = ±δ ≡ E± with eigenstates 1√
2

�
1
±1

�
.

This gives |a�� = (|E+�+ |E−�)/
√
2 and |a��� = (|E+� − |E−�)/

√
2. Since the Hamiltonian is

time-independent, the time evolved state is exp(−iHt/h̄)|a�� = (e−iδt/h̄|E+�+eiδt/h̄|E−�)/
√
2.

The probability to find this state at time t in the state |a��� is |�a��| exp(−iHt/h̄)|a��|2, or

1

4

��(�E+|− �E−) |
�
e−iδt/h̄

|E+�+ eiδt/h̄|E−�
���2 = 1

4

��e−iδt/h̄
− eiδt/h̄

��2 = sin2

�
δt

h̄

�

This is the classic two-state problem. Spin-1/2 is one example. Another is ammonia.

10. This problem is nearly identical to Problem 9, only instead speciying two ways to de-
termine the time-evolved state, plus Problem 2 tossed in at the end. Perhaps it should be
removed from the next edition.

(a) The energy eigenvalues are E± ≡ ±∆ with normalized eigenstates |E±� = (|R�±|L�)/
√
2.

(b) We have |R� = (|E+�+ |E−�)/
√
2 and |L� = (|E+� − |E−�)/

√
2, so, with ω ≡ ∆/h̄,

|α, t� = e−iHt/h̄
|α, t = 0� = e−iHt/h̄

|R��R|α�+ e−iHt/h̄
|L��L|α�

=
1
√
2

�
e−iωt

|E+�+ eiωt|E−�
�
�R|α�+

1
√
2

�
e−iωt

|E+� − eiωt|E−�
�
�L|α�

(c) The initial condition means that �R|α� = 1 and �L|α� = 0, so we calculate

|�L|α, t�|2 =
1

4

��(�E+|− �E−) |
�
e−iωt

|E+�+ eiωt|E−�
���2 = 1

4

��e−iωt
− eiωt

��2 = sin2 ωt

(d) This is the only part of the problem that is “new.” Indeed, Problem 9 could have been
done this way, instead of using the time propagation operator. Using (2.1.27) we write

ih̄
∂

∂t
�R|α, t� = �R|H|α, t� and ih̄

∂

∂t
�L|α, t� = �L|H|α, t�

Let ψR(t) ≡ �R|α, t� and ψL(t) ≡ �L|α, t�. These coupled equations become

ih̄ψ̇R =
1
√
2
(∆�E+|−∆�E−) |α, t� = ∆ψL and ih̄ψ̇L = ∆ψR

or ψ̇R = −iωψL and ψ̇L = −iωψR, so ψR(t) = Aeiωt + B−iωt and ψL(t) = Ceiωt + D−iωt.
These are just (b) where A = �R|E+�, B = �R|E−�, C = �L|E+�, and D = �L|E−�.

(e) See Problem 2. It can be embellished by in fact solving the most general time-evolution
problem, but in the end, the point will still be that probability is not conserved.
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11. Restating this problem: Using the one-dimensional simple harmonic oscillator as an
example, illustrate the difference between the Heisenberg picture and the Schrödinger picture.
Discuss in particular how (a) the dynamic variables x and p and (b) the most general state
vector evolve with time in each of the two pictures.

This problem, namely 2.10 in the previous edition, is rather open ended, atypical for most
of the problems in the book. Perhaps it should be revised. Most of the problem is in fact
covered on pages 94 to 96. Anyway, we start from the Hamiltonian

H =
1

2m
p2 +

1

2
mω2x2 =

�
N +

1

2

�
h̄ω

(a) In the Schrödinger picture, x and p do not evolve in time. In the Heisenberg picture

dx

dt
=

1

ih̄
[x,H] =

1

2imh̄
[x, p2] =

1

2imh̄
ih̄(2p) =

p

m
dp

dt
=

1

ih̄
[p,H] =

mω2

2ih̄
[p, x2] =

mω2

2ih̄
(−ih̄)(2x) = −mω2x

using Problem 1.29. These are just the classical Hamilton’s equations, with a force −ω2x.
Solving these coupled equations are simple, yielding sinusoidal motion at frequency ω for
x and p. One can also recognize that the two pictures coincide at t = 0, and then get
Heisenberg from Schrödinger using xH(t) = exp(iHt/h̄)x(0) exp(−iHt/h̄) and expanding
the exponentials. Similarly for momentum.

(b) In the Heisenberg picture, state vectors are stationary. For the Schrödinger picture, it is
easiest to expand in terms of eigenstates of N , that is |α, t� =

�
cn(t)|n�, so (2.1.27) gives

ih̄
�

n

ċn(t)|n� = H|α, t� =
�

n

�
n+

1

2

�
h̄ωcn(t)|n�

in which case cn(t) = exp[−i(n+ 1/2)ωt], using orthonormality of the |n�.

12. Not enough information is given in the problem statement. The state |0� is one for
which �x� = 0 = �p�. As described in the solution to Problem 11, in the Heisenberg picture,
the position operator is x(t) = x(0) cos(ωt) + (p(0)/m) sin(ωt), and �x� = �t = 0|x(t)|t = 0�.
Since eip/h̄xe−ipa/h̄ = eip/h̄{[x, e−ipa/h̄] + e−ipa/h̄x} = eip/h̄ih̄(−ia/h̄)e−ipa/h̄ + x = x+ a, using
Problem 1.29, the expectation value of position is

�x� = �0|eip/h̄x(0)e−ipa/h̄
|0� cos(ωt) + �0|eip/h̄p(0)e−ipa/h̄

|0� sin(ωt)

= �0|[x(0) + a]|0� cos(ωt) + �0|p(0)|0� sin(ωt) = a cos(ωt)

Since the state e−ipa/h̄|0� represents a position displaced by a distance a (See Problem 1.28),
we have the classical motion of a harmonic oscillator starting from rest with amplitude a.
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13. Making use of (1.6.36), we recognize T (a) = exp(−ipa/h̄) as the operator that translates
in x by a distance a. Therefore �x�|T (a) = �x� − a| and

�x�
|e−ipa/h̄

|0� = �x�
− a|0� =

1

π1/4

1

x1/2

0

exp

�
−
1

2

�
x� − a

x0

�2
�

The probability to find the state e−ipa/h̄|0� in the ground state |0� is the square of

�0|e−ipa/h̄
|0� =

�
dx�

�0|x�
��x�

|e−ipa/h̄
|0� =

1

π1/2

1

x0

� ∞

−∞
dx�e−[(x�−a)2+x

�2 ]/2x2
0

The integral is simple to do by completing the square. Write

(x�
− a)2 + x�2 = 2

�
x�2

− ax� +
a2

2

�
= 2

��
x�

−
a

2

�2
�
+

a2

2

and shift the integration variable by a/2. You end up with

�0|e−ipa/h̄
|0� =

1

π1/2

1

x0

e−a
2
/4x2

0

� ∞

−∞
dye−y

2
/x

2
0 = e−a

2
/4x2

0

so the probability is just e−a
2
/2x2

0 . This is indeed time-independent.

14. Rearranging, we have x =
�
h̄/2mω(a+ a†) and p = i

�
h̄mω/2(a† − a), therefore

x|n� =

�
h̄

2mω

�√
n|n− 1�+

√
n+ 1|n+ 1�

�

p|n� = i

�
h̄mω

2

�√
n+ 1|n+ 1� −

√
n|n− 1�

�

�m|x|n� =

�
h̄

2mω
�m|(a+ a†)|n� =

�
h̄

2mω

�√
nδm,n−1 +

√
n+ 1δm.n+1

�

�m|p|n� = i

�
h̄mω

2
�m|(a† − a)|n� = i

�
h̄mω

2

�√
n+ 1δm.n+1 −

√
nδm,n−1

�

�m|{x, p}|n� = �m|(xp+ px)|n� = �m|xp|n�+ �n|xp|m�
∗

= i

�
h̄mω

2

�√
n+ 1�m|x|n+ 1� −

√
n�m|x|n− 1�

−
√
m+ 1�n|x|m+ 1�+

√
m�n|x|m− 1�

�

= i
h̄

2

�
(n+ 1)δnm +

�
(n+ 1)(n+ 2)δn+2,m −

�
n(n− 1)δn−2,m − nδnm

−(m+ 1)δnm −
�

(m+ 1)(m+ 2)δn,m+2 +
�

m(m− 1)δn,m−2 +mδnm
�

= ih̄
��

(n+ 1)(n+ 2)δn+2,m −
�

n(n− 1)δn−2,m

�
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�m|x2
|n� =

�
h̄

2mω

�√
n�m|x|n− 1�+

√
n+ 1�m|x|n+ 1�

�

=
h̄

2mω

��
n(n− 1)δn−2,m + (2n+ 1)δnm +

�
(n+ 1)(n+ 2)δn+2,m

�

�m|p2|n� = i

�
h̄mω

2

�√
n+ 1�m|p|n+ 1� −

√
n�m|p|n− 1�

�

= −
h̄mω

2

��
(n+ 1)(n+ 2)δn+2,m − (2n+ 1)δnm +

�
n(n− 1)δn−2,m

�

Now, the virial theorem in three dimensions is quoted as

�
p
2

m

�
= �x ·∇V � or

�
p2

m

�
=

�
x
dV

dx

�

in one dimension. For the harmonic oscillator, xdV/dx = mω2x2. So, evaluating the expec-
tation value in the state |n� using the calculations above, we have

�
p2

m

�
=

h̄ω

2
(2n+ 1) = h̄ω

�
n+

1

2

�
and

�
x
dV

dx

�
=

h̄ω

2
(2n+ 1) = h̄ω

�
n+

1

2

�

and the virial theorem is indeed satisfied.

15. Turning around what is given, �p�|x�� = (2πh̄)−1/2e−ip
�
x
�
/h̄. Then

�p�|x|α� =

�
dx�

�p�|x�
��x�

|x|α� =

�
dx�x�

�p�|x�
��x�

|α�

= ih̄

�
dx� ∂

∂p�
�p�|x�

��x�
|α� = ih̄

∂

∂p�

�
dx�

�p�|x�
��x�

|α� = ih̄
∂

∂p�
�p�|α�

For the Hamiltonian H = p2/2m + mω2x2/2 with eigenvalues E, the wave equation in
momentum space is �p�|H|α� = E�p�|α� ≡ Euα(p�), and the second term in �p�|H|α� is

mω2

2
�p�|x2

|α� =
mω2

2
ih̄

∂

∂p�
�p�|x|α� = −

mh̄2ω2

2

∂2

∂p�2
�p�|α� = −

mh̄2ω2

2

d2uα

dp�2

With a little rearranging, the wave equation becomes

−
mh̄2ω2

2

d2uα

dp�2
+

1

2m
p�

2
uα(p

�) = Euα(p
�)

which is the same as (2.5.13) but with mω2 replaced with 1/m. Inserting this same substi-
tution into (2.5.28) therefore gives the wave functions in momentum space.
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16. From (2.3.45a), x(t) = x(0) cosωt+ [p(0)/mω] sinωt, so

C(t) ≡ �0|x(t)x(0)|0� = �0|x(0)x(0)|0� cosωt+ (1/mω)�0|p(0)x(0)|0� sinωt

The matrix elements can be calculated by the techniques in Problem 14. You find that
�0|x(0)x(0)|0� = h̄/2mω and �0|p(0)x(0)|0� = 0. Therefore C(t) = (h̄/2mω) cosωt.

17. Write |α� = a|0�+ b|1�, with a, b real and a2 + b2 = 1. Using Problem 14,

�α|x|α� = a2�0|x|0�+ ab�0|x|1�+ ab�1|x|0�+ b2�1|x|1� = 2ab

�
h̄

2mω

The maximum is obtained when a = b = 1/
√
2 so �x� =

�
h̄/2mω.

The state vector in the Schrödinger picture is |α, t� = e−iHt/h̄|α� = 1√
2

�
e−iωt/2|0�+ e−3ωt/2|1�

�

and the expectation value �α, t|x|α, t�, again using Problem 14, is

�x� =
1

2
e−iωt

�0|x|1�+
1

2
eiωt�1|x|0� =

1

2

�
h̄

2mω
(e−iωt + eiωt) =

�
h̄

2mω
cosωt

In the Heisenberg picture, use x(t) from (2.3.45a), and again Problem 14. In this case, we
note that �0|p|1� = �1|p|0� = 0, so we read off �x� =

�
h̄/2mω cosωt.

To evaluate �(∆x)2� = �x2� − �x�2, we just need to calculate �x2�. Use the state vector in
the Schrödinger picture, and read off matrix elements of x2 from Problem 14, to get

�x2
� =

1

2
�0|x2

|0�+
1

2
e−iωt

�0|x2
|1�+

1

2
eiωt�1|x2

|0�+
1

2
�1|x2

|1� =
1

2

h̄

2mω
[1 + 3] =

h̄

mω

so �(∆x)2� = (h̄/mω)(1− 1

2
cos2 ωt).

18. Somehow, it seems this problem should be worked by considering �0|x2n|0�, but I don’t
see it. So, instead, work the left and right sides separately. For the right side, from Problem
14, exp[−k2�0|x2|0�/2] = exp[−k2h̄/4mω]. For the left side, use position space to write

�0|eikx|0� =

�
dx�

�0|eikx|x�
��x�

|0� =

�
dx�eikx

�
|�x|0�|2 =

�
mω

πh̄

�
dx�eikx

�
e−mωx

�2
/h̄

Put x� = u
�
h̄/mω and write −u2+ iku

�
h̄/mω = −(u− ik

�
h̄/mω/2)2− h̄k2/4mω. Then,

putting w = u− ik
�
h̄/mω/2, we have

�0|eikx|0� =

�
mω

πh̄

�
h̄

mω
e−h̄k

2
/4mω

�
dwe−w

2
=

1
√
π
e−h̄k

2
/4mω

√
π = e−h̄k

2
/4mω

and the two sides are indeed equal.
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19. It will be useful to note that, from (2.3.21), (a†)n|0� =
√
n!|n�. So

a
�
eλa

†
|0�

�
= a

� ∞�

n=0

λn

n!
(a†)n|0�

�
= a

� ∞�

n=0

λn

√
n!
|n�

�
=

∞�

n=1

λn

√
n!
a|n�

=
∞�

n=1

λn

�
(n− 1)!

|n− 1� = λ
∞�

m=0

λm

√
m!

|m� = λ
�
eλa

†
|0�

�

so eλa
†
|0� is an eigenvector of a with eigenvalue λ. For the normalization, we need the inner

produce of eλa
†
|0� with itself. However, �0|eλ

∗
aeλa

†
|0� = �0|eλ

∗
λ|0� = e|λ|

2
since eλa

†
|0� is an

eigenvector of a with eigenvalue λ. Thus |λ� = e−|λ|2/2eλa
†
|0� is the normalized eigenvector.

Now we have a|λ� = λ|λ� and �λ|a† = �λ|λ∗, so �λ|(a† ± a)|λ� = λ∗ ± λ; �λ|(a)2|λ� = λ2;
�λ|(a†)2|λ� = (λ∗)2; �λ|a†a|λ� = λ∗λ; and �λ|aa†|λ� = �λ|(1 + a†a)|λ� = 1 + λ∗λ. Therefore

�x� = �λ|x|λ� =

�
h̄

2mω
(λ∗ + λ)

�x2
� =

h̄

2mω

�
λ2 + (λ∗)2 + λ∗λ+ (1 + λ∗λ)

�

(∆x)2 = �x2
� − �x�2 =

h̄

2mω

�p� = �λ|p|λ� = i

�
mh̄ω

2
(λ∗

− λ)

�p2� = −
mh̄ω

2

�
λ2 + (λ∗)2 − λ∗λ− (1 + λ∗λ)

�

(∆p)2 = �p2� − �p�2 =
mh̄ω

2

so ∆x∆p = h̄/2 and the minimum uncertainty relation is indeed satisfied. Now, from above,

|λ� = e−|λ|2/2
∞�

n=0

λn

√
n!
|n� =

∞�

n=0

f(n)|n� so |f(n)|2 = e−|λ|2 |λ|
2n

n!

which is a Poisson distribution Pn(µ) = e−µµn/n! with mean µ ≡ |λ|2. Note that the mean
value of n is not the same as the most probable value, which is an integer, although they
approach the same value for large µ, when the Poisson distribution approaches a Gaussian.
However, Pn(µ)/Pn−1(µ) = µ/n > 1 only if n < µ, so the most probable value of n is the
largest integer nm less than |λ2|, and the energy is (nm + 1)h̄ω. To evaluate e−ip�/h̄|0� =

e�
√

mω/2h̄(a†−a)
|0�, use eA+B = eAeBe−[A,B]/2 where A and B each commute with [A,B]. (See

Gottfried, 1966, page 262; Gottfried, 2003, problem 2.13; or R. J. Glauber, Phys. Rev.
84(1951)399, equation 39.) With λ ≡ �

�
mω/2h̄, we then easily prove the last part, as

e−ip�/h̄
|0� = e�

√
mω/2h̄a†e−�

√
mω/2h̄ae−�

2
mω/4h̄

|0� = e−m�
2
ω/4h̄e�

√
mω/2h̄a†

|0� = e−λ
2
/2eλa

†
|0�
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20. Note the entry in the errata; J2 is not yet defined at this point in the text. The solution
is straightforward. We have [a±, a

†
±] = 1 and [a±, a

†
∓] = 0 = [a†±, a

†
∓] = [a±, a∓]. Then

[Jz, J+] =
h̄2

2

�
a†+a+a

†
+a− − a†+a−a

†
+a+ − a†−a−a

†
+a− + a†+a−a

†
−a−

�

=
h̄2

2

�
a†+a+a

†
+a− − a†+a−(a+a

†
+ − 1)− a†−a−a

†
+a− + a†+a−a

†
−a−

�

=
h̄2

2

�
a†+a− − a†−a−a

†
+a− + a†+a−a

†
−a−

�
=

h̄2

2
a†+

�
a− − a†−a−a− + a−a

†
−a−

�

=
h̄2

2
a†+

�
a− − a†−a−a− + (1 + a†−a−)a−

�
= h̄2a†+a− = +h̄J+

and similarly for [Jz, J−]. Put N± = a†±a± so Jz = (h̄/2)(N+−N−) with [N+, N−] = 0. From
(3.5.24), J2 = J+J−+J2

z
− h̄Jz, so J+J− = h̄2a†+a−a

†
−a+ = h̄2N+(1+a†−a−) = h̄2N+(1+N−),

so J
2 = h̄

2

4
(N2

+
+2N+N−+N2

−+2N++2N−) =
h̄
2

4
(N2+2N) = h̄

2

2
N

�
N

2
+ 1

�
. Finally, noting

that we can write both J
2 and Jz in terms ofN±, which commute, we clearly have [J2, Jz] = 0.

21. Starting with (2.5.17a), namely g(x, t) = exp(−t2+2tx), carry out the suggested integral

� ∞

−∞
g(x, t)g(x, s)e−x

2
dx = =

� ∞

−∞
e2st−(t+s)2+2x(t+s)−x

2
dx

= e2st
� ∞

−∞
e−[x−(t+s)]2dx = π1/2e2st

i.e.
∞�

n=0

∞�

m=0

�� ∞

−∞
Hn(x)Hm(x)e

−x
2
dx

�
1

(n!)2
tnsm = π1/2

∞�

n=0

2n

n!
tnsn

The sum on the right only includes terms where t and s have the same power, so the
normalization integral on the left must be zero if n �= m. When n = m this gives

�� ∞

−∞
Hn(x)Hn(x)e

−x
2
dx

�
1

(n!)2
= π1/2

2n

n!

or

� ∞

−∞
H2

n
(x)e−x

2
dx = π1/22nn!

which is (2.5.29). In order to normalize the wave function (2.5.28), we compute

� ∞

−∞
u∗
n
(x)un(x)dx = |cn|

2

� ∞

−∞
H2

n

�
x

�
mω

h̄

�
e−mωx

2
/h̄dx = |cn|

2

�
h̄

mω
π1/22nn! = 1

so that cn = (mω/πh̄)1/4(2nn!)−1/2, taking cn to be real. Compare to (B.4.3).
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22. This is a harmonic oscillator with ω =
�
k/m for x > 0, with �x|n� = 0 at x = 0, that

is, solutions with odd n. So, the ground state has energy 3h̄ω/2. The wave function is given
by (B.4.3), times

√
2 for normalization, that is u(x) = 2(mω/πh̄)1/4e−mωx

2
/2h̄x

�
mω/h̄, for

x > 0, and u(x) = 0 for x < 0. We than calculate the expectation value

�x2
� =

4mω

h̄

�
mω

πh̄

� ∞

0

x4e−mωx
2
/h̄dx =

4mω

h̄

�
mω

πh̄

3

8

�
h̄

mω

�2
�

πh̄

mω
=

3

2

h̄

mω

23. From (B.2.4), un(x) = �x|n� =
�

2/L sin(nπx/L) and En = n2π2h̄2/2mL2, so

ψ(x, t) = �x|α, t� = �x|e−iHt/h̄
|α, 0� =

�

n

�x|e−iHt/h̄
|n��n|α, 0� =

�

n

cne
−iEnt/h̄un(x)

where cn ≡ �n|α, 0�. Now, I take a hint from the previous solutions manual, that “known
to be exactly at x = L/2 with certainty” and “You need not worry about normalizations”
mean that �x|α, 0� ≡ ψ(x, 0) = δ(x− L/2), so cn =

�
L

0
ψ(x, 0)un(x)dx =

�
2/L sin(nπ/2). I

don’t like this; it seems that ψ(x, 0) =
�
δ(x− L/2) is a better choice, but how well defined

is “known with certainty”? Anyway, cn = 0 if n is even, and cn =
�
2/L(−1)(n−1)/2 if n is

odd, and |cn|2 = 0 or |cn|2 = 2/L, i.e. independent of n, for n odd. Then, insert in above.

24. Write the energy eigenvalue as −E < 0 for a bound state, so the Schrödinger Equation
is (−h̄2/2m)d2u/dx2 − ν0δ(x)u(x) = −Eu(x). Thus u(x) = A exp(−x

√
2mE/h̄) for x > 0,

and u(x) = A exp(+x
√
2mE/h̄) for x < 0, and du/dx = ∓(

√
2mE/h̄)u(x). Now integrate

the Schrödiner Equation from −ε to +ε, and then take ε → 0. You end up with

lim
ε→0

�
−

h̄2

2m

√
2mE

h̄
[−u(ε)− u(−ε)]

�
− ν0u(0) =

h̄2

m

√
2mE

h̄
u(0)− ν0u(0) = 0

which gives E = mν2

0
/2h̄2. This is unique, so there is only the ground state.

25. For this problem, I just reproduce the solution from the manual for the revised edition.
(Note that “problem 22” means “problem 24” here.) See the errata for some comments.



Copyright, Pearson Education. 27

26. With V (x) = λx, λ > 0 and −∞ < x < ∞, the eigenvalues E are continuous. The
wave function is oscillatory for x < a and decaying for x > a, where a ≡ E/λ is the classical
turning point. Indeed, the wave function is proportional to the Airy function Ai(z) where
z ∝ (x − a). See Figure 2.3. On the other hand, for V (x) = λ|x|, there are now quantized
bound states. This parity-symmetric potential has even and odd wave functions. The even
wave functions have Ai�(z) = 0 at x = 0, and the odd wave functions have Ai(z) = 0 at
x = 0. These conditions lead to quantized energies through (2.5.34) and (2.5.35). As shown
in Figure 2.4, the odd energy levels have been confirmed by “bouncing neutrons.”

27. Note: This was Problem 36 in Chapter Five in the Revised Edition. It was moved to this
chapter because “density of states” is explicitly worked out now in this chapter. It seems,
though, that I should have reworded the problem a bit. See the errata.

Refer back to the discussion in Section 2.5. The wave function is

uE(x) =
1

L
eik·x where kx =

2π

L
nx and ky =

2π

L
ny

and nx and ny are integers, with p = h̄k. The energy is

E =
p
2

2m
=

h̄2

2m
(k2

x
+ k2

y
) =

2π2h̄2

mL2
(n2

x
+ n2

y
) =

2π2h̄2

mL2
n
2

so dE =
4π2h̄2

mL2
ndn

The number of states with |n| between n and n+ dn, and φ and φ+ dφ, is

dN = ndndφ = m

�
L

2πh̄

�2

dEdφ

so the density of states is just m(L/2πh̄)2. Remarkably, this result is independent of energy.

28. We want to solve (2.5.1) in cylindrical coordinates, that is find u(ρ,φ, z) where

1

ρ

∂

∂ρ

�
ρ
∂u

∂ρ

�
+

1

ρ2
∂2u

∂φ2
+

∂2u

∂z2
= −

2meE

h̄2
u ≡ −k2u

subject to u(ρa,φ, z) = u(ρb,φ, z) = u(ρ,φ, 0) = u(ρ,φ, L) = 0. For u(ρ,φ, z) = w(ρ, z)Φ(φ),

1

w

�
ρ
∂

∂ρ

�
ρ
∂w

∂ρ

�
+ ρ2

∂2w

∂z2

�
+ ρ2k2 +

1

Φ

d2Φ

dφ2
= 0

The first two terms are independent of φ, and the third term is independent of ρ and z, so they
both must equal some constant but with opposite sign. Write (1/Φ)∂2Φ/∂φ2 = −m2, giving
Φ(φ) = e±imφ with m an integer so that Φ(φ+ 2π) = Φ(φ). Now with w(ρ, z) = R(ρ)Z(z),

ρ

R

∂

∂ρ

�
ρ
∂R

∂ρ

�
+

ρ2

Z

∂2Z

∂z2
+ ρ2k2 = m2 so

1

ρR

∂

∂ρ

�
ρ
∂R

∂ρ

�
−

m2

ρ2
+ k2 +

1

Z

∂2Z

∂z2
= 0
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and similarly put (1/Z)∂2Z/∂z2 = −α2 so that Z(α) = e±iαz. Enforcing Z(0) = 0 = Z(L)
leads to Z(z) = sinα�z where α� = �π/L and � = 1, 2, 3 . . .. The ρ equation is therefore

1

ρ

d

dρ

�
ρ
dR

dρ

�
+

�
k2

− α2

�
−

m2

ρ2

�
R = 0

Now define κ2 ≡ k2 − α2

�
and x ≡ κρ. Multiply through by x2 and this becomes

x2
d2R

dx2
+ x

dR

dx
+ (x2

−m2)R = 0

i.e., Bessel’s equation, with solution R(ρ) = AmJm(κρ) + BmNm(κρ), where Jm(x) and
Nm(x) are Bessel functions of the first and second kind, respectively. The cylinder wall
boundary conditions tell us that for each m we must have AmJm(κρa) + BmNm(κρa) = 0
and AmJm(κρb) + BmNm(κρb) = 0. Set the determinant to zero, and so we would solve

Jm(κρa)Nm(κρb)− Jm(κρb)Nm(κρa)

for κ. Denote with kmn the nth solution for κ for a given m. Then

E =
h̄2

2me

k2 =
h̄2

2me

[κ2 + α2

�
] or E�mn =

h̄2

2me

�
k2

mn
+

�
�π

L

�2
�

In the presence of a magnetic field, the Hamiltonian becomes (2.7.20), with φ = 0. We
recover the problem already solved, essentially, using the gauge transformation (2.7.36), but
we need to multiply the wave function by the phase factor exp[ieΛ(x)/h̄c] as in (2.7.55). In
this case, A = ∇Λ = φ̂(1/ρ)∂Λ/∂φ is given by (2.7.62), so Λ(x) = Bρ2

a
φ/2 ≡ h̄cgφ/e, and

1

Φ

d2Φ

dφ2
−→ e−igφ

1

Φ

d2

dφ2

�
eigφΦ

�
=

1

Φ

d2Φ

dφ2
+

2ig

Φ

dΦ

dφ
− g2 = −m2

∓ 2gm− g2 = −(m± g)2

for Φ(φ) = e±imφ. Consequently, the solution is the same, but with (integer) m replaced by
γ ≡ m± g. (The solutions to Bessel’s equation are perfectly valid for non-integral indices.)
The ground state is � = 1 and n = 1, so E0 = (h̄2/2me)(k01 + π2/L2) for B = 0, and
E0 = (h̄2/2me)(kγ1 + π2/L2) for B �= 0. For these to be equal, m± g = 0 for integer m, so

g ≡
e

h̄c

Bρ2
a

2
= ±m or B × πρ2

a
= ±2π

h̄c

e
m = ±

hc

e
m

which is the “flux quantization” condition.

The history of flux quantization is quite fascinating. The original discovery can be found in
B. S. Deaver and W. M. Fairbank, “Experimental Evidence for Quantized Flux in Supercon-
ducting Cylinders”, Phys. Rev. Lett. 7(1961)43. The flux quantum worked out to be hc/2e,
but it was later appreciated that the charge carriers were Cooper pairs of electrons. See also
articles by Deaver and others in “Near Zero: new frontiers of physics”, by Fairbank, J. D.;
Deaver, B. S., Jr.; Everitt, C. W. F.; Michelson, P. F.. Freeman, 1988.
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29. The hardest part of this problem is to identify the Hamilton-Jacobi Equation. See
Chapter 10 in Goldstein, Poole, and Safko. With one spacial dimension, this equation is
H(x, ∂S/∂x, t) + ∂S/∂t = 0 to be solved for S(x, t), called Hamilton’s Principle Function.
So, Hψ = −(h̄2/2m)∂2ψ/∂t2ψ + V (x)ψ = ih̄∂ψ/∂t with ψ(x, t) = exp[iS(x, t)/h̄] becomes

−
h̄2

2m

�
i

h̄

∂2S

∂x2
+

�
i

h̄

∂S

∂x

�2
�
ψ + V (x)ψ = −

∂S

∂t
ψ

If h̄ is “small” then the second term in square brackets dominates. Dividing out ψ then leaves
us with the Hamilton-Jacobi Equation. Putting V (x) = 0 and trying S(x, t) = X(x) + T (t),
find (X ��)2 /2m = −T � = α (a constant). Thus T (t) = a − αt and X(x) = ±

√
2mαx + b,

where a and b are constants that can be discarded when forming ψ(x, t) = exp[i(X + T )/h̄].
Hence ψ(x, t) = exp[i(±

√
2mαx − αt)/h̄], a plane wave. This exact solution comes about

because S is linear in x, so ∂2S/∂x2 = 0 and the first term in the Schrödinger Equation,
above, is manifestly zero.

30. You could argue this should be in Chapter 3, but what you need to know about
the hydrogen atom is so basic, it would surely be covered in an undergraduate quantum
physics class. (See, for example, Appendix B.5.) The wave function for the atom looks like
ψ(r, θ,φ) = Rnl(r)Y m

l
(θ,φ) = ClmRnl(r)Pm

l
(cos θ)eimφ where Clm, Rnl(r), and Pm

l
(cos θ) are

all real. Since ∇ = r̂∂/∂r + θ̂(1/r)∂/∂θ + φ̂(1/r sin θ)∂/∂φ, we have from (2.4.16)

j =
h̄

me

Im [ψ�∇ψ] = φ̂
mh̄

mer sin θ
|ψ|2

so j = 0 if m = 0, and is in the positive (negative) φ direction if m is positive (negative).

31. Write ibp� − iap�
2
= −ia(p�

2
− bp�/a + b2/4a2) + ib2/4a = −ia(p� − b/2a)2 + ib2/4a,

translate p� in the integral, and use
�∞
−∞ e−cx

2
dx =

�
π/c. Then

K(x��, t; x�, t0) =
1

2πh̄

� ∞

−∞
dp� exp

�
ip(x�� − x�)

h̄
−

ip�2(t− t0)

2mh̄

�

=
1

2πh̄

�
2πh̄m

i(t− t0)
exp

�
i
m(x�� − x�)2

2h̄(t− t0)

�
=

�
m

2πh̄i(t− t0)
exp

�
i
m(x�� − x�)2

2h̄(t− t0)

�

To generalize to three dimensions, just realize that the length along the x-axis is invariant
under rotations. Therefore, we have

K(x��, t;x�, t0) =

�
m

2πh̄i(t− t0)
exp

�
i
m(x�� − x

�)2

2h̄(t− t0)

�
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32. From (2.6.22), Z =
�

a� exp [−βEa� ], so, defining E0 to be the ground state energy,

lim
β→∞

�
−

1

Z

∂Z

∂β

�
= lim

β→∞

��
a� Ea� exp [−βEa� ]�

a� exp [−βEa� ]

�
= lim

β→∞

��
a� Ea� exp [−β(Ea� − E0)]�

a� exp [−β(Ea� − E0)]

�
= E0

where we multiply top and bottom by exp(βE0) in the penultimate step. The limit is easy
to take because for all terms in which Ea� �= E0, the exponent is negative as β → ∞ and the
term vanishes. For the term Ea� = E0, the numerator is E0 and the denominator is unity.

To “illustrate this for a particle in a one-dimensional box” is trivial. Just replace Ea� with
En = h̄2π2n2/2mL2 for n = 1, 2, 3 . . . (B.2.4) and the work above carries through. The
old solution manual has a peculiar approach, though, replacing the sum by an integral,
presumably valid as β → ∞, but I don’t really get the point.

33. Recall that, in the treatment (2.6.26) for the propagator, position (or momentum) bras
and kets are taken to be in the Heisenberg picture. So, one should recall the discussion on
pages 86–88, regarding the time dependence of base kets. In particular, |a�, t�H = U †(t)|a��,
that is, base kets are time dependent and evolve “backwards” relative to state kets in the
Schrödinger picture. So, for a free particle with H = p

2/2m, we have

�p
��, t|p�, t0� = �p

��
|e−iHt/h̄eiHt0/h̄|p

�
� = exp

�
−
i

h̄

p
�2

2m
(t− t0)

�
δ(3) (p��

− p
�)

The solution in the old manual confuses me.

34. The classical action is S(ta, tb) =
�

tb

ta
dt

�
1

2
mẋ2 −

1

2
mω2x2

�
. Approximating this for the

time interval ∆t ≡ tb − ta, defining ∆x ≡ xb − xa, and writing xa + xb = 2xb −∆x, we have

S(ta, tb) ≈ ∆t

�
1

2
m

�
∆x

∆t

�2

−
1

2
mω2

�
xb −

∆x

2

�2
�
≈

1

2
m

�
∆x

∆t

�
∆x−

1

2
mω2x2

b
∆t

keeping only lowest order terms. Combine this with (2.6.46) (and sum over all paths) to get
the Feynman propagator. Now the problem says to show this is the same as (2.6.26), but
(2.6.18) is the solution for the harmonic oscillator. Taking this limit for ∆t → 0, one gets

K(xb, tb; xa, ta) =

�
m

2πih̄∆t
exp

��
im

2h̄∆t

��
(x2

b
+ x2

a
)

�
1−

ω2∆t2

2

�
− 2xaxb

��

=

�
m

2πih̄∆t
exp

�
i

h̄

�
1

2
m
(∆x)2

∆t
−

1

2
mω2(x2

a
+ x2

b
)∆t

��

Taking the limit ∆x → 0 clearly gives the same expression as inserting our classical action,
above, into (2.6.46).

I’m not sure I understand the point of this problem.
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35. The “Schwinger action principle” does not seem to be treated in modern references, and
also not in (this version of) this textbook. So, I just reprint here San Fu Tuan’s old solution.
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36. Wave mechanically, the phase difference comes about because, approximating the neu-
tron by a plane wave, the factor exp[−i(ωt − px/h̄)] (where x is the direction AC or BD
in Figure 2.9) is different because p (and v = p/mn) will depend on the height. That is,
p2
BD

/2mn = p2
AC

/2mn −mngz where z = l2 sin δ. The accumulated phase difference is

φBD − φAC =

�
pBD − pAC

h̄
− ω

�
1

vBD

−
1

vAC

��
l1 =

pBD − pAC

h̄

�
1 +

h̄ω

mnvBDvAC

�
l1

The experiment in Figure 2.10 was performed with λ = 1.445Å neutrons. (The book has
λ = 1.42Å?) So p = h/λ = 2πh̄c/cλ = 2π(200 × 106 × 10−5 eV − Å)/cλ = 8.7 keV/c and
E = h̄ω = p2/2mn = 4.05×10−2 eV, whereasmngh = (mnc2)gh/c2 ≈ 10−9 eV for h = 10 cm.
Thus the change in momentum is very small and h̄ω/mnvBDvAC = mnE/p2 = 1/2. Therefore

φBD − φAC =
pBD − pAC

h̄

3

2
l1 ≈

p2
BD

− p2
AC

2h̄p

3

2
l1 = −

2m2

n
gz

2h̄p

3

2
l1 = −

3

2

m2

n
g(λ/2π)l1z

h̄2

This differs from (2.7.17) by the factor 3/2, which comes from the ωt contribution to the
phase. San Fu Tuan’s solution starts with the same expression as I do, but ignores the ωt
term when calculating the phase. My thought is that this is in fact a more complicated
problem than meets the eye, and I need to think about it more.

37. Since A = A(x), write pi = (h̄/i)∂/∂xi and work in position space. Then

[Πi,Πj]ψ(x) =

�
h̄

i

∂

∂xi

−
eAi

c
,
h̄

i

∂

∂xj

−
eAj

c

�
ψ(x) = −

h̄

i

e

c

��
∂

∂xi

, Aj

�
−

�
Ai,

∂

∂xj

��
ψ(x)

= −
h̄

i

e

c

�
∂Aj

∂xi

−
∂Ai

∂xj

�
ψ(x) =

ih̄e

c
εijk (∇×A)

k
ψ(x) =

ih̄e

c
εijkBkψ(x)

m
d2xi

dt2
=

dΠi

dt
=

1

ih̄
[Πi, H] =

1

ih̄

�
Πi,

1

2m
Π

2 + eφ

�
=

1

2imh̄

�

j

�
Πi,Π

2

j

�
+

1

ih̄
[pi, eφ]

Now from Problem 1.29(a), (1/ih̄)[pi, eφ] = −e∂φ/∂xi = eEi. Also [Πi,Π2

j
] = [Πi,Πj]Πj +

Πj[Πi,Πj] so (1/2imh̄)[Πi,Π2

j
] = (e/2mc)(εijkBkpj + pjεijkBk). This amounts to

m
d2x

dt2
= eE+

e

2mc
[−B× p+ p×B] = e

�
E+

1

2c

�
dx

dt
×B−B×

x

dt

��

As for showing that (2.7.30) follows from (2.7.29) with j defined as in (2.7.31), just follow
the same steps used to prove (2.4.15) with the definition (2.4.16). That is, multiply the
Schrödinger equation by ψ∗, and then multiply its complex conjugate by ψ, and subtract
the two equations. You just need to use some extra care when writing out (2.7.29) to make
sure the A(x�) is appropriately differentiated. Indeed, the Schrödinger equation becomes

−
h̄2

2m
∇�2ψ +

ih̄e

mc
A ·∇�ψ +

ih̄e

2mc
(∇�

·A)ψ +
e2

2mc2
A

2ψ + eφψ = ih̄
∂ψ

∂t

The remainder of the proof is simple from here.
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38. The vector potential A = −
1

2
Byx̂ + 1

2
Bxŷ gives B = Bẑ in a gauge where ∇ ·A = 0.

Reading the Hamiltonian from the previous problem solution, we are led to an interaction

ih̄e

mc
A·∇+

e2

2mc2
A

2 = −
e

mc

�
−
1

2
Byx̂+

1

2
Bxŷ

�
·p+

e2B2

8mc2
(x2+y2) =

eB

2mc
Lz+

e2B2

8mc2
(x2+y2)

where L ≡ r × p. The first term is just µ · B for µ ≡ (e/2mc)L, the magnetic moment of
an orbiting electron. The second term gives rise to the quadratic Zeeman effect. See pages
328–330 and Problems 5.18 and 5.19 in the textbook.

39. See the solution to Prob.37. We find [Πx,Πy] = (ih̄e/c)Bz = ih̄eB/c or [Y,Πy] = ih̄ for
Y ≡ cΠx/eB. As in the solution to Prob.38, Az = 0. So, as in Prob.37, the Hamiltonian is

H =
Π2

x

2m
+

Π2

y

2m
+

p2
z

2m
=

p2
z

2m
+

Π2

y

2m
+

1

2
m
e2B2

m2c2
Y 2

The second two terms constitute the one dimensional harmonic oscillator Hamiltonian, by
virtue of the commutation relation [Y,Πy] = ih̄, with ω replaced by eB/mc.

40. One requires that the phase change µBT/h̄ be 2π after traversing a field B of length
l = vT . The speed v = p/m = h/λm. Since µ = gn(eh̄/2mc), we have

µBT

h̄
= gn

eh̄

2mc

B

h̄

lmλ

h
= 2π or B =

4πhc

egnlλ

See also (3.2.25). San Fu Tuan’s solution is much more complicated. I may be misunder-
standing something.
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Chapter Three

1. Note: The original solution manual does not answer this problem correctly.The eigenvalues
λ satisfy λ2 − i(−i) = λ2 − 1 = 0, i.e. λ = ±1, as they must be, since Sy

.
= (h̄/2)σy has

eigenvalues ±h̄/2. The eigenvectors are well known by now, namely

|Sy; +�
.
=

1
√
2

�
1
i

�
and |Sy;−�

.
=

1
√
2

�
1

−i

�
so, for |ψ�

.
=

�
α
β

�

where |α|2+ |β|2 = 1, the probability of finding Sy = +h̄/2 is |�Sy; +|ψ�|2 = |(α−iβ)/
√
2|2 =

(1 + Im(α∗β))/2. Clearly this gives the right answer for |ψ� = |Sy;±�. It might have been
more interesting, though, to ask for the expectation value of Sy, namely

�ψ|Sy|ψ� =
h̄

2

�
α∗ β∗ � � 0 −i

i 0

� �
α
β

�
= i

h̄

2
(β∗α− α∗β) =

h̄

2
Im(α∗β)

2. Since S
.
= (h̄/2)σ, the matrix representation of the Hamiltonian is

H
.
= µ

�
−Bz −Bx + iBy

−Bx − iBy Bz

�

Therefore, the characteristic equation for the eigenvalues λ is

(−µBz − λ)(µBz − λ)− µ2(−Bx − iBy)(−Bx + iBy) = −µ2(B2

z
+B2

x
+B2

y
) + λ2 = 0

so the eigenvalues are λ = ±µB where B2 = B2

x
+B2

y
+B2

z
. Of course.

3. We have U = A(A†)−1 where A ≡ a0 + iσ · a and AA† = a2
0
+ (σ · a)2 = a2

0
+ a

2 ≡ α2,
using (3.2.41). So UU † = A(A†)−1A−1A† = A(AA†)−1A† = A(1/α2)A† = α2/α2 = 1 and U
is unitary. Now det U = det A/det A†, so writing these out as

A =

�
a0 + ia3 ia1 + a2
ia1 − a2 a0 − ia3

�
and A† =

�
a0 − ia3 −ia1 − a2
−ia1 + a2 a0 + ia3

�

we see that det A = α2 = det A†, so det U = α2/α2 = 1 and U is unimodular.

See (3.3.7) and (3.3.10). We want to find expressions for the complex numbers a and b in
terms of our real parameters a0, a1, a2, and a3. To do this, write

U = AAA−1(A†)−1 = A2(A†A)−1 =
1

α2
A2 =

1

α2

�
a0 − a

2 + 2ia0a3 2a0a2 + 2ia0a1
−2a0a2 + 2ia0a1 a0 − a

2 − 2ia0a3

�

so cos(φ/2) = Re(a) = (a0 − a
2)/α2 which gives sin(φ/2) =

�
1− cos2(φ/2) = 2a0|a|/α2,

and nx = −Im(b)/ sin(φ/2) = −a1/|a|; ny = −Re(b)/ sin(φ/2) = −a2/|a|; and
nz = −Im(a)/ sin(φ/2) = −a3/|a|.
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4. In principle, this could be solved by diagonalizing the Hamiltonian for A �= 0 and
eB/mc �= 0, and then taking limits. However, the problem is not posed that way, so work it
the way we are led. Write the “spin function” as |+−�. Then for A = 0, eB/mc �= 0,

H|+−� =
eB

mc

�
S(e−)

z
− S(e+)

z

�
|+−� =

eB

mc

�
h̄

2
−

�
−
h̄

2

��
|+−� =

eBh̄

mc
|+−�

and this is an eigenstate, with eigenvalue eBh̄/mc. For A �= 0, B = 0, see (3.8.19) to write

H = AS(e−) · S(e+)
|+−� = A

�
S(e−)

z
S(e+)

z
+

1

2
S(e−)

+ S(e+)

− +
1

2
S(e−)

− S(e+)

+

�
|+−�

= A

�
h̄

2

��
−
h̄

2

�
|+−�+ 0 + A

1

2
h̄h̄|−+� = A

h̄2

4
[−|+−�+ 2|−+�]

using (3.5.39) and (3.5.40). So, | + −� is not an eigenvector. In this case, the expectation
value is �+− |H|+−� = −Ah̄2/4.

5. The answer is zero in both cases. For Sz(Sz + h̄I)(Sz − h̄I) = Sz(S2

z
− h̄2I), use the

basis states | ± 1�, |0� with quantization in the z-direction. Then (S2

z
− h̄2I)| ± 1� = 0 and

Sz|0� = 0 and any expectation value works out to be zero. The case is the same for Sx.

6. Start with dK/dt = (i/h̄)[H,K] = (i/2h̄)[K2

1
/I1 + K2

2
/I2 + K2

3
/I3, K1x̂ + K2ŷ + K3ẑ]

and first consider dK1/dt = (i/2h̄)[K2

2
/I2 +K2

3
/I3, K1]. Before we make use of the relation

[A2, B] = A2B − BA2 = A2B − ABA + ABA − BA2 = A[A,B] + [A,B]A, realize that for
a system in which the axes rotate, [K1, K2] = −ih̄K3. (Other than the brief mention of
“active” versus “passive” rotations on page 158, I don’t think this is discussed in the book.
I see this point in San Fu Tuan’s original solution manual.) Therefore

dK1

dt
=

i

2h̄

�
1

I2
(ih̄K2K3 + ih̄K3K2)−

1

I3
(ih̄K3K2 + ih̄K2K3)

�

=
1

2

�
K2K3

�
1

I3
−

1

I2

�
+K3K2

�
1

I3
−

1

I2

��
=

I2 − I3
2I2I3

{K2, K3}

and similarly for the other components. In the “correspondence limit”, the operators are
just observed variables, so KiKj = KjKi and, for example,

dK1

dt
=

I2 − I3
I2I3

K2K3 = (I2 − I3)ω2ω3

which is, in fact, the Euler equation (for K1) for rotational motion.
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7. For this problem, I just reprint San Fu Tuan’s solution from the manual for the previous
edition. I don’t understand it, however. It refers, for example, to Gi, i = 1, 2, 3, but the
problem only refers to G2 and G3. Indeed, comparison with (3.3.19) and (3.1.15) & (3.1.16)
argues that G2 = −Jy/h̄ and G3 = −Jz/h̄. Either it is trivial, or I misunderstand the point.

8. A� are unrotated operators while U−1AkU are operators under rotation. So, U−1AkU =�
�
Rk�A� is the connecting equation between unrotated operators and operators obtained af-

ter rotation. The operators after rotation are just combinations of unrotated operators. From
U−1AkU = A�

k
=

�
�
Rk�A� we obtain for matrix elements �m|A�

k
|n� =

�
�
Rk��m|A�|n�. But

this is the same as the vector transformation V �
k
=

�
�
Rk�V�, hence �m|A�|n� transforms like

a vector. (I just copied this from the old solutions manual.)

9. This problem amounts to equating (3.3.21) and (3.2.45), using θ for φ. So,

�
cos

�
θ

2

�
− inz sin

�
θ

2

�
(−inx − ny) sin

�
θ

2

�

(−inx + ny) sin
�
θ

2

�
cos

�
θ

2

�
+ inz sin

�
θ

2

�
�
=

�
e−i(α+γ)/2 cos

�
β

2

�
−e−i(α−γ)/2 sin

�
β

2

�

ei(α−γ)/2 sin
�
β

2

�
ei(α+γ)/2 cos

�
β

2

�
�

This could be used to determine n̂ as well as θ, but the problem only asks for the angle. So,
equate the traces of these two matrices.

2 cos

�
θ

2

�
=

�
e−i(α+γ)/2 + ei(α+γ)/2

�
cos

�
β

2

�
= 2 cos

�
α + γ

2

�
cos

�
β

2

�

θ = 2 cos−1

�
cos

�
α + γ

2

�
cos

�
β

2

��
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10. A pure ensemble consists of spin-1/2 systems, all in the same state. We have seen
the general expression for a spin-1/2 state many times. For example, see Problem 1.11 or
(3.2.52). In the latter case, we have, making use of (1.3.38) and (1.4.19),

|α� = cos

�
β

2

�
|+�+ eiα sin

�
β

2

�
|−� so,

�Sz� =
h̄

2

�
cos2

�
β

2

�
− sin2

�
β

2

��
=

h̄

2
cos β

�Sx� =
h̄

2
(eiα + e−iα) cos

�
β

2

�
sin

�
β

2

�
=

h̄

2
cosα sin β

�Sy� =
h̄

2i
(−eiα + e−iα) cos

�
β

2

�
sin

�
β

2

�
= −

h̄

2
sinα sin β

Note that 0 ≤ β ≤ π and 0 ≤ α ≤ 2π, so β is determined directly from �Sz�, and
(h̄/2) cosα = ±

�
�Sx�

2/[(h̄/2)2 − �Sz�
2]. The sign ambiguity is between α and π − α, both

of which have the same value of sinα, and hence is resolved by measuring �Sy�.

For a mixed ensemble, use (3.4.10), i.e [A] = Tr(ρA) with A = Sx, Sy, Sz, and 1. Let

ρ =

�
a b
c d

�
and use S = h̄

2
σ to find

Tr(ρSx) =
h̄

2
Tr

��
a b
c d

� �
0 1
1 0

��
=

h̄

2
(b+ c) = [Sx]

Tr(ρSy) =
h̄

2
Tr

��
a b
c d

� �
0 −i
i 0

��
=

ih̄

2
(b− c) = [Sy]

Tr(ρSz) =
h̄

2
Tr

��
a b
c d

� �
1 0
0 1

��
=

h̄

2
(a− d) = [Sz]

Tr(ρ) =
h̄

2
Tr

��
a b
c d

��
= (a+ d) = 1

These are easily solved for the elements of the density matrix. One finds

a =
1

2

�
1 +

2

h̄
[Sz]

�

b =
1

h̄
([Sx]− i[Sy])

b =
1

h̄
([Sx] + i[Sy])

d =
1

2

�
1−

2

h̄
[Sz]

�
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11. Start with the definition (3.4.27) of the density operator, and use (2.1.5). Then

ρ(t) =
�

i

wi|α
(i), t��α(i), t| =

�

i

wi U(t, t0)|α
(i), t0��α

(i), t0|U
†(t, t0)

= U(t, t0)

�
�

i

wi|α
(i), t0��α

(i), t0|

�
U

†(t, t0) = U(t, t0)ρ0U
†(t, t0)

A pure ensemble is one for which ρ2 = 1. Therefore

ρ2(t) = U(t, t0)ρ0U
†(t, t0)U(t, t0)ρ0U

†(t, t0) = U(t, t0)ρ
2

0
U

†(t, t0) = U(t, t0)U
†(t, t0) = 1

This of course makes perfect sense. If all the particles are in the same state, then whatever
I do to one of them, I do identically to them all, and result is still a pure ensemble.

12. Since there are three basis states, the density matrix is 3 × 3. See (3.4.9). It is also
Hermitian, and has zero trace. The most general form is therefore




a x y
x∗ b z
y∗ z∗ 1− a− b





where a and b are real. That is, two real numbers and three complex numbers, in other
words eight real numbers. In addition to the [Si], we would also use various combinations
[SiSj], for example [S2

x
], [S2

y
], [SxSy], [SxSz], [SySz]. (Recall that [S2] = 2h̄2 for an ensemble

of spin-1 particles.) We can interpret [S] as the average spin vector of the ensemble, and the
other five as elements of the quadrupole tensor.

13. The rotated state is Dy(ε)|jj� = exp(−iJyε/h̄)|jj�, so with Jy = (J+ − J−)/2i, get

�jj|Dy(ε)|jj� = �jj|

�
1−

iJyε

h̄
−

J2

y
ε2

2h̄2
+ · · ·

�
|jj� = 1−

ε2

8h̄2
�jj|J+J−|jj�

= 1−
ε2

8h̄2

��
2jh̄

���
2jh̄

�
= 1−

ε2j

4

so the probability is |�jj|Dy(ε)|jj�|2 = 1− ε2j/2. You can instead consider all of the states,
to order ε, which can mix into the rotates states. This is clearly just the state |j, j − 1�. So,
from above, this amplitude is �j, j−1|(−iJyε/h̄)|jj� = (ε/2h̄)�j, j−1|J−|jj� = ε

√
2j/2, and

the probability to be in all states other than |jj� is ε2j/2.
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14. It is easy enough to prove the commutation relations using the algebras of δij and εijk:

[Gi, Gj]ln = (GiGj −GjGi)ln = (Gi)lm(Gj)mn − (Gj)lm(Gi)mn

= −h̄2(εilmεjmn − εjlmεimn) = h̄2(εilmεjnm − εjlmεinm)

= h̄2(δijδln − δinδlj − δijδln + δjnδil) = h̄2(δjnδil − δinδlj)

= h̄2εijkεlnk = h̄2εijkεkln = ih̄εijk(−ih̄εkln) = ih̄εijk(Gk)ln

As for the rest of the problem, the intent is not clear to me, and I do not find the old
solutions manual enlightening. However, I think the point is more or less the following.
Since we can write a vector cross product, as (A × B)i = εijkAjBk, write the infinitesimal
rotation Vi → Vi+(n̂δφ×V)i as Vi+ δφεikjnkVj = (δij − δφεijknk)Vj which leads to a spin-
one representation of the rotation operator as 1− δφ εijknk = 1− iδφ(Gi)jknk/h̄. However,
the Gi are not representations of the Ji in a basis where any of them are diagonal. (All of
the Gi are antisymmetric.) The eigenvectors which diagonalize, for example, G3 are r0 = ẑ

and r± = x̂± iŷ. Thus, it appears that there are generators for circular polarization states.

I would welcome feedback on this problem and the solution.

15. First, J+J− = (Jx+ iJy)(Jx− iJy) = J2

x
+J2

y
− i[Jx, Jy] = J2

x
+J2

y
+ h̄Jz = J

2−J2

z
+ h̄Jz.

Why the second part is written as a wave function, I don’t know, but famous or otherwise,

|c−|
2 = (�j,m|J†

−)(J−|j.m�) = �j,m|J+J−|j.m� = �j,m|(J2
− J2

z
+ h̄Jz)|j.m�

= j(j + 1)h̄2
−m2h̄2 +mh̄2 = [j2 −m2 + j +m]h̄2 = [(j +m)(j −m+ 1)]h̄2

and, by convention, we choose c− = h̄
�

(j +m)(j −m+ 1).

16. These proofs are straightforward. Just work with separate components. For example

[Lz,p
2] = [xpy − ypx, p

2

x
+ p2

y
+ p2

z
] = [xpy, p

2

x
]− [ypx, p

2

y
]

=

�
ih̄

∂

∂px
p2
x

�
py −

�
ih̄

∂

∂py
p2
y

�
px

= 2ih̄[px, py] = 0

where I have made use of problem 1.29, although it is easy enough just to write it out. It
works similarly for Lx and Ly. The commutator with x

2 is done the same way, that is

[Lz,x
2] = [xpy − ypx, x

2 + y2 + z2] = [xpy, y
2]− [ypx, x

2]

= x

�
−ih̄

∂

∂y
y2
�
− y

�
−ih̄

∂

∂x
x2

�

= −2ih̄[x, y] = 0
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17. The key here is to write ψ(x) in terms of spherical harmonics. Using (B.5.7), we have

ψ(x) = r[cosφ sin θ + sinφ sin θ + 3 cos θ]f(r)

=

�
8π

3

�
Y 1

1
(θ,φ) + Y −1

1
(θ,φ)

2
+

Y 1

1
(θ,φ)− Y −1

1
(θ,φ)

2i
+

3
√
2
Y 0

1
(θ,φ)

�
rf(r)

So, yes, this is an eigenstate of L2 with l = 1. It is a mixture of m = ±1, 0 states, with
probabilities (1/2) ÷ (1 + 9/2) = 1/11, (9/2) ÷ (1 + 9/2) = 9/11 respectively. Given ψ(x)
and the energy eigenvalue E, you can find the potential V (r) from the Schrödinger equation
easily enough. Write ψ(x) = F1(θ,φ)rf(r) where F1(θ,φ) is a linear combination of Y m

1
(θ,φ).

Then, substitute this into (3.7.7) with l = 1 and REl(r) = rf(r) and solve for V (r).

18. We are looking for expectation values of Lx = (L+ + L−)/2 and Ly = (L+ − L−)/2i in
eigenstates |lm�. Since L±|lm� ∝ |l,m± 1�, it is obvious that �Lx� = 0 = �Ly�. Now

L2

x
=

1

4
(L2

+
+ L+L− + L−L+ + L2

−) and L2

y
= −

1

4
(L2

+
− L+L− − L−L+ + L2

−)

so �L2

x
� = �L+L−+L−L+�/4 = �L2−L2

z
�/2− [l(l+1)−m2]h̄2/2 = �L2

y
� using (3.6.14). This

is fine, semiclassically. The x- and y-components of L are as much positive as negative, and
�L2� = �L2

x
�+ �L2

y
�+ �L2

z
� = �L2

x
�+ �L2

y
�+m2h̄2 with (∆Lx)2 = �L2

x
� − �Lx�

2 = (∆Ly)2.

19. From (3.6.13), we take L± = −ih̄e±iφ(±i∂/∂θ− cot θ∂/∂φ) as an operator in coordinate

space. The prescription (3.6.34) gives Y 1/2

1/2
(θ,φ) = ceiφ/2

√
sin θ which works. That is

L+Y
1/2

1/2
(θ,φ) = −ih̄eiφiceiφ/2

1

2

cos θ
√
sin θ

+ ih̄eiφ
cos θ

sin θ
c
i

2
ceiφ/2

√
sin θ = 0

From (3.5.40) we would expect L−Y
1/2

1/2
(θφ) =

�
(1)(1)Y −1/2

1/2
(θ,φ) = Y −1/2

1/2
(θ,φ), so try it:

Y −1/2

1/2
(θ,φ) = −ih̄e−iφ(−i)ceiφ/2

1

2

cos θ
√
sin θ

+ ih̄e−iφ
cos θ

sin θ
c
i

2
ceiφ/2

√
sin θ = −ch̄e−iφ/2

cos θ
√
sin θ

So far, so good, but now check that we have L−Y
−1/2

1/2
(θ,φ) = 0:

L−Y
−1/2

1/2
(θ,φ) = ich̄2e−iφ

�
−i

�
−

sin θ
√
sin θ

−
1

2

cos2 θ
√

sin3 θ

�
e−iφ/2

−
cos θ

sin θ

�
−
i

2

�
e−iφ/2

√
sin θ

�

= ch̄2e−3iφ/2
1

2
√

sin3 θ

�
cos θ sin θ − 2 sin2 θ − cos2 θ

�
�= 0

for all θ. (Just examine θ = π/2, for example.) So, there is an internal inconsistency for
half-integer l spherical harmonics.
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20. The rotated state is D(R)|l = 2,m = 0� = D(α = 0, β, γ = 0)|20� and the probability is
|�2m|D(R)|20�|2, for m = 0,±1,±2. We use (3.6.52) and (B.5.7). Then

D(R)|l = 2,m = 0� =
�

m�

|2,m�
��2,m�

|D(R)|l = 2,m = 0�

=
�

m�

|2,m�
�D

(2)

m�,0(α = 0, β, γ = 0) =
�

m�

|2,m�
�

�
4π

5
Y m

�∗

2
(β, 0)

|�2m|D(R)|20�|2 =
4π

5

��Y m
∗

2
(β, 0)

��2

and, therefore, |�20|D(R)|20�|2 = 1

4
(3 cos2 β − 1)2, |�2,±1|D(R)|20�|2 = 3

2
sin2 β cos2 β, and

|�2,±2|D(R)|20�|2 = 3

8
sin4 β. We can do a reality check with

�

m

|�2m|D(R)|20�|2 =
1

4
(3 cos2 β − 1)2 + 3 sin2 β cos2 β +

3

4
sin4 β

just by using sin2 β = 1− cos2 β and expanding. The algebra is simple.

21. We need to determine the quantities �n|qlm�. We only care about states degenerate in
energy, which is simple to see by inserting H and operating both left and right. If energies
are different, the inner product has to be zero. (Same old proof of orthogonality of states
for hermitian operators.) For degenerate energies, we get the equation

nx + ny + nz = 2q + l ≡ N

Below, we won’t distinguish between the operator N and the value N . Also, to avoid
confusion, we will always write inner products with the spherical state on the right and the
cartesian state on the left.

First, work out the form of the angular momentum operator in terms of creation and anni-
hilation operators.

Li = �ijkxjpk

= i�ijk
h̄

2
(aj + a†

j
)(−ak + a†

k
)

= ih̄�ijkaja
†
k

(1)

Summation of repeated indices is implied. Write this out explicitly for Lz, so

Lz = xpy − ypx

= i
h̄

2

�
(ax + a†

x
)(−ay + a†

y
)− (ay + a†

y
)(−ax + a†

x
)
�

= ih̄
�
axa

†
y
− a†

x
ay
�
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Sandwich the left and right sides of this equation with the spherical and cartesian states,
that is

�nxnynz|Lz|qlm� = mh̄�nxnynz|qlm�

and �nxnynz|Lz|qlm� = ih̄�nxnynz|
�
axa

†
y
− a†

x
ay
�
|qlm�

which leads us to the equation

m�nxnynz|qlm� = i
�
(nx + 1)ny�nx + 1, ny − 1, nz|qlm�

− i
�
nx(ny + 1)�nx − 1, ny + 1, nz|qlm� (2)

This is enough to decompose the first excited state, with N = 1, that has threefold degen-
eracy. We have

m�100|01m� = −i�010|01m�

m�010|01m� = +i�100|01m�

m�001|01m� = 0

Therefore, since
|qlm� =

�

nxnynz

|nxnynz��nxnynz|qlm�

we can write

|011� =
1
√
2
|100�+

i
√
2
|010�

|010� = |001�

|01,−1� =
1
√
2
|100� −

i
√
2
|010�

We can check that these are correct by considering the angular dependence in coordinate
space, and remembering that for Hermite polynomials H1(w) = 2w. Thus, these three
equations say, in turn,

Y 1

1
(θ,φ) ∝ x+ iy = reiφ sin θ

Y 0

1
(θ,φ) ∝ z = r cos θ

Y −1

1
(θ,φ) ∝ x− iy = re−iφ sin θ

which are indeed correct.

For the second excited state, we need to find coefficients to find the five states |02m� plus
the one state |200� in terms of the six states |nxnynz� = |200�, |020�, |002�, |110�, |101�, and
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|011�. Consider first the state |qlm� = |200�. Equation (2) give us

0 = �110|200� (3a)

0 = �011|200� (3b)

0 = �101|200� (3c)

0 = �200|200� − �020|200� (3d)

but no information on the inner product �002|200�.

For more information we have to look for an equation using L
2. We will need to flip operator

order, so use �
ai, a

†
j

�
= aia

†
j
− a†

j
ai = δij

We will also need the “double epsilon” formula; see the derivation step in the second line of
(3.6.17). Put all this together with (1) to find

L
2 = L2

i
= (−h̄2)�ijkaja

†
k
�ilmala

†
m

= (−h̄2)
�
(δjlδkm − δjmδkl) aja

†
k
ala

†
m

�

= (−h̄2)
�
aja

†
k
aja

†
k
− aja

†
k
aka

†
j

�

= (−h̄2)
��

a†
k
aj + δjk

��
a†
k
aj + δjk

�
− aja

†
k

�
a†
j
ak + δjk

��

= (−h̄2)
�
a†
k
aja

†
k
aj + 2N + 3− aja

†
k
a†
j
ak − aja

†
j

�

= (−h̄2)
�
a†
k

�
a†
k
aj + δjk

�
aj + 2N + 3− aja

†
j
a†
k
ak − aja

†
j

�

= (−h̄2)
�
a†
k
a†
k
ajaj + 3N + 3− aja

†
j
(N + 1)

�

= (−h̄2)
�
a†
k
a†
k
ajaj + 3N + 3− (N + 3)(N + 1)

�

or L
2 = (h̄2)

�
N(N + 1)− a†

k
a†
k
ajaj

�
(4)

Don’t forget the implied summation of repeated indices.

Now (4) gives us information on the inner product �002|200�. We know that

�002|a†
k
a†
k
ajaj = �002|

�
a†
x
a†
x
+ a†

y
a†
y
+ a†

z
a†
z

�
(axax + ayay + azaz)

=
√
2�000| (axax + ayay + azaz)

= 2 (�200|+ �020|+ �002|) (5)

and so (4) gives us

0 = 6�002|200� − 2 (�200|200�+ �020|200�+ �002|200�)
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which combined with (3) tells us that

|200� =
1
√
3
|200�+

1
√
3
|020�+

1
√
3
|002�

Since H2(w) = 4w2 − 2, converting this to coordinate space combines all the angular depen-
dence into x2 + y2 + z2 = r2, that is, no dependence on θ or φ. Since the spherical harmonic
here is Y 0

0
(θ,φ), this is once again correct.

For second excited states |qlm� = |02m� we have

L
2 = 6h̄2 = N(N + 1)h̄2

so that application of (4) tells us that

0 = �nxnynz|
�
a†
x
a†
x
+ a†

y
a†
y
+ a†

z
a†
z

�
(axax + ayay + azaz) |02m�

This equation yields no information for the states �nxnynz| = �110|, �101|, and �011|. How-
ever for states �nxnynz| = �200|, �020|, and �002|, (5) gives the same result each time. So

0 = �200|02m�+ �020|02m�+ �002|02m� (6)

We need to go back to (2) for enough information to solve for these inner products. We have

m�110|02m� = i
√
2 (�200|02m� − �020|02m�) (7a)

m�101|02m� = −i�011|02m� (7b)

m�011|02m� = +i�101|02m� (7c)

m�200|02m� = −i
√
2�110|02m� (7d)

m�020|02m� = +i
√
2�110|02m� (7e)

m�002|02m� = 0 (7f)

Now we can consider the state |qlm� = |020�. We have

0 = �101|020� = �011|020� = �110|020�

0 = �200|020� − �020|020�

and 0 = �200|020�+ �020|020�+ �002|020�

which means that

|020� =
1
√
6
|200�+

1
√
6
|020� −

2
√
6
|002�

and the behavior in coordinate space has angular dependence

(4x2
− 2) + (4y2 − 2)− 2(4z2 − 2) = 4(sin2 θ − 2 cos2 θ) = 4(1− 3 cos2 θ)

which is proportional to Y 0

2
(θ,φ), once again, as it should be.
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Next, consider the state |qlm� = |022�. From (7) we have �020|022� = −�200|022� and
�110|022� = i

√
2�200|022�. We also find �002|022� = �101|022� = �011|022� = 0. Therefore

|022� =
1

√
10

|200� −
1

√
10

|020�+ i

�
2

10
|110�

which gives a (relatively normalized) angular dependence in coordinate space

1

2
√
2
(4x2

− 2)−
1

2
√
2
(4y2 − 2) + i

√
2

1
√
2
2x

1
√
2
2y

=
√
2
�
(x2

− y2) + 2ixy
�

=
√
2r2

�
(cos2 φ− sin2 φ) sin2 θ + 2i cosφ sinφ sin2 θ

�

=
√
2r2 [cos 2φ+ i sin 2φ] sin2 θ =

√
2r2e2iφ sin2 θ ∝ Y 2

2
(θ,φ)

Finally, consider the state |qlm� = |021�. From (6) and (7) we find that all inner products
are zero except for �011|021� = i�101|021�. Therefore

|021� =
1

2
√
2
|101�+

i

2
√
2
|011�

which has an angular dependence in coordinate space

xz + iyz = r2(cosφ+ i sinφ) sin θ cos θ = r2eiφ sin θ ∝ Y 1

2
(θ,φ)

that is, once again, the correct answer.

22. Note: See the correction discussed at the end of this solution. For convenience, here is
reproduced the generating function of the Laguerre polynomials:

g(x, t) ≡
e−xt/(1−t)

1− t
≡

∞�

n=0

Ln(x)
tn

n!

Therefore

g(0, t) =
1

1− t
=

∞�

n=0

tn =
∞�

n=0

Ln(0)
tn

n!

which shows that Ln(0) = n!. Also

g(x, t) =

�
1−

xt

1− t
+ · · ·

�
×

�
1 + t+ t2 + · · ·

�

which shows that the coefficient of t0 is just unity for all x, so L0(x) = 1. Now differentiate
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with respect to x and proceed

∂g

∂x
= −

t

1− t
g(x, t) =

∞�

n=0

L�
n
(x)

tn

n!

−

∞�

n=0

Ln(x)
tn+1

n!
=

∞�

n=0

L�
n
(x)

tn

n!
−

∞�

n=0

L�
n
(x)

tn+1

n!

−

∞�

m=1

Lm−1(x)m
tm

m!
=

∞�

n=0

L�
n
(x)

tn

n!
−

∞�

m=1

L�
m−1

(x)m
tm

m!

where we set m = n − 1 in two of the summations. Now, the n = 0 term in the first
summation on the right is just L�

0
(x) = 0 since L0(x) = 1 for all x. Therefore all summations

can be taken from n,m = 1. So, combining this expression and equating term by term gives

L�
n
(x) = nL�

n−1
(x)− nLn−1(x)

We now have what we need in order to calculate the Ln(x) for n ≥ 1. Proceeding

L�
1
(x) = L�

0
(x)− L0(x) = −1 so L1(x) = 1− x

L�
2
(x) = 2L�

1
(x)− 2L1(x) = −4 + 2x so L2(x) = 2− 4x+ x2

L�
3
(x) = 3L�

2
(x)− 3L2(x) = −18 + 18x− 3x2 so L3(x) = 6− 18x+ 9x2

− x3

Note that mathematicians frequently define the Ln(x) such that they are smaller by a factor
of n!. Now differentiate with respect to t to get ∂g/∂t both ways, i.e.

�
1

1− t
−

xt

(1− t)2
−

x

1− t

�
g(x, t) =

∞�

n=0

Ln(x)
ntn−1

n!

1− x− t

(1− t)2

∞�

n=0

Ln(x)
tn

n!
=

∞�

n=0

Ln(x)n
tn−1

n!
=

∞�

n=0

Ln+1(x)
tn

n!
∞�

n=0

Ln(x)
1

n!

�
(1− x)tn − tn+1

�
=

∞�

n=0

Ln+1(x)
1

n!

�
tn − 2tn+1 + tn+2

�

∞�

n=0

[(1− x)Ln(x)− nLn−1(x)]
tn

n!
=

∞�

n=0

[Ln+1(x)− 2nLn(x) + n(n− 1)Ln−1(x)]
tn

n!

where we note that the first two terms in the summation for the second and third terms on
the right are explicitly zero. So, equating term by term, the recursion relation becomes

Ln+1(x) = (2n+ 1− x)Ln(x)− n2Ln−1(x)

Now combine the recursion relations to get a differential equation for Ln(x). First, use the
two recursion relations to get different expressions for L�

n+1
(x), namely

L�
n+1

= (n+ 1)(L�
n
− Ln)

and L�
n+1

= (2n+ 1− x)L�
n
− Ln − n2L�

n−1
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Equate these two expressions and cancel common terms to find

−nLn = (n− x)L�
n
− n2L�

n−1
= n(L�

n
− nL�

n−1
)− xL�

n
= −n2Ln−1 − xL�

n

where we used the first recursion relation once again. Now we have a recursion relation that
just needs the function one order below, not two. Simplify, differentiate, and subtract to get

xL�
n

= nLn − n2Ln−1

xL��
n
+ L�

n
= nL�

n
− n2L�

n−1

xL��
n
+ (1− x)L�

n
= nL�

n
− nLn − n2(L�

n−1
− Ln−1) = nL�

n
− nLn − nL�

n
= −nLn

where the first recursion relation is once again used, in the second-to-last step. This is what
we are going for, namely a differential equation for Ln(x):

xL��
n
(x) + (1− x)L�

n
(x) + nLn(x) = 0

Contrary to what is said in the problem statement, this is not Kummer’s equation. Instead,
one needs to work with the “associated” Laguerre polynomials, which can be defined as

Lk

n
(x) = (−1)k

dk

dxk
[Ln+k(x)]

and which satisfy instead the equation

xLk
��

n
(x) + (k + 1− x)Lk

�

n
(x) + nLk

n
(x) = 0

This is easy enough to see, starting from the differential equation for Ln+k(x), namely

xL��
n+k

+ (1− x)L�
n+k

+ (n+ k)Ln+k = 0

and taking the derivative of the left side k times. The first term will give xdkL��
n+k

/dxk plus
k occurrences of dkL�

n+k
/dxk, which adds a k inside the parentheses in the second term. The

−x inside theses parentheses will remain for half of the k derivatives, and also contribute k
terms dkLn+k/dxk with alternating signs. These alternating signs exactly cancel the factor
of k in the third term, when the (−1)k is included in the definition of the associated Laguerre
polynomial, so the associated Laguerre equation is satisfied. (Work it out for a couple of
cases like k = 1 and k = 2 and watch this in action.) This is Kummer’s Equation (3.7.46)
with c = 2(l+1) = k+1, i.e. k = 2l+1, and a = l+1−ρ0/2 = −n, or n = ρ0/2− l−1 = N
as defined in (3.7.50).
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23. From (3.9.5) K+|n+, n−� = a†+a
†
−|n+, n−� =

�
(n+ + 1)(n− + 1)|n+ + 1, n− + 1� and

K−|n+, n−� = a+a−|n+, n−� =
√
n+n−|n+ − 1, n− − 1�. Therefore, from (3.9.17), j =

(n+ + n−)/2 increases (decreases) by one, and m = (n+ − n−)/2 is unchanged for K+ (K−).
Writing n+ = j +m and n− = j −m, we can write the action of K± on the state |jm� as

K+|jm� =
�

(j +m+ 1)(j −m+ 1)|j + 1,m� K−|jm� =
�

(j +m)(j −m)|j − 1,m�

In other words, K± act as raising or lowering operators for the total angular momentum
quantum number. Since 2j is interpreted as the number of spin-1/2 “particles”, they raise
or lower the number of these quanta by two. The nonvanishing matrix elements are just

�j�m�
|K+|jm� =

�
(j +m+ 1)(j −m+ 1)δj�,j+1δm�,m

and �j�m�
|K−|jm� =

�
(j +m)(j −m)δj�,j−1δm�,m

24. Our job is to express |j,m�, j = 0, 1, 2, in terms of |j1, j2;m1,m2� = |1, 1;m1,m2�, using
the notation “±, 0” for m1,2 = ±1, 0 with j1 = j2 = 1. Since m = m1 +m2, we must have
|j,m� = |2, 2� = |++� and |2,−2� = |−−�. From this, we can build the other j = 2 states.
Recall that J−|j,m� =

�
(j +m)(j −m+ 1)|j,m− 1� and J− = J1−+ J2−. Therefore, both

J−|2, 2� =
√
4|2, 1� = 2|2, 1� and J−|2, 2� = (J1− + J2−)|++� =

√
2(|0+�+ |+ 0�), so

|2, 1� =
1
√
2
(|0+�+ |+ 0�)

J−|2, 1� =
√
6|2, 0� =

1
√
2

�√
2|−+�+

√
2|00�+

√
2|00�+

√
2|+−�

�

|2, 0� =
1
√
6
(|−+�+ 2|00�+ |+−�)

J−|2, 0� =
√
6|2,−1� =

1
√
6

�√
2|− 0�+ 2

√
2|− 0�+ 2

√
2|0−�+

√
2|0−�

�

|2,−1� =
1
√
2
(|− 0�+ |0−�)

Also J−|2,−1� =
√
4|2,−2� =

1
√
2

�√
2|−−�+

√
2|−−�

�

which just confirms that |2,−2� = |−−�. For j = 1, write |1,±1� = a|0±�+ b| ± 0� with a
and b real, and a2+b2 = 1. Since �2,±1|1,±1� = 0, a+b = 0 so |1,±1� = 1√

2
(| ± 0� − |0±�).

Then, take J−|1, 1� =
√
2|1, 0� and J−|1, 1� =

1√
2

�√
2|+−�+

√
2|00� −

√
2|00� −

√
2|−+�

�

so that |1, 0� = 1√
2
(|+−� − |−+�). Finally, put |0, 0� = α|+−�+β|00�+γ|−+�, normalize,

and use �2, 0|0, 0� = 0 = �1, 0|0, 0�. Then α + 2β + γ = 0, α− γ = 0, and α2 + β2 + γ2 = 1.
Thus β = −(α + γ)/2 = −α = −1/

√
3 and so |0, 0� = 1√

3
(|+−� − |00�+ |−+�).

These results can be easily checked using a table of Clebsch-Gordan coefficients, for example
http://en.wikipedia.org/wiki/Table of ClebschGordan coefficients

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf
Perhaps the next edition of the book should include a version of this table.



Copyright, Pearson Education. 49

25. Do (a) straightforwardly with angular momentum algebra, making use of (3.2.7).

j�

m=−j

|d(j)
mm�(β)|2m =

j�

m=−j

�jm�
|eiJyβ/h̄|jm�m�jm|e−iJyβ/h̄|jm�

�

=
1

h̄

j�

m=−j

�jm�
|eiJyβ/h̄Jz|jm��jm|e−iJyβ/h̄|jm�

� =
1

h̄
�jm�

|eiJyβ/h̄Jze
−iJyβ/h̄|jm�

�

=
1

h̄
�jm�

|(Jz cos β + Jx sin β)|jm
�
� = m� cos β

From (3.5.52), d
( 1
2)

1
2 ,

1
2

(β) = cos
�
β

2

�
= d

( 1
2)

− 1
2 ,−

1
2

(β) and d
( 1
2)

1
2 ,−

1
2

(β) = − sin
�
β

2

�
= −d

( 1
2)

− 1
2 ,

1
2

(β). So,

j�

m=−j

|d(j)
mm�(β)|2m = cos2

�
β

2

��
1

2

�
+ sin2

�
β

2

��
−
1

2

�
= +

1

2
cos β for m� = +

1

2

= sin2

�
β

2

��
1

2

�
+ cos2

�
β

2

��
−
1

2

�
= −

1

2
cos β for m� = −

1

2

For part (b), we start out the same way

j�

m=−j

|d(j)
m�m(β)|

2m2 =
j�

m=−j

�jm�
|e−iJyβ/h̄|jm�m2

�jm|eiJyβ/h̄|jm�
� = �jm�

|e−iJyβ/h̄
J2

z

h̄2
eiJyβ/h̄|jm�

�

Rather than finding an analog for (3.2.7), we make use of the properties of tensor oper-
ators. [The original solution manual solves Part (a) this way.] First, e−iJyβ/h̄J2

z
eiJyβ/h̄ =

D†(R)J2

z
D(R) rotates J2

z
. (R is a rotation through −β about the y-axis.) As in (3.11.12),

J2

z
is the “zz” component of the Cartesian tensor JiJj. Following (3.11.13), we write

J2

z
=

1

3
J
2 +

�
J2

z
−

1

3
J
2

�
≡

1

3
J
2 + T (2)

0

decomposing J2

z
into a scalar and the q = 0 component of a rank 2 spherical tensor T (2)

q .
The scalar is unchanged by rotation, and from (3.11.22), the spherical tensor rotates as

D†(R)T (2)

q D(R) =
�

2

q�=−2
D

(2)

q�qT
(2)

q� . We need the expectation value in the state |jm��. From

(3.11.26), only T (2)

0
gives a nonzero result. Therefore, using (3.5.50), (3.5.51), and (3.6.53),

j�

m=−j

|d(j)
m�m(β)|

2m2 =
1

3
j(j + 1) +

1

h̄2
D

(2)

00
(β)�jm�

|

�
J2

z
−

1

3
J
2

�
|jm�

�

=
1

3
j(j + 1) + P2(cos β)

�
m�2

−
1

3
j(j + 1)

�

=
1

3
j(j + 1)

�
1 +

1

2
− 3 cos2 β

�
+

1

2
(3 cos2 β − 1)m�2

=
1

2
j(j + 1) sin2 β +m�2 1

2
(3 cos2 β − 1)
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26. Since Jy = (J+ − J−)/2i, just use (3.5.41) to find the matrix elements

�1m�
|Jy|1m� = −

h̄

2

��
(1−m)(2 +m)δm�,m+1 −

�
(1 +m)(2−m)δm�,m−1

�
i

Expressing this as a matrix gives (3.5.54). By multiplying this matrix by itself several times,
you can easily show that (Jy/h̄)3 = Jy/h̄. The rotation operator is therefore, for j = 1,

exp

�
−i

Jy
h̄
β

�
= 1− i

Jy
h̄
β −

�
Jy
h̄

�2 β2

2!
+ i

�
Jy
h̄

�3 β3

3!
+

�
Jy
h̄

�4 β4

4!
− i

�
Jy
h̄

�5 β5

5!
+ · · ·

= 1− i
Jy
h̄
β −

�
Jy
h̄

�2 β2

2!
+ i

Jy
h̄

β3

3!
+

�
Jy
h̄

�2 β4

4!
− i

Jy
h̄

β5

5!
+ · · ·

= 1− i
Jy
h̄

�
β −

β3

3!
+

β5

5!
+ · · ·

�
−

�
Jy
h̄

�2 �
1− 1 +

β2

2!
−

β4

4!
+ · · ·

�

= 1− i

�
Jy
h̄

�
sin β −

�
Jy
h̄

�2

(1− cos β)

Now d(1)
m�m(β) = �1m�| exp(−iJyβ/h̄)|1m�, so use the matrices (Jy/h̄) and (Jy/h̄)2 to write

d(1)
m�m(β) = 1− i




0 −

i√
2

0
i√
2

0 −
i√
2

0 i√
2

0



 sin β −




1

2
0 −

1

2

0 1 0
−

1

2
0 1

2



 (1− cos β)

=




cos2

�
β

2

�
−

sin(β)√
2

sin2
�
β

2

�

sin(β)√
2

cos(β) −
sin(β)√

2

sin2
�
β

2

�
sin(β)√

2
cos2

�
β

2

�





same as the problem, and (3.5.57), since 1− cos β = 2 sin2(β/2) and 1+ cos β = 2 cos2(β/2).

27. Just insert a complete set of states on both left and right. Then

�α2β2γ2|J
2

3
|α1β1γ1� =

�

j,j�

�α2β2γ2|jmn��jmn|J2

3
|j�m�n�

��j�m�n�
|α1β1γ1�

=
�

jmn

n2
D

j

mn
(α2β2γ2)D

j
∗

mn
(α1β1γ1)

I just copied this from the old manual, and the solution is attributed to Prof. Thomas Fulton
who passed away in April, 2011. It isn’t clear to me what is meant by the state |jmn�, so I
can’t be sure of the matrix element of J2

3
.
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28. If B makes no measurement, then his existence is irrelevant for this problem. The
probability that A measures sz = +h̄/2 (i.e. “spin up” in the z-direction) is 1/2. Her
probability to measure sx = +h̄/2 is also 1/2; one cannot distinguish x- and z-directions in
this case. Now, according to (3.8.15d), the state with total spin zero is given by

|00� =
1
√
2
[|+−� − |−+�]

So, if B measures sz = +h̄/2, then A measures sz = +h̄/2 (sz = −h̄/2) with zero (100%)
probability. That is, |�++ |−+�|2 = 0 and |�−+ |−+�|2 = 1. In, instead, she measures sx,
then the probability of measuring either sx = ±h̄/2 is 1/2. That is |�Sx;±,+| − +�|2 = 0.
The explicit state construction of |Sx;±� is given in (1.14.17a).

29. For a rotation V → V
� through β about the y-axis, we have V �

x
= Vx cos β + Vz sin β,

V �
y
= Vy, and V �

z
= −Vx sin β + Vz cos β. Therefore, V

(1)�

±1
= ∓(Vx cos β + Vz sin β ± iVy)/

√
2,

and V (1)�

0
= −Vx sin β + Vz cos β. Now doing

�
q� d

(1)

qq�(β)V
(1)

q� component by component,

�

q�

d(1)
+1,q�(β)V

(1)

q� = −
1

2
(1 + cos β)

Vx + iVy
√
2

−
1
√
2
sin βVz +

1

2
(1− cos β)

Vx + iVy
√
2

= −
Vx cos β + Vz sin β − iVy

√
2

�

q�

d(1)
0,q�(β)V

(1)

q� = −
1
√
2
sin β

Vx + iVy
√
2

+ cos βVz −
1
√
2
sin β

Vx − iVy
√
2

= −Vx sin β + Vz cos β
�

q�

d(1)−1,q�(β)V
(1)

q� = −
1

2
(1− cos β)

Vx + iVy
√
2

+
1
√
2
sin βVz +

1

2
(1 + cos β)

Vx − iVy
√
2

= +
Vx cos β + Vz sin β − iVy

√
2

and it all checks out.

30. Following (3.11.27) and forming U (1)

q and V (1)

q as in (3.11.16), write

T (k)

q
=

1�

q1=−1

1�

q2=−1

�11; q1q2|11; kq�U
(1)

q1
V (1)

q2

where U (1)

0
= Uz, U

(1)

±1
= ∓(Ux ± iUy)/

√
2, and similarly for V (1)

q . (We needn’t worry about
the overall normalization.) The Clebsch-Gordan coefficients �11; q1q2|11; kq� (which are, of
course, zero unless q1 + q2 = q) can be looked up, but also note that they were worked out
in Problem 24. At this point, both parts (a) and (b) of this problem are reduced to algebra.
For completeness, we work out this algebra below. It is a bit tedious, but there is some merit
in comparing the resulting forms with, for example, (3.11.13) and (3.11.26).
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T (1)

+1
= �11; 01|11; 11�U (1)

0
V (1)

+1
+ �11; 10|11; 11�U (1)

+1
V (1)

0

=
1
√
2

�
−U (1)

0
V (1)

+1
+ U (1)

+1
V (1)

0

�

=
1

2
[Uz(Vx + iVy)− (Ux + iUy)Vz] =

1

2
[UzVx − UxVz + i(UzVy − UyVz)]

T (1)

0
= �11;−1, 1|11; 10�U (1)

−1
V (1)

+1
+ �11; 00|11; 10�U (1)

0
V (1)

0
�11; 1,−1|11; 10�U (1)

+1
V (1)

−1

=
1
√
2

�
−U (1)

−1
V (1)

+1
+ U (1)

+1
V (1)

−1

�

=
1

2
√
2
[(Ux − iUy)(Vx + iVy)− (Ux + iUy)(Vx − iVy)] =

i
√
2
[UxVy − UyVx]

T (1)

−1
= �11;−1, 0|11; 1,−1�U (1)

−1
V (1)

0
+ �11; 0,−1|11; 1,−1�U (1)

0
V (1)

−1

=
1
√
2

�
−U (1)

−1
V (1)

0
+ U (1)

0
V (1)

−1

�

=
1

2
[−(Ux − iUy)Vz + Uz(Vx − iVy)] =

1

2
[UzVx − UxVz + i(UyVz − UzVy)]

T (2)

+2
= U (1)

+1
V (1)

+1
=

1

2
[(Ux + iUy)(Vx + iVy)] =

1

2
[UxVx − UyVy + i(UyVx + UxVy)]

T (2)

+1
= �11; 01|11; 21�U (1)

0
V (1)

+1
+ �11; 10|11; 21�U (1)

+1
V (1)

0

=
1
√
2

�
U (1)

0
V (1)

+1
+ U (1)

+1
V (1)

0

�

= −
1

2
[Uz(Vx + iVy) + (Ux + iUy)Vz]

T (2)

0
= �11;−1, 1|11; 20�U (1)

−1
V (1)

+1
+ �11; 00|11; 20�U (1)

0
V (1)

0
�11; 1,−1|11; 20�U (1)

+1
V (1)

−1

=
1
√
6

�
U (1)

−1
V (1)

+1
+ 2U (1)

0
V (1)

0
+ U (1)

+1
V (1)

−1

�

=
1

2
√
6
[−(Ux − iUy)(Vx + iVy) + 4UzVz − (Ux + iUy)(Vx − iVy)]

= −
1
√
6
[UxVx + UyVy + 2UzVz]

T (2)

−1
= �11;−1, 0|11; 2,−1�U (1)

−1
V (1)

0
+ �11; 0,−1|11; 2,−1�U (1)

0
V (1)

−1

=
1
√
2

�
U (1)

−1
V (1)

0
+ U (1)

0
V (1)

−1

�

=
1

2
[(Ux − iUy)Vz + Uz(Vx − iVy)] =

1

2
[UzVx + UxVz − i(UyVz + UzVy)]

T (2)

−2
= U (1)

−1
V (1)

−1
=

1

2
[(Ux − iUy)(Vx − iVy)] =

1

2
[UxVx − UyVy − i(UyVx + UxVy)]

I’d be lucky to have gotten through all of this without any mistakes! Please email me if you
find errors.
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31. In the language of spherical tensors, ∓(x ± iy)/
√
2 = T (1)

±1
and z = T (1)

0
. According to

the Wigner-Eckart Theorem, these three operators are related by

�n�l�m�
|T (1)

q
|nlm� = �l1;mq|l1; l�m�

�
�n�l�||T (1)||nl�

√
2l + 1

where all the dependence on m, m�, and q is contained in the Clebsch-Gordan Coefficient, so

�n�l�m�|T (1)

±1
|nlm�

�n�l�m�|T (1)

0
|nlm�

=
�l1;m,±1|l1; l�m��

�l1;m0|l1; l�m��

All three matrix elements are, of course, zero unless m� = m+ q and |l− 1| ≤ l� ≤ l+1. I’ve
looked around for symmetry relations among CG coefficients (not covered in the textbook)
that could simplify this expression, but nothing is apparent to me. (The old solution manual
offers some reduction based on parity, but this is not covered until Chapter Four.)

In wave mechanics, insert 1 =
�
d3x|x��x| and let the operators T (1)

q give spherical harmonics
according to (3.11.16). Defining r3

n�n;l�l ≡
�∞
0

r3drRn�l�(r)Rnl(r) then gives, using (3.8.73),

�n�l�m�
|T (1)

q
|nlm� = r3

n�n;l�l ×

�
4π

3

�
dΩY m

�∗
l� (θ,φ)Y m

l
(θ,φ)Y q

1
(θ,φ)

= r3
n�n;l�l ×

�
2l + 1

2l� + 1
�l1; 00|l1; l�0��l1;mq|l1; l�m�

�

The second CG coefficient is the same as in the Wigner-Eckart Theorem. The rest is absorbed
into the reduced matrix element.

32. Use Y m

2
(x) from (B.5.7) to construct the tensor. So Y 0

2
(x) =

�
5/16π(3z2 − r2)/r2,

Y ±1

2
(x) = ∓

�
15/8π(x±iy)z/r2, and Y ±2

2
(x) =

�
15/32π(x2−y2±2ixy)/r2. So we rearrange

these to find xy = i
�

2π/15
�
Y −2

2
(x)− Y 2

2
(x)

�
r2, xz =

�
2π/15

�
Y −1

2
(x)− Y 1

2
(x)

�
r2, and

x2 − y2 =
�

8π/15
�
Y −2

2
(x) + Y 2

2
(x)

�
r2. Now, using the Wigner-Eckart Theorem,

e�αjm�
|(x2

− y2)|αjj� = e

�
8π

15
�αjm�

|
�
Y −2

2
(x) + Y 2

2
(x)

�
r2|αjj�

= e

�
8π

15

�αj||Y (2)||αj�
√
2j + 1

[�j2; j,−2|j2; jm�
�+ �j2; j, 2|j2; jm�

�]

But �j2; j, 2|j2; jm�
� = 0 since m� = j + 2 is not possible

and Q = e

�
16π

5
�αjj|Y 0

2
(x)r2|αjj�

= e

�
16π

5

�αj||Y (2)||αj�
√
2j + 1

�j2; j, 0|j2; jj� so,

e�αjm�
|(x2

− y2)|αjj� =
Q
√
2

�j2; j,−2|j2; jm��

�j2; j, 0|j2; jj�
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33. The trick is to group terms in the Hamiltonian so that we can put ∇2φ = 0 while
replacing S2

x
and S2

y
with S2

±. First use S
2

± = (Sx± iSy)2 = S2

x
−S2

y
± i(SxSy +SySx) so that

S2

x
− S2

y
= (S2

+
+ S2

−)/2. Also S2

x
+ S2

y
= S

2 − S2

z
. So, solving for S2

x
and S2

y
, with s = 3/2,

Hint =
eQ

2s(s− 1)h̄2
×

��
∂2φ

∂x2

�

0

S2

+
+ S2

− + 2(S2 − S2

z
)

4
−

�
∂2φ

∂y2

�

0

S2

+
+ S2

− − 2(S2 − S2

z
)

4
+

�
∂2φ

∂z2

�

0

S2

z

�

=
2eQ

3h̄2
×

�
1

4

��
∂2φ

∂x2

�

0

+

�
∂2φ

∂y2

�

0

�
(2S2

− 2S2

z
− 4S2

z
) +

1

4

��
∂2φ

∂x2

�

0

−

�
∂2φ

∂y2

�

0

�
(S2

+
+ S2

−)

�

=
A

h̄2
(3S2

z
− S

2) +
B

h̄2
(S2

+
+ S2

−)

where A = −
eQ

3

��
∂
2
φ

∂x2

�

0

+
�

∂
2
φ

∂y2

�

0

�
and B = eQ

6

��
∂
2
φ

∂x2

�

0

−

�
∂
2
φ

∂y2

�

0

�
. (This differs from the

old manual, but I don’t see my error and I have trouble following their algebra.) Now,

(3S2

z
− S

2)|m� = h̄2(3m2
− 15/4)

and S2

±|m� = h̄2
�

(s∓m− 1)(s±m+ 2)(s∓m)(s±m+ 1)|m± 2�

so, labeling the basis states m = {+3/2,−1/2,−3/2,+1/2}, the Hamiltonian matrix is

Hint

.
=





3A 2B
√
3 0 0

2B
√
3 −3A 0 0

0 0 3A 2B
√
3

0 0 2B
√
3 −3A





which is block-diagonal 2× 2 with the identity matrix, so there is twofold degeneracy in all
eigenvalues. It is simple to diagonalize the 2× 2 matrix. One finds that the eigenvalues are
λ± = ±

√
9A2 + 12B2 and the (unnormalized) eigenvectors are

|λ±� = 2
√
3B

����±
3

2
,±

3

2

�
+ (λ± ± 3A)

����±
3

2
,∓

1

2

�

To be sure, I don’t quite understand the point of this problem, other than exercising some
of the basic matters in angular momentum theory. Perhaps I’m missing something.
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Chapter Four

1. (a) The Schrödinger equation, in coordinate space, is simple and has a separable solution:

Hψ(x1,x2,x3) =

�
−

h̄2

2m
∇2

1
−

h̄2

2m
∇2

2
−

h̄2

2m
∇2

2

�
ψ(x1,x2,x3) = Eψ(x1,x2,x3)

Putting ψ(x1,x2,x3) = u(1)(x1)u(2)(x2)u(3)(x3) and E = E(1)+E(2)+E(3) allows us to solve
separately −(h̄2/2m)∇2

i
u(i)(xi) = E(i)u(i)(xi), i = 1, 2, 3. The eigenvalues are well known,

namely E(i) = (h̄2π2/2mL2)
�

3

j=1

�
n(i)

j

�2

. Therefore E = (h̄2π2/2mL2)
�

3

i=1

�
3

j=1

�
n(i)

j

�2

.

For the lowest energy level, all nine of the n(i)

j
= 1, so E1 = 9(h̄2π2/2mL2) ≡ 9E0. For the

next level, one n is 2, so E2 = 12E0, and for the third level, two n’s are 2, so E3 = 15E0.

Each level has an eight-fold degeneracy, that is the spin states |±,±,±�. Level 1 has only
one spatial wave function, so its degeneracy is 9. Level 2 has nine spatial wave function
possibilities, since any of the nine n(i)

j
can be 2, so level 2 has degeneracy 9 × 8 = 72. For

level 3, any two of the n(i)

j
can be 2, and the number of ways to take nine things two at a

time is 9!/7!2! = 9 · 8/2 = 36, so the total degeracy is 36× 8 = 288.

(b) With four electrons there is a 16-fold spin degeneracy. Schrödinger’s Equation has
four terms, and the wave function is ψ(x1,x2,x3,x4) = u(1)(x1)u(2)(x2)u(3)(x3)u(4)(x4) and
E = E(1) + E(2) + E(3) + E(4). So, E1 = 12E0, E2 = 15E0, and E3 = 18E0. There is a
24 = 16 fold spin degeneracy. With twelve factors in the spatial wave function, the spatial
degeneracy is 12!/k!(12−k)! for the states with E = Ek+1. So, the degeneracy is 1×16 = 16
for level 1, 12× 16 = 192 for level 2, and 66× 16 = 1056 for level 3.

2. (a) See Sec.1.6. TdTd� = exp(−ip · d) exp(−ip · d�) = exp(−ip · d�) exp(−ip · d) = Td�Td

since all components of p commute. Therefore, Td and Td� commute. (b) See Sec.3.1.
Rotations do not commute with each other. This is what led us to commutation relations for
J. (c) Work in coordinate space. Using (4.2.5), we have Tdπ|x�� = Td|−x

�� = |−x
�+d� but

we also have πTd|x
�� = π|x�+d� = |−x

�−d�. In other words Td and π do not commute. (d)
A rotation operator D(R) = D(n̂,φ) that takes x� → x

�� also takes −x
� → −x

��. Therefore
D(R)π|x�� = |− x

��� = πD(R)|x��, and the operators commute.

3. Write |Ψ� = |a, b� where a and b are eigenvalues of the operators A and B, respectively.
Then (AB + BA)|a, b� = (ab + ba)|a, b� = 0 implies that ab = −ba = −ab. That is, either
a = 0 or b = 0. For A = π and B = p, which indeed anticommute, as is easily shown using
(4.2.10) and (4.2.7), we can conclude that only a p = 0 state can be a parity eigenstate.
(The parity operator can only have eigenvalues ±1.)
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4. This problem is a special case of the discussion on pages 508–509. Starting with (3.8.64),

Y
1/2,1/2

0
(θ,φ) =

�
Y 0

0
(θ,φ)
0

�
=

1
√
4π

�
1
0

�

(σ · x)Y1/2,1/2

0
=

1
√
4π

�
z x− iy

x+ iy −z

� �
1
0

�
=

r
√
4π

�
cos θ

eiφ sin θ

�
=

r
√
3

�
Y 0

1

−
√
2Y 1

1

�

using (B.5.7). Referring to (3.8.64), then, (σ · x)Y1/2,1/2

0
= −rY1/2,1/2

1
. That is, j and m

are unchanged, but l = 0 → 1. In terms of the operator T (0)

0
≡ S · x, this is not surprising.

Since T (0)

0
is a scalar under rotations, from (3.11.31) (the Wigner-Eckart Theorem), it can

only connect states with j� = j and m� = m. However, from (4.2.17), the operator connects
states of opposite parity. This is accomplished by changing l by one unit.

5. From first order perturbation theory (which is not reached until Chapter 5, but which we
will take as given here) the Cn�l�j�m� = �n�l�j�m�|V |nljm�/(Enlj − En�l�j�). The symmetry of

V is determined by T (0)

0
≡ S · p, which is a pseudoscalar, as discussed above in Problem 4.

Therefore, the matrix element needed for the Cn�l�j�m� is zero unless j� = j, m� = m, and
l� = l±1. From (3.7.14), the radial wave functions Rnl(r) go like rl, so, since V (x) ∝ δ(3)(x),
the matrix element will only be nonzero for states with l = 0. Consequently, this interaction
only connects S1/2 and P1/2 states.

6. First imagine that the barrier is infinitely high. Then, the lowest two energy levels are
the degenerate case of sinusoidal wave functions with λ = 2b in either the a ≤ x ≤ a + b or
−a − b ≤ x ≤ −a regions. Now invoke parity. With a finite barrier, we take the odd and
even linear combinations, tied together with exponential wave functions inside the barrier.
So, consider the solution only for x ≥ 0. Put u(x) = A sin[k(x − a − b)] for a ≤ x ≤ a + b,
with h̄2k2/2m = E. This form satisfies u(a + b) = 0 and is valid for either the symmetric
(“s”) or antisymmetric (“a”) solution. Put us(x) = B cosh(κx) and ua(x) = B sinh(κx) for
0 ≤ x ≤ a, with h̄2κ2/2m = V0 − E. Matching u(x) and u�(x) at x = a gives

As sin ksb+Bs coshκsa = 0
ksAs cos ksb− κsB sinhκsa = 0

and
Aa sin kab+Ba sinhκaa = 0

kaAa cos kab− κaBa coshκaa = 0

Next set the determinants to zero. Since E � V0, write κs = κa =
√
2mV0/h̄ ≡ κ. Therefore,

(1/ks) tan ksb = −(1/κ) cothκa and (1/ka) tan kab = −(1/κ) tanhκa. Now, since we expect
λ to be only slightly larger than 2b, put λ = (1+ �)2b or kb = 2πb/λ = π/(1+ �) ≈ π(1− �).
Thus, tan kb = sin kb/ cos kb = kb− π. The quantization conditions then become

ksb− π

ks
= −

1

κ
cothκa and

kab− π

ka
= −

1

κ
tanhκa

which are easily solved for the energy levels E = h̄2k2/2m. The splitting is

∆E ≡ Ea − Es =
h̄2π2κ2

2m

�
1

(κb+ tanhκa)2
−

1

(κb+ cothκa)2

�

Further simplification is possible if the barrier is “narrow”, i.e. κa � 1.
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7. (a) ψp(x, t) = ei(p·x−Et)/h̄ so ψ∗
p(x,−t) = e−i(p·x+Et)/h̄ = ei(−p·x−Et)/h̄ = ψ−p(x, t)

(b) Equation (3.2.52) constructs χ+(n̂) =

�
e−iγ/2 cos(β/2)
eiγ/2 sin(β/2)

�
. Following that example,

χ−(n̂) =

�
cos γ

2
− i sin γ

2
0

0 cos γ

2
+ i sin γ

2

� �
cos β

2
− sin β

2

sin β

2
cos β

2

� �
0
1

�
=

�
−e−iγ/2 sin β

2

eiγ/2 cos β

2

�

So, − iσ2χ
∗
+
(n̂) =

�
0 −1
1 0

� �
eiγ/2 cos β

2

e−iγ/2 sin β

2

�
=

�
−e−iγ/2 sin β

2

eiγ/2 cos β

2

�
= χ−(n̂)

See the discussion surrounding (4.4.66).

8. The statement in (a) is just Theorem 4.2, proven in the text. As it says just following
this proof, on page 295, the theorem would appear to be violated by the plane wave eip·x/h̄

except that this state is degenerate with e−ip·x/h̄, so violates the assumptions of the theorem.

9. This problem is also, essentially, worked in the text. See (4.4.61). We have

�p
�
|Θ|α� = �p

�
|Θ

�
d3p��|p��

��p
��
|α� = �p

�
|

�
d3p��|− p

��
��p

��
|α�∗

= �p
�
|

�
d3p��|p��

��−p
��
|α�∗ =

�
d3p���p�

|p
��
��−p

��
|α�∗ = �−p

�
|α�∗ = φ∗(−p

�)

We used the antiunitary property (4.4.13b) of Θ.

10. See the rewritten version of this problem in the Errata. (By the way, the idiosyncrasies
connected with Problems 8 and 9 are that they are in fact solved in the text.)

(a) Equation (4.4.53) just says that Θ anticommutes with all components of J. There-
fore JzΘ|jm� = Jz[Θ|jm�] = −ΘJz|jm� = (−m)[Θ|jm�], so Θ|jm� ∝ |j,−m�. Similarly,
J±[Θ|jm�] = −c±(j,m)[Θ|j,m±1�], and in a convention such as (3.5.39) and (3.5.40) where
the c±(j,m) are real and non-negative for all j and m, Θ|jm� ∝ (−1)m|j,−m� in order for
the sign to change when m is changed by one. Thus Θ|jm� = eiδ(−1)m|j,−m� where δ is
real, in order to maintain norm.

(b) Using the infinitesimal form (3.1.15) for D(n̂, dφ) = 1− i(J · n̂/h̄)dφ, we have

ΘD(R)Θ−1 = Θ

�
1− i

J · n̂

h̄
dφ

�
Θ−1 = 1 + i

ΘJΘ−1 · n̂

h̄
dφ = 1− i

J · n̂

h̄
dφ = D(R)

So, ΘD(R)|jm� = ΘD(R)Θ−1Θ|jm� = D(R)Θ|jm�.
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(c) The trick here is to write �j,−m�|DΘ|j,m� two different ways, and then equate them.

�j,−m�
|DΘ|j,m� = eiδ(−1)m�j,−m�

|D|j,−m� = eiδ(−1)mD(j)

−m�,−m

and = �j,−m�
|ΘD|j,m� = �j,−m�

|Θ
�

m��

|j,m��
��j,m��

D|j,m�

=
�

m��

D
(j)∗
m��,m�j,−m�

|Θ|j,m��
�

=
�

m��

D
(j)∗
m��,me

iδ(−1)m
��
δ−m�,−m�� = D

(j)∗
m�,me

iδ(−1)m
�

so D
(j)∗
m�,m = (−1)m−m

�
D

(j)

−m�,−m

for any value of δ. So (d), the properties of rotations are satisfied and, so long as we
stick with the “real and non-negative” phase convention for J±, we can set δ = 0 and take
Θ|jm� = (−1)m|j,−m� = i2m|j,−m�.

11. Time reversal invariance means ΘHΘ−1 = H, or ΘH = HΘ. So for a state |E� with
H|E� = E|E�, we have H[Θ|E�] = E[Θ|E�] which says that if |E� is an energy eigenstate,
then so is |Ẽ� ≡ Θ|E�. Since there is no degeneracy, |Ẽ� = eiδ|E� for a real phase δ. Now

�E|L|E� = �Ẽ|ΘLΘ−1
|Ẽ� = −�Ẽ|L|Ẽ� = −e−iδ

�E|L|E�eiδ = −�E|L|E�

and so �E|L|E� = 0, where the first step makes use of (4.4.36). Then, writing the wave
function for an eigenstate as ψE(x) ≡ �x|E� =

�
lm

Flm(r)Y m

l
(θ,φ), the time reversed wave

function is ψ̃(x) = �x|Ẽ� = eiδ�x|E� = eiδψE(x), but also, from (4.4.56), ψ̃E(x) = ψ∗
E
(x) =�

lm
F ∗
lm
(r) (Y m

l
(θ,φ))∗ =

�
lm

F ∗
lm
(r)(−1)−mY −m

l
(θ,φ) =

�
lm

F ∗
l,−m

(r)(−1)mY m

l
(θ,φ) so,

finally, Flm(r) = (−1)me−iδF ∗
l,−m

(r).

12. It is easy to build the matrix representation of H using Sz and S± = Sx ± iSy. Find

Sx =
h̄
√
2




0 1 0
1 0 1
0 1 0



 Sy =
h̄
√
2




0 −i 0
i 0 −i
0 i 0



 Sz = h̄




1 0 0
0 0 0
0 0 −1



 H = h̄2




A 0 B
0 0 0
B 0 A





so energy eigenvalues E = h̄2(A ± B) and 0 with eigenvectors |E±� ≡ [|1, 1� ± |1,−1�]/
√
2

and |E0� ≡ |1, 0�. Now for a spin component Si, have ΘS2

i
Θ−1 = ΘSiΘ−1ΘSiΘ−1 =

(−Si)(−Si) = S2

i
, and A and B are real, so H is time reversal invariant. From (4.4.78),

Θ|E±� =
1
√
2

�
(−1)1|1, 1�± (−1)−1

|1,−1�
�
= −|E±� and Θ|E0� = (−1)0|E0� = |E0�
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Chapter Five

1. The first order correction is proportional to �0|x|� = 0. The second order correction is

∆E0 =
�∞

k=1
|V0k|

2/(E(0)

0
−E(0)

k
) = −b2

�∞
k=1

|�k|x|0�|2/(kh̄ω). From (2.3.25a), or using the
equation given, albeit written in a strange notation, you find �k|x|0� =

�
h̄/2mωδk1. Hence

∆E0 = (−b2)(h̄/2mω)/(h̄ω) = −b2/2mω2, and E0 = h̄ω/2 − b2/2mω2 to second order. To
solve exactly, write V (x) = mω2x2/2 + bx = mω2/2(x + b/mω2)2 − b2/2mω2. If you define
x� ≡ x + b/mω2, then you see that it is still the simple harmonic oscillator, but with the
equilibrium point shifted and with an overall energy shift of −b2/2mω2. That is, second
order perturbation theory gives the exact answer in this case.

2. The problem should ask for terms up to λ2, not g2, for the notation to be consistent.
Now, in the notation leading to (5.1.44), we want the quantity |�n(0)|n�|2, where the |n� are
properly normalized, i.e. |�n(0)|n�|2/|�n|n�|2. Using (5.1.44), �n(0)|n� = 1 and

�n|n� =

�
�n(0)

|+ λ
�

k �=n

V ∗
kn
�k(0)|

E(0)

n − E(0)

k

+O(λ2)

��
|n(0)

�+ λ
�

� �=n

|�(0)�V�n

E(0)

n − E(0)

�

+O(λ2)

�

= 1 + λ2
�

k �=n

�

��=n

V ∗
kn
V�n

(E(0)

n − E(0)

k
)(E(0)

n − E(0)

�
)
δk� +O(λ3) = 1 + λ2

�

k �=n

|Vkn|
2

(E(0)

n − E(0)

k
)2

since the |n(0)� are orthonormal. Note also that this precludes any of the O(λ2) terms in the
first multiplication from yielding any other O(λ2) terms in the second line. Hence

|�n(0)|n�|2

|�n|n�|2
= 1− λ2

�

k �=n

|Vkn|
2

(E(0)

n − E(0)

k
)2

+O(λ3)

3. The unperturbed ground state wave function is ψ(0)

0
(x, y) = (2/L) sin(πx/L) sin(πy/L),

so ∆(1)

0
= 4λ/L2

�
L

0

�
L

0
xy sin2(πx/L) sin2(πy/L)dxdy = λL2/4, and the zeroth order eigen-

function is just ψ(0)

0
. For the first excited state, ψ(0)

1a
(x, y) = (2/L) sin(πx/L) sin(2πy/L)

and ψ(0)

1b
(x, y) = (2/L) sin(2πx/L) sin(πy/L), that is twice degenerate, so we construct

a 2 × 2 matrix and diagonalize. The diagonal elements are Vaa =
�
ψ(0)

1a
V ψ(0)

1a
dxdy =

4λ/L2
�

L

0

�
L

0
xy sin2(πx/L) sin2(2πy/L)dxdy = λL2/4 = Vbb, and the off diagonal elements

are Vab =
�
ψ(0)

1a
V ψ(0)

1b
dxdy = 128λL2/81π4 = Vba. Therefore, following (5.2.9), the first order

energy shifts in the first excited are the eigenvalues ∆(1)

1
of

V =
λL2

4π4

�
π4 1024/81

1024/81 π4

�
so

�
λL2

4
−∆(1)

1

�2

−

�
128λL2

81π4

�2

= 0

and ∆(1)

1
= λL2(1/4± 128/81π4) = λL2{0.266, 0.233}. The eigenvectors are easy to find for

a simple matrix of this form. They are (ψ(0)

1a
± ψ(0)

1b
)/
√
2.
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4. The problem separates into independent x- and y-harmonic oscillators, i.e H0 = Hx+Hy,
with states |nx, ny� and energy eigenvalues E = (nx + ny +1)h̄ω. So the three lowest energy
eigenstates are |0, 0�, with E = h̄ω, and |1, 0� and |0, 1�, each with E = 2h̄ω. That is, the
first excited state is doubly degenerate. The first order energy shift for the ground state
is zero, since the operators x and y only connect states that differ by one quantum, i.e.
�0, 0|xy|0, 0� = 0. The first excited state requires us to diagonalize the perturbation for the
first order energy shift, but �1, 0|xy|1, 0� = 0 = �0, 1|xy|0, 1�. The off diagonal elements are

δmω2
�1, 0|xy|0, 1� = δmω2

�1, 0|

��
h̄

2mω

√
1

�
h̄

2mω

√
1

�
|1, 0� = δ

h̄ω

2
= �0, 1|xy|1, 0�

So, following (5.2.9), the first order energy shifts in the first excited are the eigenvalues ∆(1)

1

where
�
∆(1)

1

�2

− (δh̄ω/2)2 = 0 or ∆(1)

1
= ±δh̄ω/2 and E = (2 ± δ/2)h̄ω for the degenerate

first excited state. The corresponding eigenstates are (|1, 0�± |0, 1�)/
√
2.

To solve the problem exactly, observe that we can rewrite the potential energy as

1

2
mω2(x2 + y2 + 2δxy) =

1

2
mω2

�
(1 + δ)

(x+ y)2

2
+ (1− δ)

(x− y)2

2

�

and then rotate the x, y axes by 45◦. This anharmonic oscillator has normal coordinate
x� ≡ (x+y)/

√
2 with frequency ω(1+ δ)1/2, and y� ≡ (x−y)/

√
2 with ω(1− δ)1/2. Therefore

|nx� , ny�� Energy
|0, 0� 1

2
h̄ω(1 + δ)1/2 + 1

2
h̄ω(1− δ)1/2 ≈ 1

2
h̄ω(1 + δ/2 + 1− δ/2) = h̄ω

|1, 0� 3

2
h̄ω(1 + δ)1/2 + 1

2
h̄ω(1− δ)1/2 ≈ 1

2
h̄ω(3 + 3δ/2 + 1− δ/2) = (2 + δ/2)h̄ω

|1, 0� 1

2
h̄ω(1 + δ)1/2 + 3

2
h̄ω(1− δ)1/2 ≈ 1

2
h̄ω(1 + 1δ/2 + 3− 3δ/2) = (2− δ/2)h̄ω

in perfect agreement with our lowest order result from perturbation theory.

5. We need the matrix elements Vk0 = εmω2�k|x2|0�/2. The algebra for matrix elements for
harmonic oscillator states was worked out in Problem 2.14. Using that result, we have

Vk0 =
1

2
εmω2

�k|x2
|0� =

1

2
εmω2

h̄

2mω

�
δ0k +

√
2δ2,k

�
=

ε

4
h̄ω

�
δ0k +

√
2δ2,k

�

and so V00 = εh̄ω/4 and V20 = εh̄ω/2
√
2, in agreement with (5.1.54).

6. Put ωx = ωy ≡ ω and ωz = ω(1 + �) with � � 1. Then, following (2.7.20),

H =
1

2m

�
p−

q

c
A

�2

+
mω2

2
(x2+ y2)+

mω2

2
(1+ �)2z2 =

1

2m

�
p−

q

c
A

�2

+
mω2

2
r2+ �mω2z2
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For fixedB, A = 1

2
B×r, from (5.3.32) or any textbook on electromagnetism. So forB = Bx̂,

1

2m

�
p−

q

c
A

�2

=
p
2

2m
−

q

4mc
[p · (B× r) + (B× r) · p] +

q2

8mc2
(B× r)2

=
p
2

2m
−

qB

4mc
[pzy − pyz + ypz − zpy] +

q2B2

8mc2
(yẑ− zŷ)2

=
p
2

2m
−

qB

2mc
Lx +

q2B2

8mc2
(y2 + z2)

Now, “Zeeman splitting is comparable to the splitting produced by the anisotropy” means
that the second term above ∼ qBh̄/mc is about the same size as �h̄ω, that is � ∼ qB/mcω.
The third term above is ∼ (q2B2/mc2)(h̄/mω) = �2(h̄ω), and we can disregard it with respect
to the first term. Finally, to make the angular momentum algebra easier, rotate x → z and
z → −x. Therefore the Hamiltonian becomes

H =
p
2

2m
+

1

2
mω2r2 −

qB

2mc
Lz + �mω2x2

≡ H0 + V

where H0 ≡ p
2/2m+mω2r2/2 and V ≡ −qBLz/2mc+ �mω2x2 is an order � perturbation.

The eigenstates of H0 are derived and discussed in Section 3.7. See also Problem 3.21.
The first excited state has E = 5h̄ω/2 and is threefold degenerate. All three states have
angular momentum eigenvalue l = 1, so label them in order m = +1, m = 0, and m = −1.
In this basis, the first term in V is diagonal, with values −qBh̄/2mc, 0, and +qBh̄/2mc,
respectively. For the second term, write these basis states in terms of the basis |nxnynz�.
See the solution to Problem 3.21. The result is |+� = (|100� + i|010�)/

√
2, |0� = |001�, and

|−� = (|100�− i|010�)/
√
2. See Problem 2.14 for matrix elements of x2 in the |nxnynz� basis;

the essential result is �m|x2|n� = (2n+ 1)(h̄/2mω)δnm for the states considered here. So for
example �+|x2|+� = [�100|x2|100�+ �010|x2|010�]/2 = h̄/mω. The perturbation becomes

V
.
=




−qBh̄/2mc+ �h̄ω 0 �h̄ω/2

0 �h̄ω/2 0
�h̄ω/2 0 +qBh̄/2mc+ �h̄ω



 = h̄




−α + �ω 0 �ω/2

0 �ω/2 0
�ω/2 0 α + �ω





with α ≡ qB/2mc. The energy shifts h̄δ come from diagonalizing this matrix. One eigenvalue
is δ = �ω/2. The others solve (−α+�ω−δ)(α+�ω−δ)−(�ω/2)2 = −α2+(�ω−δ)2−(�ω/2)2 = 0
and the energy shifts are given by

1

2
�h̄ω and �h̄ω ±

1

2
h̄

��
qB

mc

�2

+ �2ω2

�1/2

In the limit � = 0, we simply have the Zeeman splitting of the levels according to m eigen-
values for orbital angular momentum. On the other hand, for B = 0, the degeneracy is only
partial lifted, i.e., one shift is (3/2)�h̄ω, but the other two are both (1/2)�h̄ω. This makes
sense, since the anisotropy is in only one direction, leaving symmetry between the other two.
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7. Use (5.1.44) to write the first order approximation to the ground state as

|100(1)� = |100(0)� − e|E|
�

nlm

|nlm(0)
�
�nlm(0)|z|100(0)�

E100 − Enlm

Now find the expectation value of the electric dipole moment (to lowest nonzero order)
making use of the fact that �100(0)|z|100(0)� = 0. We have

�100(1)|ez|100(1)�

= −e2|E|

�
�

nlm

�100(0)|z|nlm(0)
�
�nlm(0)|z|100(0)�

E100 − Enlm

+
�

nlm

�nlm(0)
|z|100(0)�

�nlm(0)|z|100(0)�∗

E100 − Enlm

�

= −2e2|E|
�

nlm

|�nlm(0)|z|100(0)�|2

E100 − Enlm

≡ α|E| so α = −2e2
�

nlm

|�nlm(0)|z|100(0)�|2

E100 − Enlm

defining the polarizability α, the same as (5.1.68) from the second order energy shift.

8. I’m not exactly sure what these have to do with “approximation methods”, but OK.

(a) From (B.5.7) x = r sin θ cosφ = −(2π/3)1/2(Y 1

1
−Y −1

1
). So, the matrix element vanishes.

In position space, it is proportional to integrals of Y 1

0
Y ±1

1
which are zero by orthogonality.

Alternately, by (3.11.28), since x combines spherical tensors T (k)

q with q = 1, the matrix
element must vanish since 0 �= 1 + 0. More colloquially, the matrix element is between two
states with new orientation perpendicular to the z-axis, so its value must vanish.

(b) From (2.2.25) and (2.2.26), pz = mż = (m/ih̄)[z,H], so the matrix element is pro-
portional to (E200 − E210)�210|z|200� = 0 since E200 = E210. More physically, this matrix
element is between states that have no up/down asymmetry, so �pz� = 0.

(c) First express the state |lsjm� =
��41

2

9

2

7

2

�
in terms of states |ls;mlms� =

��41

2
;ml,

7

2
−ml

�
.

This transformation matrix is given by (3.8.62) and using j = l + 1/2. The result is

����4
1

2

9

2

7

2

�
=

1

3

√
8

����4
1

2
; 3,+

1

2

�
+

1

3

����4
1

2
; 4,−

1

2

�

So
�
41

2

9

2

7

2

��Lz

��41

2

9

2

7

2

�
= (8/9)3h̄+ (1/9)4h̄ = (28/9)h̄.

(d) See the solution to Problem 3.4. The singlet (triplet) state is 1√
2
[|+−� ∓ |−+�], so

the matrix element is 1

2
[�+− |− �−+ |] [+h̄|+−� − h̄|−+�] = h̄.

(e) One is apparently supposed to be aware that the ground state of the hydrogen molecule
puts the spin part in a singlet state, so-called “homopolar binding” with a symmetric spatial
wave function. Therefore �S1 · S2� =

1

2
[S2 − S

2

1
− S

2

2
] = 1

2

�
0− 3

4
h̄2

−
3

4
h̄2
�
= −

3

4
h̄2.
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9. Write x2 − y2 = r2 sin2 θ(cos2 φ − sin2 φ) = r2 sin2 θ cos 2φ = r2 sin2 θ(e2iφ + e−2iφ)/2, so
from (B.5.7) V is a combination of Y ±2

2
, i.e. the sum of tensor operators T±2

2
. Therefore

by (3.11.28), the perturbation only connects states with m differing by 2. The integrals
I = λ

2

�
sin2 θe±φe∓2iφ sin2 θe±φdΩ

�
r2R2

n1
r2dr are the same for the cases connecting m = ±1

to m = ∓1 respectively. So, labeling the states m = 1, 0,−1, the perturbation is

V
.
=




0 0 I
0 0 0
I 0 0



 and |n10�,
1
√
2
[|n11�± |n1,−1�]

are the “correct” zeroth order eigenstates. From (4.4.58), under time reversal, a state |l,m�

goes to a state |l,−m� and picks up a phase (−1)m. Thus, the eigenstates go into each other.

10. (a) The lowest order solution is well known. For n ≡ {nx, ny}, the energy eigenvalues
are En = (h̄2π2/2ma2)(n2

x
+ n2

y
) and ψn(x, y) = (2/a) sin(nxπx/a) sin(nyπy/a) are the wave

functions. The (nondegenerate) ground state is n = {1, 1}, the (doubly denerage) first
excited state is n = {1, 2} and n = {1, 2}, and the (nondegenerate) third state is n = {2, 2}.

(b) Let E1 = 2(h̄2π2/2ma2), E2 = 5(h̄2π2/2ma2), and E3 = 8(h̄2π2/2ma2) be the three
unperturbed energies. For the first and third energy levels, the first order shifts are

∆(1)

1
= λ

�
2

a

�
a

0

u sin2

�πu
a

�
du

�2
=

1

4
λa2 = λa2(0.250)

∆(1)

3
= λ

�
2

a

�
a

0

u sin2

�
2πu

a

�
du

�2
=

1

4
λa2 = λa2(0.250)

For the degenerate first excited state, see the solution to Problem 3. The two energy shifts
are ∆(1)

2a
= λa2(0.233) and ∆(1)

2b
= λa2(0.266, 0.233). The energy level diagram is
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11. See Problem 1.11. Find E1,2 = (E0

1
+ E0

2
)/2±

�
(E0

1
− E0

2
)2/4 + λ2∆2, and

ψ1 =

�
cos(β/2)
sin(β/2)

�
and ψ2 =

�
− sin(β/2)
cos(β/2)

�
where tan β =

2λ∆

E0
1
− E0

2

are the exact eigenstates. Now in terms of perturbation theory with λ∆ � (E0

1
− E0

2
),

H0 =

�
E0

1
0

0 E0

2

�
with φ(0)

1
=

�
1
0

�
, φ(0)

2
=

�
0
1

�
and V =

�
0 λ∆
λ∆ 0

�

The first order energy shifts are φ̃(0)

1
V φ(0)

1
= 0 = φ̃(0)

2
V φ(0)

2
. Use (5.1.42) for the second order

shifts to find ∆(1)

1
= |φ̃(0)

2
V φ(0)

1
|2/(E0

1
− E0

2
) = λ2∆2/(E0

1
− E0

2
) and ∆(1)

2
= λ2∆2/(E0

2
− E0

1
)

which agree with (5.1.14). From (5.1.44), the first order eigenstates are

φ(1)

1
= φ(0)

1
+ φ(0)

2

φ̃(0)

2
V φ(0)

1

E0
1
− E0

2

=

�
1
λ∆

E
0
1−E

0
2

�
and φ(1)

2
= φ(0)

2
+ φ(0)

1

φ̃(0)

1
V φ(0)

2

E0
2
− E0

1

=

�
λ∆

E
0
2−E

0
1

1

�

In the limit λ∆ � (E0

1
− E0

2
), these are clearly the same as the exact eigenstates because

cos(β/2) → 1 and sin(β/2) → β/2. As for the energy eigenvalues in this limit,

E1,2 =
E0

1
+ E0

2

2
±

E0

1
− E0

2

2

�

1 +
4λ2∆2

(E0
1
− E0

2
)2

→
E0

1
+ E0

2

2
±

E0

1
− E0

2

2

�
1 +

2λ2∆2

(E0
1
− E0

2
)2

�

and the energy shifts are ±λ2∆2/(E0

1
−E0

2
), the same as the values ∆(1)

1,2
obtained from second

order perturbation theory.

Now in the opposite limit, i.e. λ∆ � (E0

1
− E0

2
), β → 90◦ and ψ1,2 →

�
±1/

√
2

1/
√
2

�
, and

E1,2 =
E0

1
+ E0

2

2
± λ∆

�
1 +

(E0
1
− E0

2
)2

4λ2∆2
→

E0

1
+ E0

2

2
± λ∆

�
1 +

(E0

1
− E0

2
)2

8λ2∆2

�

which means first order splits ±λ∆ for the degenerate state with E0

1
= E0

2
. Both of these

are exactly what you get if you diagonalize the perturbation matrix V , that is, in agreement
with the treatment of degenerate perturbation theory.

12. I will treat a and b as real numbers. It is useful to know where we’re going, so let’s find
the exact eigenvalues λ first, which satisfy (E1 − λ)2(E2 − λ)− a2(E1 − λ)− b2(E1 − λ) = 0.
Therefor λ = E1 ≡ λ0 or λ2 − (E1 + E2)λ+ E1E2 − (a2 + b2) = 0, that is

λ =
E1 + E2 ±

�
(E2 − E1)2 + 4(a2 + b2)

2
≈

E1 + E2

2
±

E2 − E1

2

�
1 + 2

a2 + b2

(E2 − E1)2

�

so the others are λ = E2+(a2+ b2)/(E2−E1) ≡ λ+ and λ = E1− (a2+ b2)/(E2−E1) ≡ λ−.
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Now with φ(0)

1
=




1
0
0



, φ(0)

2
=




0
1
0



, and φ(0)

3
=




0
0
1



, with V =




0 0 a
0 0 b
a b 0



, the only

nonzero matrix elements Vnk = φ̃(0)

n V φ(0)

k
are V31 = a2 = V13 and V32 = b2 = V23, so V21 =

0 = V12 and the E1 degeneracy is not removed in first order. If we use (5.1.42) to calculate
the shift using non-generate second order perturbation theory, we get ∆1 = a2/(E1 − E2),
∆2 = b2/(E1 −E2), and ∆3 = (a2 + b2)/(E2 −E1). The energies En +∆n do not agree with
the values λ derived above, except for E2 +∆3 = λ−. Non-degenerate perturbation theory
is not applicable to degenerate states, even taking it to second order.

Use the formula in Problem 1, Page 397 of Gottfried (1966). The energy shifts ∆ satisfy

�
∆−

a2

E1 − E2

��
∆−

b2

E1 − E2

�
=

a2b2

(E1 − E2)2

That is, ∆ = 0 and ∆ = (a2+ b2)/(E1−E2). These energy shifts give eigenvalues that agree
with λ0 and λ+ above, from the exact solution.

13. The perturbation is V = −eεz, so �2S1/2|V |2S1/2� = 0 = �2P1/2|V |2P1/2�, which should
be obvious from parity considerations. Also �2S1/2|V |2P1/2� = 3ea0ε from (5.2.19). So

H
.
=

�
E2 + δ 3ea0ε
3ea0ε E2

�
and (E2 + δ − E)(E2 − E)− 9e2a2

0
ε2 = 0

gives the eigenvalues E, where δ is the Lamb shift. Solving for the eigenvalues gives

E =
2E2 + δ ±

�
(2E2 + δ)2 + 36e2a2

0
ε2 − 4E2(E2 + δ)

2
= E2 +

δ

2
±

��
δ

2

�2

+ 9e2a2
0
ε2

So, for ea0ε � δ, have E ≈ E2 + (δ/2)(1 ± 18e2a2
0
ε2/δ2) = E2 + (δ/2) ± 9e2a2

0
ε2/δ and the

energy shifts are quadratic in ε. For ea0ε � δ find ±3ea0ε(1 + δ2/36e2a2
0
ε2) ≈ ±3ea0ε for

the energy shifts, which are linear in ε.

Regarding time reversal, I will just quote from the original solutions manual. “Whereas parity
restricts �2S1/2|V |2S1/2� = 0 = �2P1/2|V |2P1/2�, time reversal invariance of our Hamiltonian
places no similar restriction. Nevertheless, for example from (4.4.84), it imposes the restric-
tion that expectation value �x� (hence �z� as a special case) vanishes when taken with respect
to eigenstates of j,m. For example, |j,m� of our problem need not be parity eigenkets, and
could be cS|2S1/2�+ cP |2P1/2�. yet it remains true that �j,m|x|j,m� = 0 under time reversal
invariance, i.e. no electric dipole moment.”
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14. This is the linear Stark effect (see pages 319 through 321) but with a larger (nine
dimensional) degenerate subspace. Let us write V = −ezε = −eεr cos θ and first determine

the nonzero matrix elements �3l�m�|V |3lm�. Since V ∝ Y 0

1
∼ T (1)

0
, from (3.11.28) the matrix

elements are zero unless m = m�. Also, from the Wigner-Eckart Theorem (3.11.31), the
matrix elements are proportional to �l1;m0|l1; l�m�, so, as in (3.11.32), we need |l − 1| ≤
l� ≤ l + 1. Finally, since V is odd parity, the matrix elements are only nonzero between
states where l and l� differ by an odd number, and we have l, l� = 0, 1, 2 in this problem. The
integrals can be done using (B.6.3) with (B.5.7). I’ll do the math withMathematica, which
defines internally the spherical harmonics and associated Laguerre polynomials. Proceeding,

�321|V |311� =
9

2
eεa0 = �311|V |321� = �32,−1|V |31,−1� = �31,−1|V |32,−1�

�320|V |310� = 3
√
3eεa0 = �310|V |320�

�310|V |300� = 3
√
6eεa0 = �300|V |310�

which, for some reason, are all three times smaller than the values in the original solutions
manual. The code which finds the wave functions and calculates (one of) the matrix elements
follows. Note the convention Mathematica uses for the associated Laguerre polynomials.

R1eAtom[n_, l_] := (2/n^2) Sqrt[1/a^3] Sqrt[(n - l - 1)!/(n + l)!]*

Exp[-Z r/(n a)] (2 Z r/(n a))^l *

LaguerreL[n - l - 1, 2 l + 1, 2 Z r/(n a)]

\[Psi][n_, l_, m_] :=

R1eAtom[n, l] SphericalHarmonicY[l, m, \[Theta], \[Phi]]

Z = 1;

\[Psi]300 = \[Psi][3, 0, 0];

\[Psi]31p1 = \[Psi][3, 1, 1];

\[Psi]310 = \[Psi][3, 1, 0];

\[Psi]31m1 = \[Psi][3, 1, -1];

\[Psi]32p2 = \[Psi][3, 2, 2];

\[Psi]32p1 = \[Psi][3, 2, 1];

\[Psi]320 = \[Psi][3, 2, 0];

\[Psi]32m1 = \[Psi][3, 2, -1];

\[Psi]32m2 = \[Psi][3, 2, -2];

p = Simplify[Conjugate[\[Psi]32p1] r Cos[\[Theta]] \[Psi]31p1, a > 0 && r > 0];

V2p11p1 = Integrate[

p r^2 Sin[\[Theta]], {r, 0, \[Infinity]}, {\[Theta], 0, Pi}, {\[Phi], 0,

2 Pi}]
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Writing the eigenvalues as −3λeεa0, with a ≡ 3/2, b ≡
√
3, and c ≡

√
6, and labeling

{l = 0{m = 0}, l = 1{m = −1, 0, 1}, 2{m = −2,−1, 0, 1, 2}}, the eigenvalue equation is

3eεa0





λ 0 c 0 0 0 0 0 0
0 λ 0 0 0 a 0 0 0
c 0 λ 0 0 0 b 0 0
0 0 0 λ 0 0 0 a 0
0 0 0 0 λ 0 0 0 0
0 a 0 0 0 λ 0 0 0
0 0 b 0 0 0 λ 0 0
0 0 0 a 0 0 0 λ 0
0 0 0 0 0 0 0 0 λ









A1

A2

A3

A4

A5

A6

A7

A8

A9





= 0

The characteristic equation is λ3 (a2 − λ2)2 (b2 + c2 − λ2) = 0, so the energy shifts are

∆1,2,3 = 0

∆4,5 = −3eεa0(−3/2) = 9eεa0/2

∆6,7 = −3eεa0(+3/2) = −9eεa0/2

∆8 = −3eεa0(−3) = 9eεa0
∆9 = −3eεa0(+3) = −9eεa0

and the corresponding eigenstates are

|1, 2, 3� = |32,±2� and

�
2

3
|320� −

�
1

3
|300�

|4, 5� =
1
√
2
[|321�+ |311�] and

1
√
2
[|32,−1�+ |31,−1�]

|6, 7� =
1
√
2
[|321� − |311�] and

1
√
2
[|32,−1� − |31,−1�]

|8� =
1
√
3
|300�+

1
√
2
|310�+

1
√
6
|300�

|9� =
1
√
3
|300� −

1
√
2
|310�+

1
√
6
|300�

Following is the relevant Mathematica code, with mV defined as the matrix above with
zeros on the diagonal. Also, I’m including the code for only the first two normalized eigen-
vectors, just to save space.

Simplify[CharacteristicPolynomial[mV, \[Lambda]]] // TeXForm

Eigenvalues[mV] /. {a -> 3/2, b -> Sqrt[3], c -> Sqrt[6]}

eiv = Eigenvectors[mV] /. {a -> 3/2, b -> Sqrt[3], c -> Sqrt[6]};

Normalize[eiv[[1]]]

Normalize[eiv[[2]]]
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15. This problem is a bit open-ended, so I am copying the solution here pretty much directly
from the original solutions manual. For an electric dipole µe = µeσ, have V = −µe ·E where
the E = −(1/e)r̂dVc/dr and Vc(r) is the Coulomb potential energy of the nucleus. Writing

σ · r̂ =
1

r
[σ+(x− iy) + σ−(x+ iy) + σzz] =

�
4π

3

�√
2(σ+Y

−1

1
+ σ−Y

1

1
) + σzY

0

a

�

we see that the Wigner-Eckart theorem tells us which matrix elements are nonzero. For
∆m = 0, the matrix elements of Y 0

1
are needed, and these vanish unless ∆� = ±1. For

∆m = ±1, we still need ∆� = ±1. This is expected since r̂ is a vector operator and connects
states of different parity. The radial contribution is proportional to

�∞
0

Rn�

dVC
dr

Rn��r2dr =
−
�∞
0

Rn�Rn��dr. One may verify that for �− �� = ±1, this integral vanishes for n = n�.

The ground state of Na has n = 3 (degeneracy n2 = 9), but from the above, we know that
∆n = 0. Therefore the effects of this perturbation V on the energy levels are seen in second
order. Mixing occurs between 3s and 4p states, between 4s and 3p, 3d, and 4p, and so on.
Using eigenstates of L2, Lz, S2, Sz, the following expression for �3s|V |4p� is true for ∆�z = 0:

�3s|V |4p�∆�z=0 =
Z

(−e)

� ∞

0

drR30(r)R41(r)

�
4π

3

�
00

1

2

1

2
|Y 0

1
σz|10

1

2

1

2

�

= −
Z

e

� ∞

0

drR30R41

�
4π

3

�
1

−1

dφ

�
2π

0

d(cos θ)

�
1

4π

�
3

4π
cos θ

= −
Z

e

�
1

3

� ∞

0

drR30R41 ≡ −
Z

e

�
1

3
IR

Therefore, using (5.2.15), we determine the second (lowest) order shift in the 3s states of Na

to be ∆3s =
�
−

µeZIR

e
√
3

�2

/(En=3 − En=4) where En = −Z2mee4/2h̄
2n2.

16. For any l = 0 state, we can write (real valued) ψ(r) = u(r)/r where u satisfies (3.7.9)
and u(r) → 0 as r → 0 or r → ∞. Multiply (3.7.9) by du/dr ≡ u�(r) and rewrite it as

−
h̄2

2m

1

2

d

dr
(u�)2 +

1

2

d

dr
(V u2)−

1

2

dV

dr
u2 = E

1

2

d

dr
u2

Now integrate over r from zero to ∞, leaving −
h̄
2

4m
(u�)2|∞

0
−

1

2

�∞
0

dV

dr
u2dr = 0. Since u = rψ,

u�(r) = ψ(r) + rψ�(r), where both ψ(r) → 0 and ψ�(r) → 0 as r → ∞. Therefore

h̄2

4m
ψ(0)2 =

1

2

� ∞

0

dV

dr
ψ2(r)r2dr =

1

2

1

4π

�
dV

dr

�
so ψ(0)2 =

m

2πh̄2

�
dV

dr

�

The wave function of the hydrogen ground state is, from (B.6.3), (B.6.7), and (B.5.7),
ψ(r) = exp(−r/a)/

√
πa3. So, ψ(0)2 = 1/πa3 and

�
dV

dr

�
= 4π

e2

πa3

� ∞

0

1

r2
e−2r/ar2dr = 4π

h̄2/ma

πa3
a

2
=

2πh̄2

m

1

πa3
=

2πh̄2

m
ψ(0)2
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For the 3D isotropic harmonic oscillator ground state we have, from (3.7.8), (3.7.40),
(3.7.31), and (3.7.33), ψ(r) = N exp(−mωr2/2h̄) where the normalization constant was never
determined. Nevertheless, ψ(0)2 = N2 and (using Mathematica for the integral)

�
dV

dr

�
= 4πN2mω2

� ∞

0

re−mωr
2
/h̄r2dr = 4πN2mω2

h̄2

2m2ω2
=

2πh̄2

m
N2

17a. Using the notation of Section 5.1, we write H0 = AL2 + BLz, so |n(0)� = |lm�, and

V = CLy = (C/2i)(L+ − L−). So E(0)

lm
= Ah̄2l(l + 1) + Bh̄m, ∆(1)

lm
= �n(0)|V |n(0)� = 0, and

∆(2)

lm
=

�

l�m�

|�lm|V |l�m��|2

E(0)

lm
− E(0)

l�m�

=
C2h̄2

4

�
(l −m+ 1)(l +m)

E(0)

lm
− E(0)

l,m−1

+
(l +m+ 1)(l −m)

E(0)

lm
− E(0)

l,m+1

�
=

C2h̄m

2B

Note that the problem can be solved exactly by rotating about the x-axis through an angle
θ such that tan θ = Ly/Lz = C/B. That is, H = AL2 + (B2 + C2)1/2L�

z
, with eigenvalues

E = Ah̄2l(l + 1) + (B2 + C2)1/2h̄m = Ah̄2l(l + 1) + Bh̄m+
C2

2B
h̄m+ · · ·

which agrees with the result from second order perturbation theory.

17b. First of all, both operators are spin independent, so ∆ms = 0. For the rest, see
Problem (3.32). Since 3z2− r2 = r2(cos2 θ−1) ∝ Y 0

2
, this operator is a spherical tensor T (2)

0
,

and �l�m�|(3z2 − r2)|lm� is proportional to �l2;m0|l2; l�m�� by the Wigner-Eckart Theorem
(3.11.31). Therefore m = m� and |l−2| ≤ l� ≤ l+2. (Also, ∆l = l− l� must be even since Y 0

2

has even parity.) Now xy = r sin2 θ cosφ sinφ ∝ sin2 θ sin 2φ ∝
�
Y 2

2
− Y −2

2

�
, i.e T (2)

2
− T (2)

−2
.

So, similarly, �l�m�|xy|lm� is proportional to �l2;m2|l2; l�m�� if m� −m = 2, or proportional
to �l2;m,−2|l2; l�m�� if m� −m = −2, and zero otherwise. The same rules hold for l and l�.

18. The perturbation is V = e2A2/2mec2 = e2B2(x2 + y2)/8mec2 where A is given by
(5.3.33). For the spherically symmetric ground state �x2� = �y2� = �z2� = �r2�/3. Therefore

∆ =
e2B2

8mec2
2

3

1

πa3
0

4π

� ∞

0

r2e−2r/a0r2dr =
e2B2

mec2
1

3

1

a3
0

4!

(2/a0)5
=

e2B2a2
0

4mec2
= −

1

2
χB2

so the diagmagnetic susceptibility is χ = −e2a2
0
/2mec2.

19. This is a numerical comparison based on Problem 18; the two problems should be
combined. With a0 → a0/Zeff , find χ = 2 × (−e2a2

0
/2Z2

eff
mec2) = −e2a2

0
/Z2

eff
mec2 where

we recognize that this is a two-electron atom, each of which behaves independently in this
approximation. Put e2 = h̄c/137 = (200/137)MeV×10−5Å, a0 = 0.53Å, mec2 = 0.511 MeV,
and Zeff = 2 − 5/16 = 1.69, to find χ = −0.281 × 10−5Å3/atom=1.69 × 10−6cm3/mole, in
good agreement with the measured value of 1.88× 10−6cm3/mole.
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20. Follow (5.4.1) and calculate the approximate energy H̄(β) as follows:

H̄ =
(−h̄2/2m)

�∞
−∞ exp(−β|x|) d

2

dx2 exp(−β|x|)dx+
�∞
−∞ exp(−2β|x|)(mω2x2/2)dx

�∞
−∞ exp(−2β|x|)dx

The denominator is
�∞
−∞ exp(−2β|x|)dx = 2

�∞
0

exp(−2βx)dx = 1/β, and the second integral
in the numerator is

�∞
−∞ exp(−2β|x|)(mω2x2/2)dx = mω2

�∞
0

exp(−2βx)x2dx = mω2(2/8β3).
The first integral in the numerator is tricky since the first derivative is discontinuous. Write

� ∞

−∞
e−β|x| d

2

dx2
e−β|x|dx = 2

� ∞

�

e−βx
d2

dx2
e−βxdx+

�
�

−�

e−β|x| d
2

dx2
e−β|x|dx

and let � → 0. The first term is just β. For the second, the integrand factor e−β|x| → 1
leaving the integral

�
�

−�

d
2

dx2 e−β|x|dx = d

dx
e−β|x|

���
−�

= −βe−β� − (+β)e−β� → −2β. Therefore

H̄ =
(−h̄2/2m)β + (−h̄2/2m)(−2β) +mω2(2/8β3)

1/β
=

h̄2β2

2m
+

mω2

4β2

Putting dH̄/dβ = h̄2β/m−mω2/2β3 = 0 find β2 = mω/h̄
√
2, so the minimum value of H̄ is

H̄min = h̄ω/2
√
2 + h̄ω

√
2/4 = h̄ω

√
2/2, compared to the correct ground state energy h̄ω/2.

21. Solve this using (5.4.1) as for a “Hamiltonian” H = −d2/dx2 + |x| with eigenvalue λ
and trial wave function ψ(x) = c(α− |x|) for |x| ≤ α and zero otherwise. The denominator
is 2

�
α

0
c2(α − x)2dx = 2α3c2/3. For the numerator, we need to deal with the discontinuity

in dψ/dx at x = 0. Skipping this for the moment, we take d2ψ/dx2 = 0 for |x| > 0 and are
left with 2

�
α

0
c2(α− x)2xdx = α4c2/6. For the discontinuity, see Problem 20. We need

lim
�→0

�
�

−�

ψ
d2ψ

dx2
dx = lim

�→0

�
�

−�

cα
d2ψ

dx2
dx = lim

�→0
cα

dψ

dx

����
�

−�

= cα[−c− (+c)] = −2c2α

Therefore H̄ = (2α+α4/6)/(2α3/3) = 3/α2+α/4. Minimizing, dH̄/dα = −6/α3+1/4 = 0,
so α = 241/3 = 2 3

√
3 and H̄min = 3/4 3

√
9+ 3

√
3/2 = 3 3

√
3/4 = 1.0817, indeed larger than 1.019.

22. From (5.7.17) we have c(0)
0

= 1 and, for lowest nonvanishing order,

c(1)
n

= −
i

h̄

�
t

0

ei(En−E0)t
�
/h̄
�n|F0x cosωt

�
|0�dt� = −

i

h̄
F0

�
h̄

2mω0

δn1

�
t

0

eiω0t
�
cosωt�dt�

so c(1)
1

= −
i

2h̄
F0

�
h̄

2mω0

�
t

0

eiω0t
�
�
eiωt

�
+ e−iωt

�
�
dt�

= −
1

2h̄
F0

�
h̄

2mω0

�
ei(ω0+ω)t − 1

ω0 + ω
+

ei(ω0−ω)t − 1

ω0 − ω

�
≡ c1(t)
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and c(1)n = 0 for all n �= 1. Therefore, from (5.5.13), |α, t�I = |0� + c1(t)|1�, and so, from
(5.5.5), |α, t�S = e−iH0t/h̄|α, t�I = e−iω0t/2|0�+ c1(t)e−3iω0t/2|1�. We can now calculate

�x� = �α, t|x|α, t�S

=
�
eiω0t/2�0|+ c∗

1
e3iω0t/2�1|

�
�

h̄

2mω0

�
a+ a†

� �
e−iω0t/2|0�+ c1e

−3iω0t/2|1�
�

=
�
eiω0t/2�0|+ c∗

1
e3iω0t/2�1|

�
�

h̄

2mω0

�
c1e

−3iω0t/2|0�+ e−iω0t/2|1�+ c1e
−3iω0t/2

√
2|2�

�

=

�
h̄

2mω0

�
c1e

−iω0t + c∗
1
eiω0t

�

= −
F0

2h̄

h̄

2mω0

�
eiωt − e−iω0t

ω0 + ω
+

e−iωt − e−iω0t

ω0 − ω
+

e−iωt − eiω0t

ω0 + ω
+

eiωt − eiω0t

ω0 − ω

�

= −
F0

2mω0

�
cosωt− cosω0t

ω0 + ω
+

cosωt− cosω0t

ω0 − ω

�
= −

F0

m

cosωt− cosω0t

ω2
0
− ω2

Classically, this is a harmonic oscillator with a “forcing function” F (t) = −F0 cosωt. The
classical equation of motion is mẍ = −mω2

0
x + F (t) or ẍ + ω2

0
x = −(F0/m) cosωt. The

homogeneous solution is xh(t) = A cosω0t+B sinω0t. A particular solution xp(t) = C cosωt
implies C(−ω2 + ω2

0
) = −F0/m, or C = −(F0/m)/(ω2

0
− ω2). Therefore

x(t) = xh(t) + xp(t) = A cosω0t+B sinω0t−
F0

m

cosωt

ω2
0
− ω2

is the general classical solution. For t ≤ 0 the oscillator has �x� = 0 = �p�, so for initial
conditions take x(0) = 0 = ẋ(0). Hence A = (F0/m)/(ω2

0
− ω2) and B = 0, and we see that

the classical solution is the same as the quantum mechanical result for �x� as a function of
time. Of course, the result is invalid at “resonance”, i.e. ω = ω0, since the response tends
to infinity for any finite F0 and perturbation theory breaks down.

23. The probability for the transition |0� → |n� from (5.7.19) is |c(1)n |2, to first order, where

c(1)n is given by (5.7.17). In this case, V (x, t) = −F0xe−t/τ for t ≥ 0, but zero for t < 0. So,

c(1)
n

=
i

h̄

�
t

0

ei(En−E0)t
�
/h̄
�n|F0xe

−t
�
/τ
|0�dt� =

i

h̄
F0

�
h̄

2mω0

δn1

�
t

0

eiω0t
�
e−t

�
/τdt�

so c(1)
1

=
i

h̄
F0

�
h̄

2mω0

e(iω0−1/τ)t − 1

iω0 − 1/τ
and c(1)

n
= 0 for n ≥ 2

Hence
���c(1)1

���
2

=
F 2

0

2mω0

e−2t/τ − 2e−t/τ cosω0t+ 1

ω2
0
+ 1/τ 2

−→
1

2mω0

F 2

0
τ 2

1 + ω2
0
τ 2

for t → ∞

which is independent of t, not unexpected since the force turns off. More interestingly, the
result only depends on the (finite) impulse F0τ as τ → 0. Higher excited states are not

possible in first order, but from the expression for c(2)n in (5.7.17), we see that |2� can be
reached in second order. Apparently, |0� → |n� transitions can occur in nth order.
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24. Follow the solution to Problems 22 and (especially) 23. Also use Problem 2.14 which
gives �m|x2|n� = (h̄/2mω0)[

�
n(n− 1)δn−2,m + (2n+ 1)δnm +

�
(n+ 1)(n+ 2)δn+2,m]. So,

c(1)
n

= −
i

h̄
A

h̄

2mω0

√
2δn2

�
t

0

eiω0t
�
e−t

�
/τdt� = −

iA

mω0

√
2
δn2

e(iω0−1/τ)t − 1

iω0 − 1/τ

and
���c(1)2

���
2

=
A2

2m2ω2
0

e−2t/τ − 2e−t/τ cosω0t+ 1

ω2
0
+ 1/τ 2

−→
1

2m2ω2
0

A2τ 2

1 + ω2
0
τ 2

for t → ∞

and transitions (to first order) to states other than |n� = |2� do not occur. Apparently,
however, from (5.7.17), |0� → |2n� transitions can occur in nth order, but transitions to
states with odd n are forbidden.

25. I first address whether or not this problem can be solved exactly. (The original solutions
manual says it can be.) Indeed, it is essentially the “magnetic resonance” problem, for an
oscillating field Bx cosωt in a constant, stronger holding field Bz. Many books solve this
problem, but in the approximation ω ≈ (E0

1
− E0

2
)/h̄, that is, near resonance. If, instead,

the oscillating field rotates, that is Bx cosωt+By sinωt, then you can find an exact solution
for all ω. Just expand |α, t� = a(t)| ↑� + b(t)| ↓�, substitute into (2.1.27), and express as
a matrix to arrive at coupled, first order differential equations for a(t) and b(t). With the
rotating field, the ansatz a(t) = a0 exp(+iωt/2) and b(t) = b0 exp(−iωt/2) leads to finding
a0 and b0 by enforcing nontrivial solutions to the homogenous linear equations. This does
not work, though, for the linearly oscillating field, and I cannot find any other solutions.

So until an exact solution is found (or I delete this problem in favor of 5.30) I will not be
able to compare the perturbation theory result to the exact solution. Too bad, that would
be instructive. For now, then, just do the first order perturbation solution. We then have

|α, t� = exp(−iE0

1
t/h̄)| ↑�+ c(1)

2
(t) exp(−iE0

2
t/h̄)| ↓�

from (5.5.4) and (5.5.17). With ω0 ≡ (E0

1
−E0

2
)/h̄ and c(1)

2
(t) = (−i/h̄)

�
t

0
eiω0t

�
λ cosωt�, find

���c(1)2
(t)

���
2

=
λ2

h̄2

�
sin2(ω0 + ω)t/2

(ω0 + ω)2
+

sin2(ω0 − ω)t/2

(ω0 − ω)2
+

cosωt(cosωt− cosω0t)

(ω0 − ω)2

�

If E0

1
− E0

2
is close to ±h̄ω then one or more denominators in the above expression goes to

zero and the coefficient is large, so the perturbation expansion breaks down. Of course, this
is just the resonance condition.



Copyright, Pearson Education. 73

26. The perturbation is V = −F (t)x and ω10 = [(3/2)h̄ω−(1/2)h̄ω]/h̄ = ω, so from (5.7.17)

c(1)
1
(∞) = −

i

h̄

�
−
F0τ

ω

�
�1|x|0�

� ∞

−∞

eiωt

τ 2 + t2
dt =

i

h̄

F0τ

ω

�
h̄

2mω

� ∞

−∞

eiωt

τ 2 + t2
dt

The integral can be done using complex analysis; see, for example, Section 6.2 of this text-
book. Since ω > 0, replace the integral with a semicircular contour integral closed in the
upper plane. The contribution along the curved portion tends to zero as t → i∞, leaving
the integral we’re after. Only the pole at t = +iτ contributes, so by the residue theorem,
the integral equals 2πieiω(iτ)/(iτ + iτ) = (π/τ)e−ωτ , and |c(1)

1
(∞)|2 = (π2F 2

0
/2mh̄ω3)e−2ωτ .

Does it make sense that the probability is zero for τ � 1/ω, even though the impulse is
independent of τ? Yes, it does. In this limit, the perturbation is turned on and then off very
slowly, and the oscillator is, essentially, always in the ground state.

27. Once again, use (5.7.17). Insert
�
dx|x��x| and change variables in the t� integral to get

c(1)
f

= −
i

h̄

� ∞

−∞
dt�

� ∞

−∞
dx eiωfitAδ(x− ct�)u∗

f
(x)ui(x) = −

iA

h̄c

� ∞

−∞
dx eiωfix/cu∗

f
(x)ui(x)

and the probability to end up in state |f� is |c(1)
f
|2, where ωfi ≡ (Ef −Ei)/h̄. The following

explanation copied from the original solutions manual. The pulse can be regarded as a
superposition of the form eiωx/ce−ωt with ω > 0 (absorption) and ω < 0 (emission). Our
result shows that the traveling pulse can give up energy h̄ωfi so that the particle gets excited
to |f�, and that only that part of the harmonic perturbation with the “right” frequency is
relevant, as expected from energy conservation. Note that the space integral

�
u∗
f
uidx is

identical to the case where only one frequency component is present.

28. The potential energy (e < 0) is V = −eE0ze−t/τ . The matrix element �200|z|100� = 0
by parity symmetry, and �21,±1|z|100� = 0 by the Wigner-Eckart Theorem. I calculate with
Mathematica �210|z|100� = (128

√
2/243)a0. Returning once again to (5.7.17), we have

c(1)
2p
(t) = −

i

h̄

�
t

0

dt�(−eE0)
128

√
2

243
a0e

(iω−1/τ)t� =
215/2

35
ieE0a0

h̄

e(iω−1/τ)t − 1

iω − 1/τ
���c(1)2p

(t)
���
2

=
215

310
e2E2

0
a2
0

h̄2

e−2t/τ − 2e−t/τ cosωt+ 1

ω2 + 1/τ 2
→

215

310
e2E2

0
a2
0

h̄2

1

ω2 + 1/τ 2

with ω = (E2 − E1)/h̄ = −(e2/2a0h̄)(−3/4) = 3e2/8a0h̄ and a0 = h̄2/mee2, as t → ∞. In
the limit τ → ∞, that is, a step function perturbation, the probability of transition is

���c(1)2p
(∞)

���
2

=
215

310
e2E2

0
a2
0

h̄2

1

ω2
=

221

312
E2

0
a4
0

e2
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29. Note that S1 ·S2 = (S2−S
2

1
−S

2

2
)/2 = h̄2/4 for triplet state |1, 0� = [|+−�+ |−+�]/

√
2,

and = −3h̄2/4 for a singlet state |0, 0� = [|+−�− |−+�]/
√
2. Therefore H|1, 0� = +∆|1, 0�

andH|0, 0� = −3∆|0, 0�. Also, for t ≤ 0, the system is in the state |+−� = [|1, 0�+|0, 0�]/
√
2.

To solve exactly, go back to basics and use (2.1.5), using (2.1.28) and initial conditions at
t0 = 0. That is, put |α, 0� = |+−� = [|1, 0�+ |0, 0�]/

√
2, so that at time t the state vector is

|α, t� = e−iHt/h̄
|α, 0� =

1
√
2

�
e−i∆t/h̄

|1, 0�+ e3i∆t/h̄
|0, 0�

�
Therefore,

|�+− |α, t�|2 =
1

4

��e−i∆t/h̄ + e3i∆t/h̄
��2 = 1 + cos(4∆t/h̄)

2
,

|�−+ |α, t�|2 =
1

4

��e−i∆t/h̄
− e3i∆t/h̄

��2 = 1− cos(4∆t/h̄)

2
,

and |�++ |α, t�|2 = 0 = |�− − |α, t�|2.

For perturbation theory, back to (5.7.17). For the states |n� = {|++�, |+−�, |−+�, |−−�},
we need the matrix elements �n|H|+−� = [|1, 0�+ |0, 0�]/

√
2. Also note that |++� = |1, 1�

and | − −� = |1,−1�. Therefore �+ + |H| + −� = 0 = �− − |H| + −� and there is no (first
order) transition to these states, in agreement with the exact solution. We are left with

c(1)−+(t) = −
i

h̄

�
t

0

ei(0)t
�
�−+ |H|+−�dt� = −

i

h̄

t

2
[�1, 0|− �0, 0|] [∆|1, 0� − 3∆|0, 0�] = −

2i∆t

h̄

so the transition probability is |c(1)−+(t)|
2 = 4∆2t2/h̄2. Expanding the exact solution for

small times gives |�−+ |α, t�|2 = (1/2)(4∆t/h̄)2/2 = 4∆2t2/h̄2, in agreement with first order
perturbation theory. In the sense that the probabilities sum to one, this also agrees with
the probability |�+− |α, t�|2, but applying the first order formula in (5.7.17) to the state
|n� = |+−� = |i� does not give agreement.

30. The exact solution follows from (5.5.15); note the missing “=” sign. We have

ih̄ċ1 = V12(t)e
i(E1−E2)t/h̄c2 = γei(ω−ω0)tc2 with c1(0) = 1

and ih̄ċ2 = V21(t)e
i(E2−E1)t/h̄c1 = γe−i(ω−ω0)tc1 with c2(0) = 0

where ω0 ≡ (E2 − E1)/h̄ = ω21 and |c1(t)|2 + |c2(t)|2 = 1. Recast these equations using the
changes c1(t) = a1(t)ei(ω−ω0)t/2 and c2(t) = a2(t)e−i(ω−ω0)t/2 with |a1(t)|2+ |a2(t)|2 = 1 to find

ih̄ȧ1 − h̄[(ω − ω0)/2]a1 = γa2 with a1(0) = 1

and ih̄ȧ2 + h̄[(ω − ω0)/2]a2 = γa1 with a2(0) = 0

To solve, write a1 = a0
1
eiΩt and a2 = a0

2
eiΩt for constants a0

1
and a0

2
. Then

h̄[Ω+ (ω − ω0)/2]a
0

1
+ γa0

2
= 0

γa0
1
+ h̄[Ω− (ω − ω0)/2]a

0

2
= 0
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Nontrivial solutions are only possible for Ω = ±[γ2/h̄2 + (ω − ω0)2/4]1/2. Taking Ω > 0 we
write the solutions as a1(t) = αeiΩt + βe−iΩt and a2(t) = rααeiΩt + rββe−iΩt where

rα =
Ω+ (ω − ω0)/2

γ/h̄
= −

γ/h̄

Ω− (ω − ω0)/2
and rβ = −

Ω− (ω − ω0)/2

γ/h̄
=

γ/h̄

Ω+ (ω − ω0)/2

Now a1(0) = α + β = 1 and a2(0) = rαα + rββ = 0, so α − rαα/rβ = α(1 − rα/rβ) = 1.
Therefore a2(t) = 2irαα sinΩt where

2irαα = 2i
rα

1− rα/rβ
= 2i

rαrβ
rβ − rα

=
−2i

2Ω/(γ/h̄)
=

γ

ih̄Ω

We therefore have ih̄ċ2(0) = ih̄a0
2
Ω = γc1(0) = γ and

c2(t) =
γ

ih̄Ω
e−i(ω−ω0)t/2 sinΩt so |c2(t)|

2 =
γ2

h̄2Ω2
sin2 Ωt and |c1(t)|

2 = 1− |c2(t)|
2

which agree with the solution given in the problem and also in (5.5.21). We can also find
c1(t) directly, as α = rβ/(rβ − rα) and β = −rα/(rβ − rα), so

c1(t) = (αeiΩt + βe−iΩt)ei(ω−ω0)t/2 =
γ

2h̄Ω
(rβe

iΩt + rαe
−iΩt)ei(ω−ω0)t/2

It is worthwhile to check that the normalization condition is maintained. We have

|c1(t)|
2 =

γ2

4h̄2Ω2

�
r2
β
+ r2

α
+ rαrβ(e

2iΩt + e−2iΩt)
�
=

γ2

4h̄2Ω2

�
r2
β
+ r2

α
− 2 cos 2Ωt

�

=
γ2

4h̄2Ω2

�
Ω+ (ω − ω0)/2

Ω− (ω − ω0)/2
+

Ω− (ω − ω0)/2

Ω+ (ω − ω0)/2
− 2 cos2 Ωt+ 2 sin2 Ωt

�

=
γ2

2h̄2Ω2

h̄2

γ2

�
Ω2 +

(ω − ω0)2

4
+

γ2

h̄2

�
1− 2 sin2 Ωt

��

=
1

2Ω2

�
2Ω2

− 2
γ2

h̄2
sin2 Ωt

�
= 1−

γ2

h̄2Ω2
sin2 Ωt = 1− |c2(t)|

2

So much for the exact solution. For perturbation theory, go back to (5.7.17), that is

c(1)
2

= −
i

h̄

�
t

0

eiω0t
�
γe−iωt

�
dt� = γ

e−i(ω−ω0) − 1

h̄(ω − ω0)
and therefore,

���c(1)2

���
2

=
γ2

h̄2(ω − ω0)2
[2− 2 cos(ω − ω0)t] =

γ2

h̄2 (ω−ω0)
2

4

sin2

�
ω − ω0

2
t

�

This agrees with the exact solution only for γ � |ω − ω0|/2, in which case Ω ≈ |ω − ω0|/2.
This makes sense. For ω ≈ ω0, that is near resonance, the effect will be large and we don’t
expect perturbation theory to hold.
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31. Take V (t) → V eηt and consider the second order expression in (5.7.17). Then

c(2)
n
(t) =

�
−i

h̄

�2 �

m

�
t

−∞
dt�

�
t
�

−∞
dt��Vnme

(iωnm+η)t�Vmie
(iωmi+η)t��

=

�
−i

h̄

�2 �

m

VnmVmi

1

iωmi + η

�
t

−∞
dt�e(iωni+2η)t�

=

�
i

h̄

�2 e(iωni+2η)t

iωni + 2η

�

m

VnmVmi

iωmi + η
=

eiωnite2ηt

En − Ei − 2ih̄η

�

m

VnmVmi

Em − Ei − ih̄η

=
�

m

VnmVmi

(Em − Ei − ih̄η)(En − Ei − 2ih̄η)
+

eiωnite2ηt − 1

En − Ei − 2ih̄η

�

m

VnmVmi

Em − Ei − ih̄η

Now we can let η → 0. The first term above becomes the first term in (5.7.36). In the text,
the second term in (5.7.36) is argued to give no contribution to a transition probability that
grows with t. However, this is not the case for the second term above. Letting η → 0 gives
the factor [eiωnit − 1]/(En − Ei) → t/h̄ as ωni → 0.

32. The eigenvalues and eigenstates of H0 = AS1 · S2 = (A/2)(S2 − S
2

1
− S − 22) are

well known. They are −3Ah̄2/4 for |0, 0� = [| + −� − | − +�]/
√
2 ≡ |1(0)�, and Ah̄2/4 for

|1, 0� = [|+−�+ |−+�]/
√
2 ≡ |2(0)�, |1,−1� = |−−� ≡ |3(0)�, and |1,+1� = |++� ≡ |4(0)�.

The perturbation V = (eB/mec)(S1z − S2z) gives no first order energy shifts, since all
matrix elements �n(0)|V |n(0)� = 0. This is easy to see, since (S1z − S2z)|1

(0)� = h̄|2(0)�,
(S1z −S2z)|2

(0)� = h̄|1(0)�, and (S1z −S2z)|3
(0)� = 0 = (S1z −S2z)|4

(0)�. This also shows that
all matrix elements �m(0)|V |n(0)� = 0 for the degenerate subspace m,n = 2, 3, 4. Therefore
there are no zero energy denominators in (5.1.42) and we can use nondegenerate second order
perturbation theory to find the energy eigenvalues. We find energy shifts ∆3 = 0 = ∆4 and

∆1 =
|V12|

2

E(0)

1
− E(0)

2

=
e2B2

m2
e
c2

|�1(0)|(S1z − S2z)|2
(0)�|2

−3Ah̄2/4− Ah̄2/4
= −

e2B2

m2
e
c2A

∆2 =
|V21|

2

E(0)

2
− E(0)

1

= −∆1 = +
e2B2

m2
e
c2A

These agree exactly with the exact eigenvalues for the triplet m = ±1 states |3(0)� and |4(0)�.
Expanding the exact solutions for the two m = 0 states for eBh̄/mec � Ah̄2,

E = −
h̄2A

4

�
1± 2

�
1 +

1

2
4

�
eB

mech̄A

�2
��

= −
h̄2A

4
(1± 2)∓

e2B2

m2
e
c2A

which agrees with the zeroth order eigenvalues plus the second order energy shifts. The first
order wave functions from (5.1.44) are |3� = |3(0)�, |4� = |4(0)�,

|1� = |1(0)�+ |2(0)�
V21

E(0)

1
− E(0)

2

= |1(0)� − |2(0)�
eB

mecAh̄
and |2� = |2(0)�+ |1(0)�

eB

mecAh̄
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Now introduce an oscillating magnetic field B̃ = B̃eiωtn̂ where h̄ω = E1−E2, and the problem
asks for which direction n̂ = ẑ or n̂ = x̂ is needed to induce transitions between the states
we’ve labeled |1� and |2�. The interaction Hamiltonian is µ · B̃ = (eB̃/mec)eiωt(S1 −S2) · n̂,
so we need to examine the matrix elements �1|(S1z − S2z)|2� and �1|(S1x − S2x)|2�. Note
from above that |1� and |2� each contain components in the direction of |1(0)� and |2(0)�.

First consider �1|(S1z −S2z)|2� since most of that work is done above. We have already seen
that �1(0)|(S1z − S2z)|1

(0)� = 0 = �2(0)|(S1z − S2z)|2
(0)�. However

�1(0)|(S1z − S2z)|1
(0)
� =

1

2
[�+− |− �−+ |] (S1z − S2z) [|+−�+ |−+�]

=
h̄

4
[�+− |− �−+ |] [|+−� − |−+�+ |+−� − |−+�] =

h̄

2
�= 0

So, an oscillating magnetic field in the z-direction will cause transitions between |1� and |2�.

For �1|(S1x − S2x)|2� calculate (S1x − S2x)|1
(0)�. Use Sx = (h̄/2)[|+��−| + |−��+|] from

(3.2.1). Then calculate S1x |1
(0)� = (h̄/2

√
2)[−|++�+ |−−�] = (h̄/2

√
2)[|3(0)� − |4(0)�] and

S2x |1
(0)� = −(h̄/2

√
2)[|3(0)�−|4(0)�], so (S1x−S2x)|1

(0)� = (h̄/
√
2)[|3(0)�−|4(0)�]. However, all

of the |n(0)� are orthogonal. Therefore �1|(S1x − S2x)|2� = 0 and there will be no transitions
for an oscillating magnetic field in the x-direction. Similarly for the y-direction.

33. The essential physics in this problem has to do with the proton magnetic moment being
much smaller than that of the electron. Therefore, the interaction of the external magnetic
field with the proton is neglected. Mathematically, the degeneracy ends up getting treated
differently, but pretty much everything else is the same. I am just reproducing here what was
published in the old solutions manual, which does not deal with a comparison to the exact
eigenvalues, but I want to look into reformulating the problem at some point in the future.
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34. Following (5.8.1), the interaction piece of the Hamiltonian is V = −(e/mec)A · p, for
the gauge condition ∇ ·A = 0, and ignoring A

2 terms. As seen in (5.8.5) and the attendant
discussion, we take for emission A(x, t) = A0ε̂ exp(−iωn̂ · x/c) exp(+iωt) for polarization
vector ε̂, although the photon field is in fact real, given by (5.8.3). Since the process “is
known to be an E1 transition”, we invoke the long wavelength approximation and take the
leading term in exp(−iωn̂ · x/c) → 1. The transition rate for emission, following (5.8.8), is

wi→n =
2π

h̄

e2

m2
e
c2

|A0|
2
|�n|(ε̂ · p)|i�|2 δ(En − Ei + h̄ω),

Next, as in (5.8.21), make use of [x, H0] = [x,p2]/2me = ih̄p/me, and therefore

�n|p|i� =
me

ih̄
�n|[x, H0]|i� =

me

ih̄
(Ei − En)�n|x|i� = imeωni�n|x|i� ≡ imeωnidni

and the quantity |ε̂ · dni|
2 should tell us the angular distribution. We’ll take dni as the

angular momentum quantization (“z-”) axis. (Since “the magnetic quantum number of
the atom decreases by one”, we must be able to distinguish m states. Thus, some small
perturbation breaks the degeneracy, and defines the z-axis.) Let the photon be emitted in
the xz-plane. Then n̂ = x̂ sin θ + ẑ cos θ for polar angle θ. The polarization unit vector ε̂ is
normal to n̂ so we can write it as ε̂ = − sinα cos θx̂+ cosαŷ + sinα sin θẑ.

Now write |i� = |l,m� and |n� = |l�,m − 1� where we know that l and l� must differ by an
odd integer. Also write x = xx̂+ yŷ + zẑ = r(x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ) as

x = r
�

2π/3Y −1

1
(x̂+ iŷ)− r

�
2π/3Y 1

1
(x̂− iŷ) + r

�
4π/3Y 0

1
ẑ

These terms are proportional to a spherical tensor T (1)

q for q = −1,+1, 0, respectively, so by
(3.11.28), �n|T (1)

q |i� = �l�,m− 1|T (1)

q |l,m� is nonzero only for m− 1 = q +m or q = −1. So

ε̂ · �n|x|i� ∝ ε · (x̂+ iŷ) = εx+ iεy = − sinα cos θ+ i cosα =
i

2
eiα(1+cos θ)+

i

2
e−iα(1−cos θ)

and a photon emitted in the +ẑ (−ẑ) direction, seems to have right (left) handed circular po-
larization. This makes sense, since the Lz for the atom decreased by one unit, and the photon
carries off the difference. For emission angles 0 < θ < 180◦, the photon also carries off some
“orbital” angular momentum. Since �(ε2

x
+ ε2

y
)� = �sin2 α sin2 θ� ∝ sin2 θ, the (polarization

averaged) angular distribution is sin2 θ, the same as for classical dipole radiation.

35. Have �x|i� = (1/a0)3/2 exp(−r/a0)/
√
π and �x|f� = (2/a0)3/2 exp(−2r/a0)/

√
π. So, the

probability amplitude is �i|f� =
�
d3x�i|x��x|f� = 4π(23/2/πa3

0
)
�
r2dr exp(−3r/a0). Using

Mathematica I find
�
r2dr exp(−3r/a0) = 2a3

0
/27 so �i|f� = 8

√
2 × (2/27) and |�i|f�|2 =

29/36 = 0.702 is the probability to find the atom in the 3He+ ground state. The decay
electron leaves the neighborhood in a time T = 1Å/v where mev2/2 ≈ 10 keV. Therefore
v/c ≈ (20/511)1/2 and T ≈ 10−18 sec, whereas (see page 346) 2π/ωab ∼ h/10 eV∼ 10−15 sec.
Thus T � 2π/ωab and the condition for the sudden approximation is satisfied.
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36. This problem shows that Berry’s Phase is a real number, and it is not hard, but the
notation is a little tricky. Remember that a differential operator acts to the right, and that
you can differentiate a ket (or a bra) with respect to the parameters on which it depends,
and get a different ket (or bra). Being very explicit to make this clear, we have

0 = ∇R [1] = ∇R [�n; t|n; t�] = ∇R [(�n; t|) (|n; t�)] = (∇R�n; t|) |n; t�+ �n; t| (∇R|n; t�)

However (∇R�n; t|) |n; t� = (�n; t| [∇R|n; t�])
∗. So �n; t| [∇R|n; t�] = − (�n; t| [∇R|n; t�])

∗, in
which case it is a purely imaginary quantity. Therefor An(R) in (5.6.23) must be real.

37. The state vector is well known, in Problem 1.11 and (3.2.52). In spherical coordinates,

|n; t� = cos

�
θ

2

�
|+�+ eiφ sin

�
θ

2

�
|−�

To be sure, we want the state |n; t� which depends on the vector-of-parameters R(t) that is
the magnetic field. However, the state does not depend on the magnitude of the field, only on
the field’s coordinates, in the usual three spatial coordinates. Consequently, a gradient with
respect to Bθ or Bφ is the same as the usual three dimensional spatial gradient. Therefore

∇R|n; t� =

�
θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ

�
|n; t�

= −
1

2
sin

�
θ

2

�
θ̂|+�+ eiφ

1

2
cos

�
θ

2

�
θ̂|−�+

i

sin θ
eiφ sin

�
θ

2

�
φ̂|−�

�n; t| [∇R|n; t�] =
i

sin θ
sin2

�
θ

2

�
φ̂

An(R) = i�n; t| [∇R|n; t�] = −
1

sin θ
sin2

�
θ

2

�
φ̂ ≡ Aφ(θ)φ̂

∇R ×An(R) = r̂
1

sin θ

∂

∂θ
(sin θAφ) = −r̂

1

sin θ
2
1

2
sin

�
θ

2

�
cos

�
θ

2

�
= −r̂

1

2

At this point, you will notice that we have essentially derived the first part of (5.6.42) for
this particular state vector. The rest follows from the definition of the solid angle, but for
the sake of completeness, we can carry it through. So

γn(C) =

�
[∇R ×An(R)] · da = −

1

2

�
r̂ · da = −

1

2
Ω

If you really want, you could carry out the integral, at which point you will simply derive
the expression for the solid angle subtended by a cone of half-angle θ, namely 2π(1− cos θ).
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38. Write V (x, t) = [exp(kz−ωt) + exp(−kz+ωt)]/2. Following (5.8.6), only keep the first
term since Ei < Ef and only absorption of h̄ω is important. The absorption rate (5.7.35) is

wi→f =
2π

h̄

�
V0

2

�2 ���p|eikz|0�
��2 δ(Ep − E0 − h̄ω)

where E0 is the energy of the ground state |0�, and Ep is the energy of the state |p�, taken
to be a plane wave with momentum p. Inserting 1 =

�
d3x�|x���x�|, the matrix element is

�p|eikz|0� =
1
√
π

�
1

a0L

�3/2 �
d3x� e−ip·x�

/h̄eikz
�
e−r

�
/a0 =

1
√
π

�
1

a0L

�3/2 �
d3x� e−iq·x�

e−r
�
/a0

where q ≡ kẑ− p/h̄. To evaluate this integral, let q define the z� direction. Then,

�
d3x� e−iq·x�

e−r
�
/a0 = 2π

� ∞

0

r�
2
dr�e−r

�
/a0

�
1

−1

d(cos θ�)e−iqr
� cos θ� =

4πa3
0

(1 + a2
0
q2)2

(For more detail, see the solution to Problem 41.)

The problem asks for a comparison to the photoelectric effect, so let’s first retrace the steps
that lead to the differential cross section (5.8.36). We start with the absorption cross section
(5.8.14) and integrate with the correct density of states ρ(E). We are concerned with the
number of states for ejected electron energies between E and E+dE which move into a solid
angle dΩ. As in Section 2.5, we quantize in a “big box” of side length L, the energy (5.8.30)
is E = p

2/2me = h̄2k2

f
/2me = (2πh̄)2n2/2meL2 where n2 = n2

x
+ n2

y
+ n2

z
and nx, ny, and nz

are (positive, negative, or zero) integers, and following the textbook we put p2 = h̄2k2

f
with

kf ≡ (2π/L)n. Note that a value of n uniquely specifies the value of the energy E.

Now consider the number of states in n space, for large values of n. There is one state
for each point (nx, ny, nz). Also, the electron momentum vector p points in the direction
(nx, ny, nz), so the solid angle dΩ is in n space. Therefore, the number of states between E
and E + dE ejected into solid angle dΩ is obtained by counting the number of states in a
thin spherical shell of thickness dn for this solid angle. That is

ρ(E) = n2dndΩ = n2
dn

dE
dEdΩ = n2

�
L

2πh̄

�2 me

n
dEdΩ =

�
L

2π

�3 me

h̄2
kfdEdΩ

which is (5.8.31). Then, multiplying (5.8.14) by ρ(E) and integrating over the energy E

dσ

dΩ
=

4π2h̄

m2
e
ω

�
e2

h̄c

� ���n|ei(ω/c)(n̂·x)ε̂ · p|i�
��2
�

L

2π

�3 me

h̄2
kf

which in fact is the same as (5.8.32), with α ≡ e2/h̄c. At this point, the book’s description
is straightforward. Integrating by parts, one turns �n|ei(ω/c)(n̂·x)ε̂ · p|i� into ε̂ · kf times our
integral, above. The result is (5.8.36).
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So, now return to the problem at hand. Integrating over Ep after inserting the same density
of states, the decay rate wi→f becomes

dw

dΩ
=

2π

h̄

�
V0

2

�2 1

π

�
1

a0L

�3 � 4πa3
0

(1 + a2
0
q2)2

�2 � L

2π

�3 me

h̄2
kf =

meV 2

0
a3
0

πh̄3

kf
(1 + a2

0
q2)4

Checking dimensionality, (ME2L3/E3T 3)(1/L) = ML2/ET 3 = ML2/[(ML2/T 2)T 3 = 1/T .
The angular distribution here is contained in the dependence on q2. It is similar to the
angular distribution (5.8.36), except for the factor (ε̂ · kf )2 = k2

f
sin2 θ cos2 φ.

This is a peculiar perturbation, a wave traveling in the z-direction but with no polarization.
Indeed, the polarization of a true electromagnetic wave leads to the additional angular de-
pendence. It isn’t clear to me how one might create such a perturbation, independent of the
a magnetic field that would be generated Maxwell’s Equations.

39. From (B.2.4) the energy is E = h̄2n2π2/2mL2 for n = 1, 2, 3, . . . and we consider n � 1.
There are dn states between n and n+ dn, and dE = h̄2ndnπ2/mL2, so we have

dn

dE
=

mL2

h̄2π2

1

n
=

mL2

h̄2π2

h̄π

L

�
1

2mE

�1/2

=
L

h̄π

� m

2E

�1/2

Note that L/h̄ has dimensions of 1/momentum and m/E has dimensions 1/velocity2 so that
dn/dE has dimensions 1/momentum×velocity= 1/energy. Note: This does not agree with
the old solutions manual, but they count states as ndn, which is the two-dimensional case.

40. We start from (5.8.32). As in (5.8.33) we need to evaluate

�kf |e
i(ω/c)(n̂·x)ε̂·p|i� = ε̂·

�
d3x�kf |x�e

i(ω/c)(n̂·x)
�x|p|i� = −ih̄ε̂·

�
d3x

e−ikf ·x

L3/2
ei(ω/c)(n̂·x)∇ψ(x)

where ψ(x) ≡ �x|i�. Following the text and integrating by parts, we are led to evaluate

ε̂ ·∇[e−ikf ·xei(ω/c)(n̂·x)] = ε̂ · [−ikf + i(ω/c)n̂]e−ikf ·xei(ω/c)(n̂·x) = −i(ε̂ · kf )e
−ikf ·xei(ω/c)(n̂·x)

since ε̂·n̂ for the electromagnetic wave. Now ψ(x) is the ground state wave function of the 3D
harmonic oscillator with Hamiltonian is H = p

2/2m+mω2

0
x
2/2 = Hx +Hy +Hz where the

Hi are the corresponding 1D Hamiltonians. Therefore ψ(x) = (mω0/πh̄)3/4 exp(−mω0r2/2h̄)
using (B.4.3). Defining q ≡ kf − (ω/c)n̂ we have

�kf |e
i(ω/c)(n̂·x)ε̂ · p|i� = ih̄(ε̂ · kf )

1

L3/2

�mω0

πh̄

�3/4
�

d3x e−iq·xe−mω0r
2
/2h̄

The integral can be written as IxIyIz where Ix ≡
�
dx exp(−iqxx) exp(−mω0x2/2h̄), etc.

With iqxx+mω0x2/2h̄ = (mω0/2h̄)(x2 + 2ih̄qxx/mω0 − h̄2q2
x
/m2ω2

0
) + h̄q2

x
/2mω0, we have

Ix = exp(−h̄q2
x
/2mω0)

� ∞

−∞
dx exp[−(mω0/2h̄)(x+ ih̄qx/mω0)

2] =

�
2πh̄

mω0

�1/2

e−h̄q
2
x/2mω0
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So now return to (5.8.32). The differential cross section becomes

dσ

dΩ
=

4π2αh̄3

m2ω
(ε̂ · kf )

2
1

L3

�mω0

πh̄

�3/2
�
2πh̄

mω0

�3

exp

�
−

h̄q2

mω0

�
mkfL3

h̄2(2π)3

=
4αh̄2

m2ωω0

kf (ε̂ · kf )
2

�
πh̄

mω0

�1/2

exp

�
−

h̄q2

mω0

�

Using the coordinate system in Fig. 5.12, we find (5.8.37), that is (ε̂ ·kf )2k2

f
sin2 θ cos2 φ and

q
2 = k2

f
− 2kf (ω/c) cos θ + (ω/c)2. Putting this all together,

dσ

dΩ
=

4αh̄2k3

f

m2ωω0

sin2 θ cos2 φ

�
πh̄

mω0

�1/2

exp

�
−

h̄

mω0

�
k2

f
+
�ω
c

�2
��

exp

�
2h̄kf

ω

mcω0

cos θ

�

41. The real point is to calculate the Fourier transform φ(p) of the 1S state of the hydrogen
atom. It is relevant for deriving (5.8.36). We have (with p defining the “z” axis)

φ(p) =
1

(2πh̄)3/2

�
d3x e−ip·x/h̄ψ(x) =

1

(8π4a3h̄3)1/2

�
d3x e−ip·x/h̄e−r/a

=
1

(2π2a3h̄3)1/2

� ∞

0

r2dr e−r/a

�
1

−1

d(cos θ) e−ipr cos θ/h̄

=
1

(2π2a3h̄3)1/2
h̄

p

� ∞

0

r sin
�p
h̄
r
�
e−r/adr =

1

(2π2a3h̄3)1/2
2h̄4a3

(h̄2 + a2p2)2

so |φ(p)|2 =
2h̄5

π2

a3

(h̄2 + a2p2)4

where the integral was evaluated with Mathematica.

42. Note. The previous solution manual refers to Sakurai “Advanced Quantum Mechanics”,
pages 41–44, for the solution to this problem. That uses a quantized electromagnetic field,
however. Here I give a solution within the context of the present textbook.

The lifetime τ(2p → 1s) is the inverse of the transition rate (5.8.8), evaluating the matrix
element and integrating over final states. An important ingredient, though, is the electro-
magnetic field normalization A0, which is not discussed in the book. We can determine this,
however, by integrating the energy density over our “big box” of slide length L, and setting
it equal to h̄ω. That is, the electromagnetic energy must equal that of the emitted photon.

Start with (5.8.3) with k ≡ ωn̂/c = (2π/L)(nxx̂ + nyŷ + nzẑ). That is, imposed periodic
boundary conditions in our big box, with L → ∞ at the end of the calculation. One finds

E = −
1

c

∂A

∂t
= 2A0kε̂ sin(k · x− ωt) and B = ∇×A = 2A0(ε̂× k) sin(k · x− ωt)
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The energy density is u = (E2 +B
2)/8π. Note that (ε̂× k)2 = ε̂2k2 − (ε̂ · k)2 = k2 since ε̂

is a unit vector perpendicular to the propagation direction k. Therefore

u =
k2

π2
A2

0
sin2(k · x− ωt) =

k2

2π
A2

0
[1− cos 2(k · x− ωt)]

The cosine term integrates to zero with our periodic boundary conditions. Therefore
�

L3

dx u =
k2

2π
A2

0
L3 =

ω2

2πc2
A2

0
L3 = h̄ω so A0 =

�
2πh̄c2

ωL3

which agrees with (7.6.21). To get the density of states for the photon, write the energy
E = h̄ω = h̄kc = 2πh̄cn/L. As in Problem 38, but this time integrating over solid angle,

ρ(E) = 4πn2dn = 4πn2
dn

dE
dE = 4π

h̄2ω2L2

4π2h̄2c2
L

2πh̄c
dE =

ω2

2π2h̄c3
L3dE

Now the matrix element. The photon wavelength is hundreds of nm, whereas the atom has
a size ∼ 0.1 nm, so use the first term in (5.8.15); indeed, the 2p → 1s transition is E1. So,

�1s|ei(ω/c)(n̂·x)ε̂ · p|2p� = �1s|ε̂ · p|2p� =
me

ih̄
�1s|ε̂ · [x, H0]|2p� = −imeω�1s|ε̂ · x|2p�

But the state |2p� could be any one of three states with m = 0,±1. We separate these using

ε̂ · x =
εx − iεy

√
2

x+ iy
√
2

+
εx + iεy
√
2

x− iy
√
2

+ εzz =

�
4π

3

�
−ε−rY

+1

1
+ ε+rY

−1

1
+ ε0rY

0

1

�

where ε± ≡ (εx ± iεy)/
√
2 and ε0 ≡ εz. Since the Y m

l
are spherical tensor operators, by

(3.11.28) the matrix elements �1s|Y q

1
|2p,m� are nonzero only if m = −q. Furthermore, by

(3.11.31) �1s|Y q

1
|2p,m� = �11;−q, q|11; 00��1s||Y1||2p�/

√
3, so only calculate for q = 0, i.e.

�1s|z|2p,m = 0� = 2π

√
3

4π

2

23/2a3
0

1

a0
√
3

� ∞

0

r2dr

�
1

−1

d(cos θ) e−r/a0 r cos θ re−r/2a0

=

�
1

8

1

a4
0

2

3

� ∞

0

r4e−3r/2a0dr =
1

3
√
2

1

a4
0

28

34
a5
0
=

215/2

35
a0

so �1s||rY1||2p� =

√
3�1s|rY 0

1
|2p, 0�

�11; 00|11; 00�
=

√
3

−1/
√
3

�
3

4π
�1s|z|2p, 0� = −

�
3

4π

215/2

34
a0

and �1s|ε̂ · x|2p,m� =
1
√
3

�
−ε−

1
√
3
δm,−1 + ε+

1
√
3
δm,+1 − ε0

1
√
3
δm,0

��
−
215/2

34
a0

�

Note that all three matrix elements have the same value. For the transition rate, average
over these, with |ε−|2 + |ε+|2 + |ε0|2 = 1. Finally, integrate (5.8.8) over final states to get

w = 2×
2π

h̄

e2

m2
e
c2

2πh̄c2

ωL3
m2

e
ω2

1

3

�
a2
0

215

310

�
ω2

2π2h̄c3
L3 =

217

311
e2

h̄c

a2
0

c2
ω3

=
217

311
e2

h̄c

a2
0

c2

�
1

h̄

e2

2a0

�
1−

1

22

��3
=

28

38

�
e2

h̄c

�4 c

a0
=

28

38

�
e2

h̄c

�5 mec2

h̄
=

1

τ

This agrees with, for example, Townsend (2012) Eq. (14.168). Using mec2 = 0.511 MeV and
h̄ = 6.58× 10−16 eV·s, we find τ = (6.58/0.511)× 10−22 · 1375 · (3/2)8 = 1.59× 10−9 sec.
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Chapter Six

1. The problem is to solve the Lippman-Schwinger equation (6.2.2) for a one-dimensional
potential. Ignore the comment about “Is the prescription E → E + iε?” and just consider
scattering forward in time. That is, we want the solutions ψ(+)(x) ≡ �x|ψ+)� to the equation

ψ(+)(x) = φ(x) +

�
dx�

�
x

����
1

E −H0 + iε

���� x
�
�
�x�

|V |ψ(±)
�

= φ(x) +
2m

h̄2

�
a

−a

dx�G(+)(x, x�)V (x�)ψ(±)(x�)

where φ(x) ≡ �x|i� = eikx/
√
2π and G(+)(x, x�) ≡ h̄

2

2m

�
x
��� 1

E−H0+iε

��� x�
�
. Now drop the super-

script “(+)”. To find G(x, x�), insert complete sets of (continuous) momentum states. We
have E = h̄2k2/2m, and make the definition p ≡ h̄q. Therefore

G(x, x�) =
h̄2

2m

� ∞

−∞
dp

� ∞

−∞
dp� �x|p�

�
p

����
1

E −H0 + iε

���� p
�
�
�p�|x�

�

=
h̄2

2m

� ∞

−∞
dp

� ∞

−∞
dp�

eipx/h̄
√
2πh̄

�p|p��

E − p�2/2m+ iε

e−ip
�
x
�
/h̄

√
2πh̄

=
1

2πh̄

h̄2

2m

� ∞

−∞
dp

eip(x−x
�)/h̄

E − p2/2m+ iε
= −

1

2π

� ∞

−∞
dq

eiq(x−x
�)

(q − q0)(q + q0)

with q0 ≡ k(1 + iε), redefining ε but keeping the same sign. Do the integral with a half-
infinite-complex-plane contour. For x > x�, close the contour (counter clockwise) in the
upper plane and the exponential factor goes to zero along the semicircle; this picks up a pole
at q = +q0. For x < x�, close (clockwise) in the lower plane, with pole at q = −q0. Therefore

G(x, x�) = −
1

2π
(+2πi)

eik(x−x
�)

k + k
=

1

2ik
eik(x−x

�) for x > x�

and G(x, x�) = −
1

2π
(−2πi)

e−ik(x−x
�)

−k − k
=

1

2ik
e−ik(x−x

�) for x < x�

which agrees with (239) in Sec. 4.4 of Gottfried and Yan (2003). For V (x) = −γ(h̄2/2m)δ(x),
find ψ(x) = φ(x)− γG(x, 0)ψ(0). Since G(0, 0) = 1/2ik, have ψ(0) = φ(0)/(1 + γ/2ik). So,

ψ(x) =
1

√
2π

�
eikx −

γ

2ik + γ
eikx

�
=

1
√
2π

2ik

2ik + γ
eikx for x > 0

and ψ(x) =
1

√
2π

�
eikx −

γ

2ik + γ
e−ikx

�
for x < 0

so T (k) = 2ik/(2ik+ γ) and R(k) = −γ/(2ik+ γ), in agreement with (4.4.267) of Gottfried
and Yan (2003). Note that |T (k)|2 + |R(k)|2 = 1. The attractive δ-function potential was
solved in Problem 2.24, with V (x) = −ν0δ(x). The bound state energy was found to be
E = −mν2

0
/2h̄2 = −h̄2γ2/8m, i.e. k = iγ/2, i.e. the poles of T (k) and R(k).
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2. The first order Born approximation is �k�|V |ψ(+)� = �k�|T |k� ≈ �k�|V |k� using (6.3.1)
and (6.3.2). Using (6.2.6), (6.2.7), (6.2.22), and (6.2.23) the total cross section is

σtot =

�
mL3

2πh̄2

�2 �
dΩk��k

�
|V |k��k|V |k

�
�

=

�
mL3

2πh̄2

�2 �
dΩk� d3x d3x�

�k
�
|V |x��x|k��k|V |x

�
��x

�
|k

�
�

=

�
mL3

2πh̄2

�2 �
dΩk� d3x d3x� V (x)V (x�)�k�

|x��x|k��k|x
�
��x

�
|k

�
�

=

�
m

2πh̄2

�2 �
dΩk� d3x d3x� V (x)V (x�) eik·(x−x�)e−ik�·(x−x�)

The integral over Ωk� is easy. Put k̂�
z
in the direction of x−x

�, so k� ·(x−x
�) = k|x−x

�| cos θk� .
Then

�
dΩk�e−ik�·(x−x�) = 2π

�
1

−1
d(cos θk�)e−ik|x−x�| cos θk� = 4π sin[k|x−x

�|]/k|x−x
�|. (Recall

that |k| ≡ k = |k�|.) We can reduce the total cross section further if the potential is
spherically symmetric. In this case, every spatial direction x − x

� contributes equally to
the double position integral. So, we can average over all directions k, picking up a factor
(1/4π)

�
dΩk eik·(x−x�) = sin[k|x− x

�|]/k|x− x
�|. The result is

σtot =
m2

πh̄4

�
d3x d3x� V (r)V (r�)

sin2[k|x− x
�|]

k2|x− x�|2

The Optical Theorem (6.2.24), or (6.2.33), using (6.2.22) and (6.3.1), reads

σtot =
4π

k
Imf(k,k) = −

2mL3

h̄2k
Im�k|T |k�

The first order Born approximation from (6.3.2) gives zero, since T = V is real. Therefore

σtot = −
2mL3

h̄2k
Im

�
k

����V
1

E −H0 + iε
V

����k
�

= −
2mL3

h̄2k
Im

�
d3x d3x�

�k|V |x�

�
x

����
1

E −H0 + iε

����x
�
�
�x

�
|V |k�

= −
2m

h̄2k
Im

�
d3x d3x� V (r)V (r�)e−ik·(x−x�)2m

h̄2
G+(x,x

�)

=
4m2

h̄4k
Im

�
d3x d3x� V (r)V (r�)

sin[k|x− x
�|]

k|x− x�|

eik|x−x�|

4π|x− x�|

=
m2

πh̄4

�
d3x d3x� V (r)V (r�)

sin2[k|x− x
�|]

k2|x− x�|2

making use of (6.2.3) and (6.2.11), and the same “averaging over k” argument we used
above. That is, the second order Born approximation gives the same answer for the total
cross section when applied to the Optical Theorem.
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3. The figure is reprinted here from the original paper, along with vertical lines to help read
off the positions of the minima. We determine momentum transfer from q = 2k sin(θ/2)
where h̄2k2/2m = (h̄c)2k2/mc2 = 800 MeV, so k =

√
800 · 934/200 = 4.32/fm. For a square

well of radius a, the first three minima are at qa = 4.49, 7.73, and 10.9. (See page 401.) So,

Minimum #1 Minimum #2 Minimum #3
Isotope 1.4A1/3 θ q a θ q a θ q a
40Ca 4.79 7.95◦ 1.20 3.76 14.2◦ 2.12 3.65 20.9◦ 3.08 3.54
42Ca 4.87 7.85◦ 1.18 3.80 14.0◦ 2.09 3.70 20.5◦ 3.03 3.60
44Ca 4.94 7.6◦ 1.14 3.93 13.8◦ 2.06 3.75 20.1◦ 2.97 3.67
48Ca 5.09 7.3◦ 1.10 4.09 13.4◦ 2.00 3.86 19.5◦ 2.88 3.78

Several remarks are in order. Firstly, as mentioned in the text, the minimum shifts to
lower angles as the number of neutrons is increased. In other words, the radius increases
with neutron number, just as expected. The quantitative agreement with the liquid drop
formula a = 1.4A1/3 is marginal, but you can only expect so much when comparing one
crude approximation (liquid drop) with another (square well). The position of the minima,
though, are reasonably consistent with each other, each leading to a radius that is within
∼ 5% of the others for a given isotope.
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4. This problem, low energy scattering from a weak potential, makes a lot of use of the
properties of the spherical Bessel functions. Chapter 10 of the NIST Digital Library of
Mathematical Functions at http://dlmf.nist.gov/ is a good online reference.

We need to solve the radial Schrödinger Equation (6.4.55) for ul(r) = rAl(r) in the region
r ≤ R where V = V0. This is easy, since E − V0 ≡ h̄2κ2/2m, that is Al(r) = jl(κr) and
the logarithmic derivative (6.4.53) “just inside” r = R is βl = κRj�

l
(κR)/jl(κR). Note that

|V0| � E, so k ∼ κ and kR � 1 implies that κR � 1. This means we expand both to lowest
order, but this is tricky because (6.4.54) involves the Bessel functions and their derivatives,
which mix different orders. It turns out to be very useful to use the identity

f �
l
(x) =

l

x
fl(x)− fl+1(x)

where fl(x) is any spherical Bessel function. Therefore, the logarithmic derivative is

βl =
κR

jl(κR)
j�
l
(κR) =

κR

jl(κR)

�
l

κR
jl(κR)− jl+1(κR)

�
= l − κR

jl+1(κR)

jl(κR)

Also, for both the numerator and denominator in (6.4.54) we have

kR f �
l
(kR)− βl fl(kR) = kR

�
l

kR
fl(kR)− fl+1(kR)

�
−

�
l − κR

jl+1(κR)

jl(κR)

�
fl(kR)

= κR
jl+1(κR)

jl(κR)
fl(kR)− kR fl+1(kR)

Now jl(x) ≈ xl/(2l+ 1)!! for x � 1, so jl+1(κR)/jl(κR) = κR/(2l+ 3) to leading order. We
also know that nl(x) = −(2l − 1)!!/xl+1 for x � 1. Therefore (6.4.54) becomes

tan δl =
(κR)2jl(kR)/(2l + 3)− kR jl+1(kR)

(κR)2nl(kR)/(2l + 3)− kR nl+1(kR)

=
(κR)2(kR)l/(2l + 3)!!− (kR)l+2/(2l + 3)!!

−(2l − 1)!!(κR)2/[(2l + 3)(kR)l+1] + (2l + 1)!!/(kR)l+1

≈ (kR)2l+1
(κR)2 − (kR)2

(2l + 3)!!(2l + 1)!!
=

(kR)2l+3

(2l + 3)!!(2l + 1)!!

�
κ2

k2
− 1

�

where we ignore the first term in the denominator for kR � 1. Clearly l = 0 dominates, and

tan δ0 =
1

3
(kR)3

�
E − V0

E
− 1

�
= −

1

3
(kR)3

V0

E
= −

1

3
k
2mV0R3

h̄2
≈ δ0 ≈ sin δ0

That is, (6.4.40) gives an isotropic angular distribution. The total cross section (6.4.41) is

σtot =
4π

k2
sin2 δ0 =

16π

9

m2V 2

0
R6

h̄4
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The next most important term is the p-wave. The phase shift is

tan δ1 = −
1

45
(kR)5

V0

E
≈ δ1 ≈ sin δ1 � sin δ0

With just s- and p-waves, the differential cross section from (6.2.23) and (6.4.40) is

dσ

dΩ
=

1

k2

��eiδ0 sin δ0 + 3eiδ1 sin δ1 cos θ
��2 ≈ 1

k2

�
sin2 δ0 + 6 cos(δ0 − δ1) sin δ0 sin δ1 cos θ

�

which is of the form dσ/dΩ = A+B cos θ. Since δ1 � δ0 � 1, we have cos(δ0 − δ1) ≈ 1 and

B

A
=

6 sin δ1
sin δ0

=
6 · 3

45
(kR)2 =

2

5
(kR)2

5. Use orthogonality of the Legendre polynomials, i.e.
�

1

−1
Pm(x)Pn(x)dx = 2mδmn/(2n+1),

to find an expression for the expansion coefficients in (6.4.40). That is

2

k
eiδl sin δl = −

2m

h̄2

V0

µ

�
1

−1

Pl(x)dx

2k2(1− x) + µ2
= −

2m

h̄2k2

V0

µ

1

2

�
1

−1

Pl(x)dx

1 + µ2/2k2 − x
= −

V0

µE
Ql(α)

where α ≡ 1 + µ2/2k2 > 1 and E = h̄2k2/2m. For |δl| � 1, eiδl sin δl ≈ δl, so

δl = −
V0

E

k

2µ

l!

(2l + 1)!!

�
1

αl+1
+

(l + 1)(l + 2)

2(2l + 3)

1

αl+3
+

(l + 1)(l + 2)(l + 3)(l + 4)

2 · 4 · (2l + 3)(2l + 5)

1

αl+5
+ · · ·

�

All terms on the right are positive, so if V0 > 0 (i.e. repulsive), then δl < 0, but if V0 < 0,
then δl > 0. If λ = 2π/k � 1/µ, then µ/k � 1, so α ≈ µ2/2k2 � 1, and

δl ≈ −
V0

E

k

2µ

l!

(2l + 1)!!

1

αl+1
= −

mV0

h̄2kµ

l!

(2l + 1)!!

2l+1k2l+2

µ2l+2
= −

2l+1l!

(2l + 1)!!

mV0

h̄2µ2l+3
k2l+1

6. The ground state wave function is ψ(x) = A sin(kr)/kr, with k = π/a. (See Section
3.7, especially Page 210.) Use

�
d3x ψ2(x) = A2(4π/k2)

�
a

0
sin2 kr dr = A2(2πa/k2) = 1, so

A2 = k2/2πa = π/2a3. We need (∆x)2 = �x2� − �x�2 and (∆px)2 = �p2
x
� − �px�2, but by

spherical symmetry, �x� = 0 = �px�. Putting x = r sin θ cosφ, we have

�x2
� = A2

�
a

0

r2dr r2
sin2 kr

k2r2

�
π

0

sin θdθ sin2 θ

�
2π

0

dφ cos2 φ

=
π

2a3
a2

π2

a3(2π2 − 3)

12π2

4

3
π =

a2

9

�
1−

3

2π2

�

where I used Mathematica to do the integrals. For �p2
x
� = −h̄2

�
d3x ψ(x)∂2ψ(x)/∂x2, we

need to take derivatives with respect to x. Since r = (x2+y2+ z2)1/2, we have ∂r/∂x = x/r.
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Proceeding straightforwardly, we first find the second derivative of the wave function:

∂ψ

∂x
= A

�
k cos kr

kr
−

sin kr

kr2

�
x

r
=

A

k

x

r3
[kr cos kr − sin kr]

∂2ψ

∂x2
=

A

k

��
1

r3
− 3

x

r4
x

r

�
[kr cos kr − sin kr] +

x

r3
�
k cos kr − k2r sin kr − k cos kr

� x
r

�

=
A

k

1

r3
��

1− 3 sin2 θ cos2 φ
�
[kr cos kr − sin kr]− k2r2 sin2 θ cos2 φ sin kr

�

Now
�

π

0
sin θ dθ sin2 θ =

�
1

−1
dµ(1 − µ2) = 4/3 and

�
2π

0
dφ cos2 φ = π, so the solid angle

integrals
�
dΩ[1− 3 sin2 θ cos2 φ] = 4π − 3(4/3)π = 0 and

�
dΩ sin2 θ cos2 φ = 4π/3. Thus

�p2
x
� = h̄2

4π

3

A2

k

�
a

0

r2dr
sin kr

kr

k2

r
sin kr = h̄2

4π

3

π

2a3

�
a

0

sin2

�πr
a

�
dr =

h̄2

a2
π2

3

Therefore (∆x)2(∆px)2 = h̄2π2(1− 3/2π2)/27 = (h̄/1.796)2 > (h̄/2)2.

7. Oddly, this problem is worked out thoroughly in the text, but with a replaced by R, on
pages 416–417. The theorems you “may assume without proof” are in fact derived in the
book. See (6.2.23) and (6.4.40). The s-wave phase shift from (6.4.63) is δ0 = −ka. The very
low energy total cross section is σ = 4πa2 from (6.4.48). There is some discussion about the
difference between this and the geometric cross section in the textbook.

8. We need to evaluate ∆(b = l/k) from (6.5.14). For V (r) = V0 exp(−r2/a2),

∆(b) = −
m

2kh̄2

� ∞

−∞
V0e

−(b2+z
2)/a2dz = −

mV0

2kh̄2
e−b

2
/a

2

� ∞

−∞
e−z

2
/a

2
dz = −

mV0a
√
π

2kh̄2
e−b

2
/a

2

so δl = −(mV0a
√
π/2kh̄2) exp(−l2/k2a2). Clearly, δl → 0 “very rapidly,” i.e. exponentially

in the square of l, as l � ka.

For V (r) = V0 exp(−µr)/µr, rewrite with r2 = b2 + z2, so rdr = zdz and

∆(b) = −
m

2kh̄2

V0

µ

� ∞

−∞
e−µr

dz

r
= −

m

kh̄2

V0

µ

� ∞

b

e−µr
dr

(r2 − b2)1/2
= −

m

kh̄2

V0

µ

� ∞

1

e−µbsds

(s2 − 1)1/2

Mathematica says that the integral is K0(µb), the modified Bessel function of the second
kind, zero order, but I can’t find this explicit representation anywhere. I suppose one could
derive it from a contour integration of some of the other forms, but I’m not going to worry
about that. So, δl = −(mV0/µkh̄

2)K0(µl/k) → −(mV0/µkh̄
2)
�

πk/µl exp(−µl/k), and once
again, the phase shift goes to zero rapidly for l � k/µ.

We don’t need to know about K0(z) to find the behavior for l � k/µ, i.e. µb = µl/k � 1.
In this case, the integrand only contributes for the minimum value of s, i.e. s = 1, and the
exp(−µb) behavior of ∆(b) is evident.
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9. The left side of the equation in part (a) is just G(x,x�) = − exp(ik|x− x
�|)/|x− x

�|, i.e.
the Green’s function (6.2.3) and (6.2.11). Equation (6.2.12) mentions that G(x,x�) satisfies
the Helmholtz Equation for a δ-function source, but it is worth proving that here. Write
G(r) = −eikr/4πr with r ≡ |x− x

�| so that ∂r/∂x = (x− x�)/r and then, so long as r �= 0,

∂G

∂x
=

∂G

∂r

∂r

∂x
= −

1

4π

�
ik

r
−

1

r2

�
eikr =

�
ik −

1

r

�
G(r)

and similarly for ∂G/∂y and ∂G/∂z. This form reduces the tedium to find ∂2G/∂x2 and
then to determine ∇2G = −k2G. Thus (∇2 + k2)G = 0. For r → 0, G(r) → −1/4πr and
(∇2 + k2)G → ∇2G. The rest just follows from an introductory course in electromagnetic
theory. That is,

�
∇2Gd3x =

�
∇G·dA = (1/4πr2)(4πr2) = 1. Thus (∇2+k2)G = δ(x−x

�).

Use (6.2.12) to find the coefficients (as a function of r) of an expansion of the Green’s function
in spherical harmonics. (Eigenfunction expansions of Green’s functions is discussed in many
books on mathematical physics, but we can get there with our own formalism.) Consider
the transition from (6.2.3) to (6.2.4), where complete sets |k�� and |k��� are inserted. Instead
insert states |αlm� and |α�l�m��. A similar collapse happens because H0 (6.1.2) is spherically
symmetric, leaving functions �x|αlm� = Rαl(r)Y m

l
(θ,φ) and sums (or integrals) over α and

α� of the Lippman-Schwinger operator. Absorb all this into a function gl(r, r�), that is

G(x,x�) =
�

l

�

m

gl(r, r
�)Y m

l
(θ,φ)Y m

∗

l
(θ�,φ�)

Another result from mathematical physics is the so-called Closure Relation for spherical
harmonics, namely

�
lm

Y m

l
(Ω)Y m

∗
l

(Ω�) = δ(Ω− Ω�). This allows us to write

δ(x− x
�) =

1

r2
δ(r − r�)

�

l

�

m

Y m

l
(θ,φ)Y m

∗

l
(θ�,φ�)

With everything in spherical coordinates, we can now apply (6.2.12). Following (3.6.21), and
equating term by term in l and m, we have
�
d2

dr2
+

2

r

d

dr
+ k2

−
l(l + 1)

r2

�
gl(r, r

�) =

�
1

r2
d

dr

�
r2

d

dr

�
+ k2

−
l(l + 1)

r2

�
gl =

1

r2
δ(r − r�)

For r �= r�, this is just the spherical Bessel equation in the variable kr. The solution
must be finite at r → 0 and represent an outgoing spherical wave as r → ∞, so we need
gl(r, r�) = Cljl(r<)h

(1)

l
(r>) where r< (r>) is the lesser (greater) of r and r�. Integrating both

sides with r2dr from r = r� − ε to r = r� + ε, followed by ε → 0, gives

Clr
2

�
jl(kr)kh

(1)
�

l
(kr)− kj�

l
(kr)h(1)

l
(kr)

�

= iClr
2k [jl(kr)n

�
l
(kr)− j�

l
(kr)nl(kr)] = iClkr

2
�
(kr)−2

�
= 1 so Cl = −ik

Note that we used the Wronskian W [jl(z), nl(z)] = z−2. See http://dlmf.nist.gov/10.50.
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From (6.2.2) and (6.2.3) with (6.2.14), we have, as in the text,

�x|ψ� = �x|i�+
2m

h̄2

�
d3x� G(x,x�)V (x�)�x|ψ�

but now |ψ� = |Elm(+)� and |i� = |Elm� are angular momentum eigenstates, and G(x,x�)
is taken from above. Using (6.4.21b) for �x|i� and the same normalization for �x|ψ�,

Al(k; r)Y
m

l
(Ω) = jl(kr)Y

m

l
(Ω)

− ik
2m

h̄2

�
r�

2
dr� dΩ�

�

l�,m�

jl�(kr
�)h(1)

l� (kr)Y m
�

l� (Ω)Y m
�∗

l� (Ω�)V (r�)Al(k; r
�)Y m

l
(Ω�)

where r< = r�, that is within the potential volume, and r is outside. Now

δll�δmm� = �l�m�
|lm� =

�
dΩ�

�l�m�
|Ω�

��Ω�
|lm� =

�
dΩ�Y m

�∗
l� (Ω�)Y m

l
(Ω�)

so the summation collapses and the integral over Ω� is gone, leaving a factor Y m

l
(Ω) in the

radial integral. Dividing out this factor over the whole equation leaves

Al(k; r) = jl(kr)−
2mik

h̄2
h(1)

l
(kr)

� ∞

0

jl(kr
�)V (r�)Al(k; r

�)r�
2
dr�

Now take r → ∞. From (B.5.15) and (B.5.19), we see that h(1)

l
(kr) → ei[kr−(l+1)π/2]/kr and

jl(kr) → {ei[kr−(l+1)π/2] + e−i[kr−(l+1)π/2]}/2kr = {ei[kr−lπ/2] − e−i[kr−lπ/2]}/2ikr. Therefore

Al(k; r) =
e−ilπ/2

2ik

��
1−

4mik

h̄2

� ∞

0

jl(kr
�)V (r�)Al(k; r

�)r�
2
dr�

�
eikr

r
−

e−i(kr−lπ)

r

�

Compare to (6.4.31). The factor in square brackets above, multiplying the outgoing spherical
wave, is written in terms of partial waves as [1 + 2ikfl(k)]. That is,

fl(k) =
1

2ik

�
−
4mik

h̄2

� ∞

0

jl(kr)V (r)Al(k; r)r
2dr

�
= −

2m

h̄2

� ∞

0

jl(kr)V (r)Al(k; r)r
2dr

Thus the assertion is proved. The relation fl(k) = eiδl sin δl/k is just (6.4.39).

10. We could take a first principles approach, solving the Schrödinger equation and matching
solutions at r = R, but this potential makes it easy to use the results of Problem 9, namely

f0(k) =
eiδ0 sin δ0

k
= −

2m

h̄2

� ∞

0

j0(kr)V (r)A0(k; r)r
2dr = −γj0(kR)A0(k;R)R2

We determine A0(k;R) from the integral equation also derived in Problem 9:

A0(k;R) = j0(kR)−
2mik

h̄2
h(1)

0
(kR)

� ∞

0

j0(kr
�)V (r�)A0(k; r

�)r�
2
dr�

= j0(kR)− ikγh(1)

0
(kR)j0(kR)A0(k;R)R2
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which we can solve for A0(k;R). Note, however, that tan δ0 = �(f0)/�(f0) so it is handy to
find the real and imaginary parts of A0(k;R) just to within common factors. So make use

of −ih(1)

0
(kR) = −i[j0(kR) + in0(kR)] = n0(kR)− ij0(kR) = −eikR/kR to write

A0(k;R) =
j0(kR)

1 + γRj0(kR)eikR
·
1 + γRj0(kR)e−ikR

1 + γRj0(kR)e−ikR

= Real Expression×
�
1 + (γ/k) sin(kR) cos(kR)− i(γ/k) sin2(kR)

�

tan δ0 = −
(γ/k) sin2(kR)

1 + (γ/k) sin(kR) cos(kR)
=

1

cot δ0

For γ � k, or in the case if kR � 1 then (γ/k)kR = γR � 1, the second term in the
denominator dominates unity and tan δ0 = − sin2(kR)/ sin(kR) cos(kR) = − tan(kR). Thus
δ0 = −kR, in agreement with the result (6.4.63) for hard sphere scattering. The resonance
condition cot δ0 = 0 is satisfied when sin(kR) cos(kR) = −k/γ. That is, when kR is near nπ
or (n + 1/2)π where n is an integer. Resonance also requires that cot δ0 = 0 pass through
zero “from the positive side” so first consider its behavior away from a zero. Since γ � k,
cot δ0 ≈ − cos(kR)/ sin(kR). We can make the following table:

Below Above
kR Angle cos(kR) sin(kR) cot δ0 cos(kR) sin(kR) cot δ0

(even + 1/2)π 90◦ + + − − + +
(odd + 1/2)π 270◦ − − − + − +

(even)π 0◦ + − + + + −

(odd)π 180◦ − + + − − −

So we have resonance only for the zeros at kR = nπ, for both even and odd n. To find the
energies, put kR = nπ − krR where |krR| � 1. Therefore

−
k

γ
= sin(kR) cos(kR) =

1

2
sin(2kR) = −

1

2
sin(2krR) ≈ −krR = kR− nπ

That is, kR(1 + 1/γR) = nπ or k ≈ (nπ/R)(1− 1/γR) and the energies are

En =
h̄2k2

2m
=

n2π2h̄2

2mR2

�
1−

2

γR

�

which are the same as for the infinite spherical well, i.e. (3.7.25), up to the factor (1 −

2/γR). Finally, (d cos δ0/dE) = (d cos δ0/dk)(dk/dE) = (m/h̄2k)(d cos δ0/dk). Noting that
sin(kR) = sin(nπ − nπ/γR) ≈ (−1)n+1nπ/γR, we have, using Mathematica,

d cos δ0
dk

=
R

sin2(kR)

�
1 + 2

cos(kR)

sin(kR)

�
≈

2R cos(nπ)

(−1)3n+3(nπ/γR)3
=

(−1)n

−(−1)3n
2γ3R4

(nπ)3
= −

2γ3R4

(nπ)3

Hence Γ = −2/[(mR/nπh̄2)(−2γ3R4/(nπ)3)] = (nπ)4h̄2/mγ3R5 → 0 (rapidly) as γ → ∞.
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11. The perturbation is V (x) cosωt = V (x)[eiωt + e−iωt]/2 so the first order transition
amplitude from an initial state |i� to a final state |f� is, from (5.7.17) with ωfi ≡ (Ef−Ei)/h̄,

c(1)
f
(t) = −

i

h̄

�
t

0

eiωfit�f |V (x)|i�
1

2

�
eiωt + e−iωt

�
dt

=
1

2h̄
�f |V (x)|i�

�
1− exp[i(ωfi + ω)t]

ωfi + ω
+

1− exp[i(ωfi − ω)t]

ωfi − ω

�

where we assume the perturbation turns on at t = 0. As discussed in Chapter 5, the only
appreciable contributions after long times come from ωfi∓ω = 0 or Ef = Ei± h̄ω. Following
Section 5.7, in particular (5.7.43), and writing Vfi ≡ �f |V (x)|i�, we have

wi→f =
2π

h̄
|Vfi|

2

�
ρ(Ef )|Ef=Ei+h̄ω

+ ρ(Ef )|Ef=Ei−h̄ω

�

From (6.1.19) ρ(E) = (L/2π)3(mkf/h̄
2)dΩ. The incident flux ji = h̄ki/mL3 from (6.1.21).

The cross section dσ is the transition rate per incident flux, so

dσ

dΩ
=

1

dΩ

wi→f

ji
=

2π

h̄
|Vfi|

2

�
L

2π

�3 m
�

kf/h̄
2

h̄ki/mL3
=

m2

4π2h̄4

�
kf

ki
|L3Vfi|

2

where
�

kf ≡ kf |Ef=Ei+h̄ω + kf |Ef=Ei−h̄ω. Assuming initial and final state plane waves,

L3Vfi = L3
�kf |V (x)|ki� = L3

�
d3x��

�
d3x�

�kf |x
��
��x

��
|V (x)|x�

��x
�
|ki�

=

�
d3x� ei(kf−ki)V (x�) ≡ V(q)

using (6.2.6) and (6.2.7), with q ≡ kf − ki. Since h̄2k2

f
/2m = h̄2k2

i
/2m± h̄ω, we have

dσ

dΩ
=

m2

4π2h̄4

1

ki

��
k2

i
+

2mω

h̄

�1/2

+

�
k2

i
−

2mω

h̄

�1/2
�
|V(q)|2

For higher order terms, return to (5.7.17). The second order amplitude c(2)
f
(t) will have

denominators as in c(1)
f
(t) above, replaced with ωfm ± ω + ωmi ± ω = ωfi ± 2ω. In other

words, the final state will get contributions from the second harmonics, that is ωfi = ±2ω.
The third order amplitude would get contributions from the third harmonics, and so on.



Copyright, Pearson Education. 96

12. We need to calculate the elastic scattering matrix element �k�, 0|V (x,x�)|k, 0� where |0�
is the ground state of the hydrogen atom, and V (x,x�) = −e2/|x| + e2/|x − x

�|. (In this
notation, x locates the “fast” electron, while x

� locates the atomic electron.) From (6.2.6)
and (B.6.3) we know that �x,x�|k, 0� = [exp(ik·x)/L3/2][2 exp(−r�/a)/a3/2

√
π]. So, inserting

complete sets of states and defining q ≡ k− k
�, we have

�k
�, 0|

1

|x|
|k, 0� =

�
d3x

�
d3x�

�k
�, 0|

1

|x|
|x,x�

��x,x�
|k, 0�

=
1

πa3L3

�
d3x eiq·x

1

|x|

�
d3x� e−2r�/a

=
1

πa3L3

�
4π

q2
[See (6.9.10)]

��
4π

� ∞

0

r�
2
dr�e−2r�/a

�
=

4π

q2
1

L3

�k
�, 0|

1

|x− x�|
|k, 0� =

�
d3x

�
d3x�

�k
�, 0|

1

|x− x�|
|x,x�

��x,x�
|k, 0�

=
1

πa3L3

�
d3x

�
d3x� eiq·x

1

|x− x�|
e−2r�/a

=
1

πa3L3

�
d3ξ eiq·ξ

1

ξ

�
d3x� eiq·x

�
e−2r�/a

=
1

πa3L3

4π

q2

�
2π

� ∞

0

r�
2
dr�

�
1

−1

dµ eiqr
�
µe−2r�/a

�

=
4

a3L3

4π

q3

� ∞

0

r�e−2r�/a sin(qr�) dr� =
64π

L3

1

q2
1

(4 + q2a2)2

�k
�, 0|V (x,x�)|k, 0� = −

4πe2

L3

1

q2

�
1−

16

(4 + q2a2)2

�

The differential cross section, following (6.9.6), is therefore

dσ

dΩ
= L6

�
1

4π

2m

h̄2

�2

|�k
�, 0|V (x,x�)|k, 0�|2 =

4m2e4

h̄4

1

q4

�
1−

16

(4 + q2a2)2

�2

13. See the comments in the Errata. I don’t really know what this problem is doing here,
and it will likely be eliminated in future editions. The original solutions manual refers to
Finkelstein, “Non Relativistic Mechanics” (1973) for background, but I am not familiar with
that book. As I mention in the Errata, it seems to me that this is about using angle-action
variables to expose the SO(4) symmetry in the Coulomb problem, discussed in Section 4.1
of this textbook. In any case, I don’t find the original solution enlightening, and am not
reproducing it here.
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Chapter Seven

1. With E ≈ 3kT/2, have λ = h/p = hc/
�
2(mc2)E = 2π(h̄c)/

�
3(mc2)kT

= 2π(2×10−7)/
√
3 · 4× 109 · 8.6× 10−5 · 2.17 m = 8.4Å, for helium. As the size of a helium

atom is around 1Å, at this temperature, the DeBroglie wavelength spans many atoms, and
that is the key. For heavier elements, the temperature needs to be proportionally smaller to
get the same wavelength, and the atoms are larger, suggesting that even longer wavelengths
are required. However, higher Z noble gases have interactions that prevent their remaining
liquid at very low temperatures. Neon, for example, freezes at 27K.

2. For non-interacting particles, just add up the energies with two (i.e. 2s+1) particles per
energy level. If N = 2m is even, then

EEven N

Total
= 2×

�
1

2
h̄ω +

3

2
h̄ω + · · ·+

2m− 1

2
h̄ω

�
=




N/2�

i=1

(2i− 1)



 h̄ω =
N2

4
h̄ω

For N odd, take the sum above to (N − 1)/2 and add one unit at the top level, so

EOdd N

Total
=

(N − 1)2

4
h̄ω +

�
2
N − 1

2
+ 1

�
h̄ω

2
=

N2 + 1

4
h̄ω

The Fermi Energy (see page 464) is the highest occupied level. This means EF = (N−1)h̄ω/2
if N is even, and EF = Nh̄ω/2 if N is odd. For large N , ETotal = N2h̄ω/4 and EF = Nh̄ω/2.

3. First write down the nine states |jm� =
�

m1,m2
|m1,m2��m1,m2|jm� and then inspect

their symmetry under 1 ↔ 2. Using Clebsch-Gordan Coefficients from pdg.lbl.gov, we find

m j = 2 j = 1
2 |1, 1�
1 1√

2
|1, 0�+ 1√

2
|0, 1� 1√

2
|1, 0� − 1√

2
|0, 1�

0 1√
6
|1,−1�+

�
2

3
|0, 0�+ 1√

6
|− 1, 1� 1√

2
|1,−1� − 1√

2
|− 1, 1�

−1 1√
2
|0,−1�+ 1√

2
|− 1, 0� 1√

2
|0,−1� − 1√

2
|− 1, 0�

−2 |− 1,−1�

along with |j = 0� = 1√
3
|1,−1� − 1√

3
|0, 0� + 1√

3
| − 1, 1�. Two spin-one particles must obey

Bose statistics, and since there is no orbital angular momentum, the state must be symmetric
under the exchange m1 ↔ m2. Clearly this is true for j = 2 and j = 0, but the states are
antisymmetric for j = 0. Thus, two identical spin-one particles can only form s-states with
j = 0 or j = 2.
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4. If the electron were a spinless boson, then the total wave function (now with no spin
part) must be symmetric, namely

ψ(x1, x2) =
1
√
2
[ψα(x1)ψβ(x2) + ψβ(x1)ψα(x2)] if α �= β

= ψα(x1)ψα(x2) if α = β

We have only “singlet” parahelium. If we assume that the interaction due to spin is small,
then there is no “triplet” orthohelium and the levels of parahelium remains the same.

5. The rotation operator about the z-axis from (3.1.16) is D(φ) = exp(−iJzφ/h̄). Since the
particles at the triangle vertices are identical, D(2π/3) returns an indistinguishable state.
Therefore we must have D(2π/3)|α� = constant|α�. Consider, however, the following:

That is, the double permutation operation P23P12 is equivalent to a rotation through 2π/3.
Since the particles are spin-zero, Pij|α� = +|α�, and the “constant” must be unity, so

e−iJz(2π/3)/h̄|jm� = e−i2πm/3
|jm� = +|jm�

Thus m/3 must be an integer, i.e. m = 0,±3,±6, . . ..

6. The particles have spin-one, so the spin states must be symmetric (antisymmetric) if the
spatial wave function is symmetric (antisymmetric). (a) For the symmetric case first,

(i) The state is simply |+�|+�|+�. This is obviously |jm� = |3, 3�, but let’s prove it.

Sz|+�|+�|+� = (S1z + S2z + S3z)|+�|+�|+� = 3h̄|+�|+�|+�

S
2
|+�|+�|+� = [S2

1
+ 2S1zS2z + S1+S2− + S1−S2+

+S2

2
+ 2S1zS3z + S1+S3− + S1−S3+

+S2

3
+ 2S2zS3z + S2+S3− + S2−S3+ ]|+�|+�|+�

= [2 + 2 + 0 + 0 + 2 + 2 + 0 + 0 + 2 + 2 + 0 + 0]h̄2
|+�|+�|+�

= 12h̄2
|+�|+�|+� = 3(3 + 1)h̄2

|+�|+�|+�

(ii) The state is just 1√
3
[|0�|+�|+�+ |+�|0�|+�+ |+�|+�|0�] ≡ |α� for which Sz|α� = 2h̄|α� is

easy to prove. Also, you can reach this state from S−|+�|+�|+� = [S1−+S2−+S3− ]|+�|+�|+�,
again showing that m = 2. Also, since S− and S

2 commute, S2|α� ∝ S
2S−|+�|+�|+� =

S−S
2|+�|+�|+� = 12h̄2S−|+�|+�|+�, and so |α� = |j = 3,m = 2�.
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(iii) The state is all six combinations of the three Sz possibilities, that is

|β� =
1
√
6
[|+�|0�|−�+ |−�|+�|0�+ |0�|−�|+�+ |0�|+�|−�+ |−�|0�|+�+ |+�|−�|0�]

Clearly Sz|β� = 0, but we should be suspicious before suggesting this is a j = 0 state, as
this state should include the combination |0�|0�|0�. Indeed, if we carried out S2|β� as we did
in (a), then we would find components where all three particles were not in different states.
That is, |β� is not an eigenstate of S2.

(b) Now consider the antisymmetric case. Cases (i) and (ii) are clearly not possible, since
any component with two spins the same will remain the same under particle interchange,
and we need the overall sign to change. The only possible state is

|γ� =
1
√
6
[|+�|0�|−�+ |−�|+�|0�+ |0�|−�|+� − |0�|+�|−� − |−�|0�|+� − |+�|−�|0�]

Clearly Sz|γ� = 0, and in this case, because of the minus signs, it is not obvious that S2|γ�
will involve components with two spins the same. So, let’s work it out in detail and see.

S2

1
|γ� = 2h̄2

|γ� = S2

2
|γ� = S2

3
|γ�

S1zS2z |γ� =
1
√
6
h̄2 [−|−�|+�|0�+ |+�|−�|0�]

[S1zS2z + S1zS3z + S2zS3z ] |γ� = −h̄2
|γ�

S1+S2− |γ� = 2[0 + |0�|0�|0�+ 0− |+�|0�|−� − |0�|−�|+� − 0]h̄2

S1−S2+ |γ� = 2[|0�|+�|−�+ 0 + |0�|−�|+� − 0− 0− |0�|0�|0�]h̄2

S1+S3− |γ� = 2[0 + |0�|+�|−�+ |+�|−�|0� − 0− |0�|0�|0� − 0]h̄2

S1−S3+ |γ� = 2[|0�|0�|0�+ 0 + 0− |−�|+�|0� − 0− |0�|−�|+�]h̄2

S2+S3− |γ� = 2[0 + 0 + |0�|0�|0� − 0− |−�|+�|0� − |+�|0�|−�]h̄2

S2−S3+ |γ� = 2[|+�|−�|0�+ |−�|0�|+�+ 0− |0�|0�|0� − 0− 0]h̄2

“
�

Si±Sj∓
�� = −4h̄2

|γ�

S
2
|γ� = [2 + 2 + 2− 2− 4]h̄2

|γ� = 0

and, indeed, S = 0.

7. Obviously N is Hermitian, so N |η� = η|η� where η is a real number. We know that the
eigenvalues η of N cannot be negative since η = �η|N |η� =

�
�η|a†

�
[a|η�] = �α|α� ≥ 0 based

on the “positivity postulate” of quantum mechanics. This was our starting point for the
algebra of the simple harmonic oscillator, establishing a minimum value for η.

Now, consider a†|η�. We have N
�
a†|η�

�
= a†aa†|η� = a† [1−N ] |η� = (1 − η)

�
a†|η�

�
.

Therefore a†|η� is also an eigenstate of N but with eigenvalue (1 − η) which must also be
positive. Therefore, there is a maximum value of η as well.
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8. The number of possible spin states is 2s + 1 = 4 for spin-3/2, so the configuration
would be (1s)(2s)4(2p)12; the 2p state can accommodate four electrons in each of 2l+ 1 = 3
orbital p states. With Z = 10, only two electrons are in the 2p state, so the degeneracy

is

�
12
2

�
= 12!/2!10! = 66. We would indeed call this “highly degenerate.” The ground

state should have spin states as symmetric as possible, and spacial states as antisymmetric
as possible. The only antisymmetric spacial states are p-wave, that is l1 = l2 = 1 with total
orbital angular momentum L = 1. The total spin is S = 3/2+3/2 = 3, that is a spin 7-plet.
For the total angular momentum L and S should be as “antiparallel” as possible, and this
implies that J = 2. Therefore the ground state would be 7P2.

9. The single particle wave function is ψn(x) =
�
2/L sin(nπx/L), and the single particle

energy is En = n2π2h̄2/2mL2. The triplet spin state is symmetric, so in this case, the spatial
state must be antisymmetric. Therefore (with H = p2

1
/2m+ p2

2
/2m),

ψgs(x1, x2)|triplet =
1
√
2
[ψ1(x1)ψ2(x2)− ψ(x2)ψ(x1)]

H ψgs(x1, x2)|triplet =

�
π2h̄2

2mL2
+

4π2h̄2

2mL2

�
ψgs(x1, x2)|triplet =

5π2h̄2

2mL2
ψgs(x1, x2)|triplet

For the singlet spin state, the spatial state is symmetric, so

ψgs(x1, x2)|singlet = ψ1(x1)ψ1(x2)

H ψgs(x1, x2)|singlet =

�
π2h̄2

2mL2
+

π2h̄2

2mL2

�
ψgs(x1, x2)|singlet =

π2h̄2

mL2
ψgs(x1, x2)|singlet

In first order perturbation theory, the energy shift is

∆E = �gs|V |gs� =

�
dx1

�
dx2 ψgs(x1, x2)V (x1, x2)ψgs(x1, x2) = −λ

�
dx ψ2

gs
(x, x)

In the triplet case, obviously ∆E = 0. The antisymmetric spatial wave function never allows
the two particles to be at the same place, so they never feel the δ-function potential. On the
other hand, in the singlet case,

∆Esinglet = −λ

�
2

L

�2 � L

0

sin4

�πx
L

�
dx = −λ

�
2

L

�2 3L

8
= −

3λ

2L
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10. To prove the orthogonality relations (7.6.11), start with the definitions

êk± = ∓
1
√
2

�
ê
(1)

k ± iê(2)k

�
so we have

ê
∗
kλ · ê±kλ� =

�
−λ

1
√
2

�
ê
(1)

k − λiê(2)k

��
·

�
−λ� 1

√
2

�
ê
(1)

±k + λ�iê(2)±k

��

=
λλ�

2

�
ê
(1)

k · ê
(1)

±k + iλ�
ê
(1)

k · ê
(2)

±k − iλê(2)k · ê
(1)

±k + λλ�
ê
(2)

k · ê
(2)

±k

�

=
λλ�

2
[±1 + 0− 0± λλ�]

= ±1 ifλ = λ�

= 0 ifλ �= λ�

ê
∗
kλ × ê±kλ� =

�
−λ

1
√
2

�
ê
(1)

k − λiê(2)k

��
×

�
−λ� 1

√
2

�
ê
(1)

±k + λ�iê(2)±k

��

=
λλ�

2

�
ê
(1)

k × ê
(1)

±k + iλ�
ê
(1)

k × ê
(2)

±k − iλê(2)k × ê
(1)

±k + λλ�
ê
(2)

k × ê
(2)

±k

�

=
λλ�

2

�
0± iλ�

k̂± iλk̂+ 0
�

= ±ik̂ ifλ = λ�

= 0 ifλ �= λ�

The first result (7.6.11a) serves to collapse the two sums over λ and λ� into one, when
calculating |E|2 = E

∗ ·E from (7.6.14), and the integral (7.6.15) collapses the two sums over
k and k

� into one, leading to (7.6.16). The expression for the magnetic field is

B(x, t) = ∇×A(x, t) =
i

c

�

k,λ

ωk

�
Ak,λe

−i(ωkt−k·x)
−A

∗
k,λe

i(ωkt−k·x)�
k̂× ê

(λ)

k

which is very similar to (7.6.14), differing by the presence of k̂× êk,λ instead of êk,λ. But

k̂× êk,± = −∓
1
√
2

�
k̂× ê

(1)

k ± ik̂× ê
(2)

k

�
= −∓

1
√
2

�
ê
(2)

k ∓ iê(1)k

�
= iêk,±

so that the calculation of |B|2 = B
∗ ·B carries through directly as for the electric field. The

cross terms, however, have opposite sign, and therefore cancel when adding the contributions
to the energy from electric and magnetic fields, leading to (7.6.17).
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Chapter Eight

1. (a) (Note the typo in the exponent.) mpc2 = (1.67 × 10−27 kg)(3.00 × 108 m/s)2 =
1.5× 10−10 joule (1 eV/1.60× 10−19 joule = 9.39× 108 eV = 0.939 GeV.
(b) E = pc ∼ (h̄/1 fm)c = 200 MeV · fm/1 fm = 200 MeV, which is about the same as the
pion mass. The point is that, at these distances, mass and energy are not easily distinguished.
That is, in this regime (called “particle physics”) the formalism has to be relativistic.
(c) Using “[a]” to mean “dimensions of a”, i.e. M , L, or T for mass, length or time, we note
that [G] = L3M−1T−2, [h̄] = ML2T−1, and [c] = LT−1. Writing MP = Gxh̄ycz we must have
1 = −x+ y, 0 = 3x+ 2y + z, and 0 = −2x− y − z, so x = −1/2, y = 1/2, and z = 1/2. So
MP c2 =

�
h̄c5/G =

�
(1.05× 10−34)(3× 108)5/(6.67× 10−11) = 1.96×109 j=1.2×1019 GeV.

2. This problem is trivial, but the implications are important. Since





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





the metric tensor is its own inverse, i.e. ηµληλν = δµ
ν
. It is therefore simple to show that

the contravariant form of the metric follows appropriately from the covariant form, that
is ηµληνσηλσ = δµ

σ
ηνσ = ηνµ = ηµν since it is also symmetric. Also aµbµ = aνηµνbληλµ =

aνbλδνλ = aνbν = aµbµ.

3. For (8.1.11) to be a conserved current, we must show that ∂µjµ = 0:

∂µj
µ =

i

2m
[∂µ(Ψ

∗∂µΨ)− ∂µ ((∂
µΨ)∗Ψ)]

=
i

2m

�
(∂µΨ

∗)(∂µΨ) +Ψ∗(∂2Ψ)− (∂2Ψ∗)Ψ− (∂µΨ)∗(∂µΨ)
�

=
i

2m

�
Ψ∗(−m2Ψ)− (−m2Ψ∗)Ψ

�
= 0

4. This is a silly, trivial problem. The Klein-Gordon equation basically comes from writing
E2 = p2 +m2 with E replaced by i∂0 and p replaced by −i∇. In other words

�
E2

− p2
�
Ψ =

�
−(∂0)2 +∇2

�
Ψ = −∂µ∂µΨ = m2Ψ or (∂µ∂µ +m2)Ψ = 0

which is (8.1.8). This can be read as replacing pµpµ = E2 − p2 with the operator −∂µ∂µ,
i.e. pµ with −i∂µ. So, the minimal electromagnetic substitution pµ → pµ − eAµ becomes
−i∂µ → −i∂µ − eAµ = −i(∂µ − ieAµ) = −iDµ where Dµ ≡ ∂µ − ieAµ. (Did I make a sign
error in the definition of Dµ in the textbook? I guess so.)
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5. Rewrite (8.1.14) using DµDµ = D2

t
−D

2 as D2

t
Ψ = D

2Ψ−m2Ψ. Then, using (8.1.15),

iDtφ =
i

2
DtΨ−

1

2m
D2

t
Ψ =

i

2
DtΨ−

1

2m
D

2Ψ+
m

2
Ψ

= −
1

2m
D

2Ψ+
m

2

�
Ψ+

i

m
DtΨ

�
= −

1

2m
D

2Ψ+mφ

and iDtχ =
i

2
DtΨ+

1

2m
D2

t
Ψ =

i

2
DtΨ+

1

2m
D

2Ψ−
m

2
Ψ

= +
1

2m
D

2Ψ−
m

2

�
Ψ−

i

m
DtΨ

�
= +

1

2m
D

2Ψ−mχ

which are (8.1.16) since Ψ = φ+ χ. These two equations obviously become (8.1.18) since

τ3 =

�
1 0
0 −1

�
and τ3 + iτ2 =

�
1 0
0 −1

�
+ i

�
0 −i
i 0

�
=

�
1 1

−1 −1

�

6. Write the solutions as

Υ(x, t) =

�
a
b

�
e−iEt+ip·x

which results in the matrix equation

E

�
a
b

�
=

�
p2

2m

�
1 1

−1 −1

�
+m

�
1 0
0 −1

���
a
b

�

or �
p
2

2m
+m− E p

2

2m

−
p
2

2m
−

p
2

2m
−m− E

��
a
b

�
=

�
0
0

�

Take the determinant to get the characteristic equation

−

�
p2

2m
+m

�2

+ E2 +

�
p2

2m

�2

= 0

so that

E2 = 2
p2

2m
m+m2 = p2 +m2

in which case the energy eigenvalues are

E = ±Ep where Ep =
�

p2 +m2

In order to find the eigenfunctions, first rewrite the characteristic equation by multiplying
through by 2m and also writing p2 = E2

p
−m2, so

�
E2

p
+m2 − 2mE E2

p
−m2

m2 − E2

p
−E2

p
−m2 − 2mE

��
a
b

�
=

�
0
0

�
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In the case of positive energy eigenvalues E = +Ep, we have
�

(Ep −m)2 (Ep +m)(Ep −m)
(m− Ep)(m+ Ep) −(Ep +m)2

� �
a+

b+

�
= 0

which implies that (Ep−m)a++(Ep+m)b+ = 0. Normalizing using the relation Υ†τ3Υ = +1
we have

�
a+

�2
−

�
b+

�2
=

�
a+

�2
�
1−

(Ep −m)2

(Ep +m)2

�
=

�
a+

�2
�

4mEp

(Ep +m)2

�
= +1

in which case

a+ =
Ep +m

2
�

mEp

and b+ =
m− Ep

2
�
mEp

Similarly, for negative energy eigenvalues E = −Ep, we have
�

(Ep +m)2 (Ep +m)(Ep −m)
(m− Ep)(m+ Ep) −(Ep −m)2

� �
a−

b−

�
= 0

which implies that (Ep+m)a−+(Ep−m)b− = 0. This time we normalize using the relation
Υ†τ3Υ = −1 and therefore

�
a−

�2
−

�
b−

�2
=

�
a−

�2
�
1−

(Ep +m)2

(Ep −m)2

�
=

�
a−

�2
�

−4mEp

(Ep −m)2

�
= −1

in which case

a− =
m− Ep

2
�

mEp

and b− =
Ep +m

2
�
mEp

7. First, a mea culpa. I wrote this problem (from Landau’s book) years before the manuscript
was completed and I came to work out this solution. There are a few mistakes, I realize,
in the problem and a little in the text. One has to do with the sign of e, which in this
book (unlike any others I know) is negative. Therefore Dµ ≡ ∂µ − ieAµ (see problem 4) and
A0 = Φ = −Z|e|/r = +Ze/r. In the problem statement, I misused k in the argument of
u(r) and also in the definition of ρ. Also, I wrote “Work the upper component”, but I don’t
recall why. It may be the default when using the positive energy solution.

Anyway, we start with the Klein-Gordon Equation (8.1.14), namely
�
DµD

µ +m2
�
Ψ(x, t) = 0

where Dµ ≡ ∂µ − ieAµ. With A = 0 and eA0 = Ze2/r = Zα/r, this becomes
��

∂t − i
Zα

r

�2

−∇2 +m2

�
Ψ(x, t) = 0
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Next, as suggested, put Ψ(x, t) = Ne−iEt[ul(r)/r]Ylm(θ,φ). Then

��
E +

Zα

r

�2

+∇2
−m2

�
ul(r)

r
Ylm(θ,φ) = 0

From (3.6.21) the Laplacian ∇2 can be written as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
−

1

r2
L

2

where, in this context, L2 is a differential operator in θ and φ. Therefore
��

E +
Zα

r

�2

−m2
−

l(l + 1)

r2

�
u

r
+

1

r

d2u

dr2
= 0

Finally, with γ2 ≡ 4(m2 − E2) and ρ ≡ γr, this becomes

d2u

dρ2
+

�
2EZα

γρ
−

1

4
−

l(l + 1)− (Zα)2

ρ2

�
u = 0

For ρ → ∞, this becomes d2u/dρ2 = u/4 or u(ρ) = exp(±ρ/2). Only the negative sign gives
a normalizable solution, so we write u(ρ) = w(ρ) exp(−ρ/2) in which case

d2w

dρ2
−

dw

dρ
+

�
2EZα

γρ
−

l(l + 1)− (Zα)2

ρ2

�
w = 0

Now substitute w(ρ) =
�∞

q=0
Cnρk+q and collect terms into the same power of ρ by redefining

the index of summation. This gives

[k(k − 1)− l(l + 1) + (Zα)2]C0ρ
k−2

+
�∞

q=0

�
[(k + q + 1)(k + q)− l(l + 1) + (Zα)2]Cq+1

−

�
(k + q)−

2EZα

γ

�
Cq

�
ρk+q−1 = 0

This series is set to zero term by term. Solving k(k − 1)− l(l + 1) + (Zα)2 = 0 for k gives

k =
1

2
±

1

2

�
1 + 4l(l + 1)− 4(Zα)2

�1/2
=

1

2
±

��
l +

1

2

�2

− (Zα)2
�1/2

Near the origin, the wave function goes like u(r)/r ∝ rk−1, so the expectation value of kinetic
energy goes like rk−1rk−3r2 = r2k−2. Consider the negative sign solution for k. For l = 0, k is
close to zero, and negative for nonzero l, so the kinetic energy diverges too rapidly. For the
positive sign solution, with Zα � 1, k ≈ l+1 and the wave function goes like rl, which is the
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nonrelativistic result from the Schrödinger equation. All this points to taking the positive
sign in the solution for k.

Now set the higher power terms of ρ to zero. We have

Cq+1 =
k + q − 2EZα/γ

(k + q + 1)(k + q)− l(l + 1) + (Zα)2
Cq ∼

1

q
Cn as q → ∞

so that the series approaches eρ. In other words, the wave function is proportional to e+ρ/2

for large ρ which is unacceptably divergent. Let the series terminate at q = N , then

k +N − 2EZα/γ = k +N − EZα/
√
m2 − E2 = 0

Note that N = 0 is possible. As in (3.7.51), then, define the principle quantum number
n = N = l + 1, and so (m2 − E2)(k + n− l − 1)2 = E2(Zα)2. Solving for E we find

E =
m

�
1 + (Zα)2

�
n− l − 1

2
+
��

l + 1

2

�2
− (Zα)2

�−2
�1/2

A Taylor expansion of this expression is straightforward, but I used maple instead:

E = m−
m(Zα)2

2n2

+
m(Zα)2

2n2

�
3

4n2
−

1

n(l + 1/2)

�
(Zα)2

+
m(Zα)2

2n2

�
3

2n3(l + 1/2)
−

n+ 3(l + 1/2)

4n2(l + 1/2)3
−

5

8n4

�
(Zα)4 + · · ·

The first term is just the rest energy, the second is the Balmer formula, and the third is the
relativistic correction to the kinetic energy; the spin-orbit term is, of course, missing. (See
the solution to Problem 16.)

Jenkins and Kunselman give a large number of transitions, both experimental values and
Klein-Gordon solutions, for π− atoms. For example, the 3D → 2P transition in 59Co is
384.6 ± 1.0 keV, while the “Klein-Gordon energy” is listed as 378.6 keV. With m = mπ =
139.57 MeV and α = 1/137.036 (from PDG 2010) and Z = 27, the Balmer transition energy
is −2709.1 × (1/9 − 1/4) = 376.3 keV, and the relativistic correction to the kinetic energy
adds to this an amount

376.3 keV ×

�
3

36
−

3

16
−

1

15/2
+

1

3

�
× (27α)2 = 1.4 keV

for a total (to first order) transition energy 377.7 keV. The next order correction will be
smaller by ∼ (Zα)2 = 4/100 and will not account for the difference between this and the
number in the paper; theirs is likely due to older values for the pion mass.
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8. All of these follow from equations (8.2.4), and Tr(AB) = Tr(BA). For example

Tr(β) = Tr(γ0) = −Tr(γiγiγ0) = −Tr(γiγ0γi) = +Tr(γ0γiγi) = −Tr(γ0)

and so Tr(γ0) = 0. In other words, insert an appropriate γµ twice to get a factor ±1, then
split the pair using the commutativity property above, then reverse the order using (8.2.4c)
to pick up a minus sign, then contract the two γµ that you inserted in the first place. You
always get that the trace equals its own negative, so must be zero.

9. We are to construct the γ matrices from

α =

�
0 σ
σ 0

�
and β =

�
1 0
0 −1

�

where
αi ≡ γ0γi and β ≡ γ0

so that
γ0 = β and γi = γ0αi

and we can write the γ matrices explicitly as

γ0 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1





γ1 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 =





0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0



 =

�
0 σ1

−σ1 0

�

γ2 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0



 =





0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0



 =

�
0 σ2

−σ2 0

�

γ3 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



 =





0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0



 =

�
0 σ3

−σ3 0

�

It is simple enough to multiply out the 4×4 matrices, or even to use the compact 2×2 form
we derive here, and show that the Clifford Algebra is satisfied.

10. The Schrödinger equation with the Dirac Hamiltonian is

i∂tΨ = HΨ = (α · p+ βm)Ψ

= −iα ·∇Ψ+ βmΨ

so that − i∂tΨ
† = +i(∇Ψ†) ·α+ βmΨ†
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Note that α and β are Hermitian. Now take the time derivative of the probability density

∂ρ

∂t
= ∂t(Ψ

†Ψ) = (∂tΨ
†)Ψ+Ψ†∂tΨ =

�
−(∇Ψ†) ·αΨ−Ψ†α ·∇Ψ

�
= −∇ ·

�
Ψ†αΨ

�

Therefore ρ ≡ Ψ†Ψ satisfies the continuity equation for the current j ≡ Ψ†αΨ.

11. As indicated in the text, this decouples into two eigenvalue problems, one for u1 and u3,
and the other for u2 and u4. That is, we have

�
m p
p −m

� �
u1

u3

�
= E

�
u1

u3

�
and

�
m −p
−p −m

� �
u2

u4

�
= E

�
u2

u4

�

The first equation implies that (m−E)(−m−E)− p2 = −(m2−E2)− p2 = 0 which implies
that E = ±Ep where Ep ≡

�
p2 +m2. The second gives the same characteristic equation,

so the eigenvalues are once again E = ±Ep.

12. Since jµ ≡ Ψ̄γµΨ with Ψ̄ ≡ Ψ†γ0, j0 = Ψ†γ0γ0Ψ = Ψ†Ψ and j = Ψ†γ0γΨ = Ψ†αΨ. So,
for if Ψ has four (real) components a, b, c, and d, then

j0 = a2 + b2 + c2 + d2

j1 =
�
a b c d

�





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









a
b
c
d



 = 2(ad+ bc)

j2 =
�
a b c d

�





0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0









a
b
c
d



 = 0

j3 =
�
a b c d

�





0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0









a
b
c
d



 = 2(ac− bd)

For each of the spinors (8.2.22), the (normalized) probability density is

j0 =
Ep +m

2Ep

�
1 +

p2

(Ep +m)2

�
= 1

that is, a constant, independent of momentum. (Note that the exponential plane wave factors
multiply to one in any combination of Ψ†Ψ.) Also for each of the spinors, j1 = 0. For both

positive energy solutions u(+)

R
(p) and u(+)

L
(p), we find

j3 =
Ep +m

2Ep

2p

Ep +m
=

p

Ep
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that is, the velocity of the particle. For both negative energy solutions u(−)

R
(p) and u(−)

L
(p),

we find

j3 =
Ep +m

2Ep

−2p

Ep +m
= −

p

Ep

that is, the velocity of the particle moving in the direction opposite from the momentum.

13. Work out UT = γ1γ3 as follows:

UT =

�
0 σ1

−σ1 0

��
0 σ3

−σ3 0

�
=

�
−σ1σ3 0

0 −σ1σ3

�
= i

�
σ2 0
0 σ2

�
= iσ2

⊗ I

where (3.2.34) and (3.2.35) imply that σ1σ3 = iε13kσk = −iσ2.

14. Refer to (9) for the γ matrices in explicit form. The positive helicity, positive energy
electron free particle Dirac wave function is

Ψ(x, t) = u(+)

R
(p)e−ipµx

µ
=





1
0

p/(Ep +m)
0



 e−i(Ept−p·x)
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We can therefore construct the following

PΨ(x, t) = γ0Ψ(−x, t) =





1
0

−p/(Ep +m)
0



 e−i(Ept+p·x)

CΨ(x, t) = iγ2Ψ∗(x, t) =





0
−p/(Ep +m)

0
1



 e+i(Ept−p·x)

CPΨ(x, t) = iγ2γ0Ψ∗(−x, t) =





0
p/(Ep +m)

0
1



 e+i(Ept+p·x)

T Ψ(x, t) = γ1γ3Ψ∗(x, t) =





0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



Ψ∗(x, t) =





0
−1
0

−p/(Ep +m)



 e+i(Ept−p·x)

PT Ψ(x, t) =





0
−1
0

p/(Ep +m)



 e+i(Ept+p·x)

CPT Ψ(x, t) =





p/(Ep +m)
0
1
0



 e−i(Ept+p·x)

We see that CPT Ψ(x, t) is the wave function for a negative energy, right-handed electron
with momentum −p. This is the “hole” that we call a positron.

15. This is also a silly problem, with the solution pretty much outlined in the text. For large
i, (8.4.39) shows that bi is proportional to ai. Furthermore, for large i, equations (8.4.38)
show that ai is proportional to +1/i. Therefore, each of the series (8.4.32) or (8.4.33) look
like xi/i!, that is ex for large x. As they are multiplied by factors exp[−(1 − ε2)1/2x] but
ε < 1, the functions u(x) and v(x) will grow without bound for large x unless the series
terminates.
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16. First, expand the second term in the denominator of (8.4.43) to second order in (Zα)2:

(Zα)2
��

(j + 1/2)2 − (Zα)2 + n�
�2 = (Zα)2

��
j +

1

2

��
1−

1

2

(Zα)2

(j + 1/2)2

�
+ n�

�−2

= (Zα)2
�
n−

1

2

(Zα)2

j + 1/2

�−2

=
(Zα)2

n2

�
1 +

(Zα)2

n(j + 1/2)

�

where n ≡ j + 1/2 + n� as defined in the text. Now on to (8.4.43). Recall that

(1 + x)−1/2 = 1−
1

2
x+

3

8
x2 + · · · and, so

E = mc2
�
1−

1

2

(Zα)2

n2

�
1 +

(Zα)2

n(j + 1/2)

�
+

3

8

(Zα)4

n4
+ · · ·

�

= mc2 −
mc2(Zα)2

2n2
−

mc2(Zα)4

2n2

�
1

n(j + 1/2)
−

3

4n2

�

In other words, to this order, the energy is shifted by an amount

∆ = E0(Zα)
2

�
1

n(j + 1/2)
−

3

4n2

�

where E0 = −mc2(Zα)2/2n2 is the energy level to lowest order. Perturbatively, the energy
shift is given by the sum of the relativistic correction to the kinetic energy (5.3.10) and the
spin-orbit energy (5.3.31). That is, we expect ∆ = ∆rel +∆so where

∆rel = E0(Zα)
2

�
−

3

4n2
+

1

n(l + 1/2)

�

and ∆so = −E0(Zα)
2

1

2nl(l + 1)(l + 1/2)

�
l for j = l + 1/2

−(l + 1) for j = l − 1/2

Adding l-dependent terms for j = l + 1/2 gives

1

n(l + 1/2)
−

1

2n(l + 1)(l + 1/2)
=

1

2nj

�
2−

1

j + 1/2

�
=

1

n(j + 1/2)

Adding l-dependent terms for j = l − 1/2 gives

1

n(l + 1/2)
+

1

2nl(l + 1/2)
=

1

2n(j + 1)

�
2 +

1

j + 1/2

�
=

1

n(j + 1/2)

Therefore, for both j = l ± 1/2 we find

∆rel +∆so = E0(Zα)
2

�
−

3

4n2
+

1

n(j + 1/2)

�
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in agreement with our second order expansion of the Dirac energy level.

17. For (a) and (b) we can make the comparison using the second order approximation
derived in Problem 16. However, we need to take into account that the energies of the two
states with the same j but different l are not the same. See the discussion of Lamb Shift,
part (d) of this problem. If we just average those two levels in each case, we find (in eV),

n j1 j2 Experiment Theory
2 1/2 3/2 4.318× 10−5 4.528× 10−5

4 5/2 7/2 9.4338985× 10−7 9.4338739× 10−7

Clearly, Dirac’s theory does a much better job for the higher lying energy levels. As for the
1S → 2S transition energy, the question is leading. If we tabulate the answer for the Balmer
formula and for the Dirac formula using the next order approximation from Problem 16, and
then also the exact Dirac formula, we find (in cm−1)

Balmer 82302.98684444
Dirac (approx) 82303.99122362
Dirac (exact) 82303.99125026
Experiment 82258.95439928

The Dirac formula makes a small correction to the Balmer formula, but even the exact form
for Dirac is (relatively) far from the precise value. Now the Lamb Shift is a direct violation
of the Dirac formula, resulting from quantum field effects. It shows up six times in the table,
for any two states with the same n and j but different l values. We have (in (in cm−1)

n Splitting Value

2 SP 0.0353
3 SP 0.0105
3 PD 1.78× 10−4

4 SP 0.00444
4 PD 7.631× 10−5

4 DF 2.700× 10−5

The Lamb Shift gets smaller with increasing n, and apparently very much smaller for higher
angular momenta. The moral of the story is that quantum field theory is important for
understanding the energy levels of the hydrogen atom, especially for the lower lying ones.

Following is the matlab code used to calculate the numbers in this solution:
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clear all

%Fundamental constants from 2010 PDG

hc=2*pi*197.3269631*1.0E6*1.0E-13; %From h-bar c

alpha=1/137.035999679;

mc2=0.510998910E6;

%

E0n1=-mc2*alpha^2/2;

%

%Analyzes precision hydrogen atomic energy differences

%

load EnljHAtom.dat

n=EnljHAtom(:,1);

l=EnljHAtom(:,2);

j2=2*EnljHAtom(:,3);

EDel=hc*EnljHAtom(:,4);

clear EnljHAtom

%

% Fine structure split in n=2, j=1/2 and 3/2, using 1st order expression

nset=2

DEexpt=EDel(find(n==nset & j2==3))-mean(EDel(find(n==nset & j2==1)))

DEcalc=(E0n1/nset^2)*alpha^2*(1/2-1)/nset

%

% Fine structure split in n=4, j=5/2 and 7/2, using 1st order expression

nset=4

DEexpt=EDel(find(n==nset & j2==7))-mean(EDel(find(n==nset & j2==5)))

DEcalc=(E0n1/nset^2)*alpha^2*(1/4-1/3)/nset

%

% 1S-2S energy difference using balmer, approximate, and exact formulas

format(’long’)

DE12balmr=E0n1*(1/4-1)/hc

DE12apprx=(E0n1/4)*(1+alpha^2*(1/2-3/16))-E0n1*(1+alpha^2*(1-3/4));

DE12apprx=DE12apprx/hc

DE12exact=mc2*(1/sqrt(1+alpha^2/(sqrt(1-alpha^2)+1)^2)-1/sqrt(1+alpha^2/(1-alpha^2)));

DE12exact=DE12exact/hc

%

% Lamb Shift data

LS2SP=EDel(find(n==2 & j2==1 & l==0))-EDel(find(n==2 & j2==1 & l==1));

LS2SP=LS2SP/hc

%

LS3SP=EDel(find(n==3 & j2==1 & l==0))-EDel(find(n==3 & j2==1 & l==1));

LS3SP=LS3SP/hc

LS3PD=EDel(find(n==3 & j2==3 & l==1))-EDel(find(n==3 & j2==3 & l==2));

LS3PD=LS3PD/hc

%

LS4SP=EDel(find(n==4 & j2==1 & l==0))-EDel(find(n==4 & j2==1 & l==1));

LS4SP=LS4SP/hc

LS4PD=EDel(find(n==4 & j2==3 & l==1))-EDel(find(n==4 & j2==3 & l==2));

LS4PD=LS4PD/hc

LS4DF=EDel(find(n==4 & j2==5 & l==2))-EDel(find(n==4 & j2==5 & l==3));

LS4DF=LS4DF/hc


