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Abstract—Artificial neural networks are nonlinear models
popularly used in machine learning and adaptive control. Due
to their nonlinearly, training a neural network with one or
more hidden layers commonly requires to solve an optimization
problem with many local optima. It is believed that gradient-
based (first-order) optimization methods are efficient but are
easily get trapped in local minima, while zeroth-order methods
(e.g., evolutionary algorithms) are able to deal with local minima
but are regarded to have low efficiency. Is it possible to combine
the two kinds of methods to inherit both of their advantages?
This paper designs several hybrid strategies combining the back-
propagation method, a typical gradient-based training method,
with the RACOS method, a recently proposed derivative-free
optimization method with theoretical support. We compare the
strategies on training a multilayer feedforward neural network
on MNIST dataset. Experiments show that one strategy is able
to achieve better optimization performance in both quality and
efficiency.

Index Terms—multilayer feedforward neural network, hybrid
strategy, RACOS, back-propagation

I. INTRODUCTION

Artificial neural networks [2] are popular models in ma-
chine learning and adaptive control. They are very flexible
to represent complex functions, and thus the training of a
large neural network is not a trivial task. The training of
multilayer feedforward networks is to minimize some loss
function by adjusting the weights connecting neurons. Due
to the nonlinearity in neural networks, the landscape of the
optimization is usually very complex, e.g., has a lot of local
minima.

Feedforward networks for supervised learning are canoni-
cally trained by back-propagation methods [3], which employ
the gradient decent method to minimize the loss function
incorporating the chain-rule of the gradient. Gradient methods
(also called first-order methods) are usually considered effi-
cient for convex functions. However, for feedforward networks
with hidden layers, the overall optimization function is hard
to be convex. Therefore, back-propagation methods can be
trapped in local minima, or even converge to only station-
ary points. Although many variants of gradient or Newton-
like methods (second order methods) have been studied [2],
optimizing such networks is still considered hard.

Meanwhile, zeroth-order methods, such as evolutionary
algorithms [1], are better suitable for optimizing complex
functions. Instead of using gradient, zeroth-order methods
employ heuristic sampling strategies to sample solutions, thus
can avoid the miss-leading of the gradient. However, also

because the missing of the gradient information, zeroth-order
methods usually converge slower than first-order methods.

We are interested in the question that can we have a
combination of the zeroth- and first-order methods, so that
it can inherit the advantages of the both. In this paper we
investigate several strategies to combine the two methods: the
first-order method is used as (a) the inner evaluator, (b) the
inner optimizer, and (c) the post-optimizer for the zeroth-order
method. Employing the classical back-propagation method
as the representative first-order method and RACOS [4],
a recently developed theoretical grounded method, as the
representative zeroth-order method, we conduct experiments
on optimizing a five-layer network using the MNIST hand-
writing digital recognition data set. Experiment results show
that using the back-propagation as the inner optimizer and
poster optimizer for RACOS leads to the best optimization
performance.

The rest of this paper is organized as follows. Section II,
III, and IV respectively introduces the neural networks, the
back-propagation method, and the RACOS method. Section
V presents several hybrid strategies combining RACOS and
back-propagation method for training the network. Section VI
presents the experimental results. Section VII concludes this
paper.

II. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are a family of model inspired
by the biological neural networks including brains or neural
tissue of animals. They have shown great potential in machine
learning and adaptive control. Multilayer feedforward network
that we used here for training is one of the most typical
artificial neural networks and shows great potential in function
approximation, classification, data processing, robotics and
industrial control.

The structure of feedforward network is shown in Figure 1.
It has M layers of neurons - for the network shown in the
figure M = 3. It is composed of one input layer, one output
layer and several hidden layers. There are different number
of neurons in each layer and each neuron has connection to
every neuron in adjacent layers. The excitation of the signal
is passed from the input layer, via complex hidden layers and
then to the output layer.

For each neuron, the output signal generates as follows. As
is shown in Figure 2, income signals from different neurons in
the former layer will be multiplied by corresponding weights,



Fig. 1. Structure of multiple feedforward network. The circles represent for
the neurons of the network. The arrows show the connection between the
neurons in adjacent layers.

Fig. 2. Structure of a single neuron.

summed up and processed though a non-linear activation
mapping. The outcome signal again serves as the input signal
for neurons of the next layer or as the output signal of the
entire neural network. Mathematically, it can be written as

ho = f(w1h1 + w2h2 + w3h3 + · · · ) = f(
∑
i

wihi) (1)

where h1, h2, · · · are the input signals from former layer,
w1, w2, · · · are corresponding weights, ho is the output signal
and f(·) is the non-linear activation function.

By adjusting the weights of the network, the network will
give corresponding response to given input, and thus can be
used for classification or function approximation. Given a large
number of sample inputs and target outputs, the weights of
the network can be adjusted to response correctly to potential
inputs. This process is the training of multilayer feedforward
network for supervised learning. The sample inputs and the
target outputs is called training data and denoted as {(x,y)},
where x and y are sample input and corresponding target
output respectively. They are both column vectors.

For the ease of notation, we rewrite the signal of the neurons
on each layer and the weights between two layer in the form
of vector and matrix respectively. Hence, the network structure
can be written as

hi+1 = fWi
(hi) = s(Wihi), i = 1, 2, · · · ,M − 1 (2)

where M is the number of layers in the network; hi is the
state (or the output signal) of i-th layer, which is a column
vector. For example, h1 is the input layer and has the same
dimension as input training data x. hM is the output layer
and has the same dimension as output training data y. fWi

(·)
is the feedforward mapping from the i-th to (i + 1)-th layer,
which is usually defined by a non-linear activation function
s(·) with corresponding weights Wi(i = 1, 2, · · · ,M − 1). In

this article, sigmoid function is used as the activation function.
The weights Wi on i-th layer is a matrix whose dimension is
di+1-by-di, where di is the number of neurons on i-th layer.
For the simplicity of notation, bias term is not introduced
in our model because it can easily be incorporated into the
weights Wi. Denote Θi,j

W as the collection of all the weights
between i-th and j-th layer.

Θi,j
W = Wk, k = i, i+ 1, · · · , j − 1 (i < j) (3)

Therefore, the state of j-th layer can be written as

hj = hj(hi,Θ
i,j
W ) (4)

III. BACKPROPAGATION

Backpropagation is a typical means of first-order algorithm
for the training of feedforward neural network.

The objective network should give an output signal as close
to the target output as possible when corresponding input
sample is shown. The criteria of close, the loss function, is
defined by the distance between target output and real output.
It is written as L(hM (x,Θ1,M

W ),y) which is the loss function
measuring the accuracy of the network for a given sample
(x,y). Therefore, the training objective is to minimize the
global loss E{L(hM (x,Θ1,M

W ),y)} under data distribution
{(x,y)}. In this article, MSE is used as the loss function.

By taking the derivative iteratively, the gradient of loss
function in terms of weight matrix on i-layer can be written
as

∂L

∂Wi
= 2(hM−y)hM (1−hM )

(
M−1∏
k=i+1

Wkhk(1− hk)

)
hT
i

(5)
Especially, for the last layer,

∂L

∂WM−1
= 2(hM − y)hM (1− hM )hT

M−1 (6)

Here, batch mode training can be adopted where the whole
training data is divided into multiple batches and the weights
of the network is updated each time one batch of data
pair (x,y) is utilized. The weights is updated by following
formula.

W
(t)
i = W

(t−1)
i − α ∂L

∂W
(t−1)
i

(7)

The coefficient α controls the speed of gradient descent and
it should be a positive real number.

IV. RACOS

Randomized coordinate shrinking algorithm, a recently pro-
posed zeroth-order method, is a means of classification-based
optimization. An ordinary classification-based optimization
algorithm is presented in Algorithm 1.

It starts from a uniformly generated set from the solution
space, and then follow T iterations. In each iteration, a binary
classification data set Bt = {(x, y)} is formed. x is from the
population generated by last generation and yi is defined that



Algorithm 1 classification-based optimization
1: Collect S0 = {x1, · · · , xm} by i.i.d. sampling from UX ;
2: let x̃ = argminx∈S0

f(x);
3: for t = 1 to T do
4: Construct Bt = {(x1, y1), · · · , (xm, ym)}, where xi ∈
St−1 and yi = sign[β − rankSt−1

[f(xi)]]
5: let St = ∅
6: for i = 1 to m do
7: hi = C(Bt), where ht ∈ H
8: xi = Sampling(ht, λ), and let St = St ∪ {xi}
9: end for

10: x̃ = argminx∈St∪{x̃} f(x)
11: end for
12: return x̃ and f(x̃)

(a) equals to 1 if xi is among the best bβc solutions; otherwise
(b) equals to -1. The function rankSt−1

[f(xi)]] returns n if
f(xi) is the n-th minimum among all the values of f(x),
∀x ∈ St−1. Afterwards, m individuals are generated one by
one by Sampling and added to the population for the next
iteration.
ht is the hypothesis given by the binary classification

algorithm C based on the binary data set Bt, where hypoth-
esis is a function mapping solution space X to {+1,−1}.
Donate Dh = {x ∈ X|h(x) = +1}. The hypothesis ht
given by binary classification algorithm has to satisfy that
ht(x) = +1,∀(x,+1) ∈ Bt and ht(x) = −1,∀(x,−1) ∈ Bt.

Afterwords, xi is generated by the Sampling procedure,
xi = Sampling(ht, λ), where λ ∈ [0, 1] is the balancing
parameter, and it samples with probability λ uniformly from
Dht

and with remaining probability uniformly from the whole
solution space X .

Among numeral approaches that can serve as the binary
classification algorithm, randomized coordinate shrinking clas-
sification is adopted. The positive class region of the hypothe-
sis h in RACOS algorithm remains a hypercubic whose edges
are parallel to the axes, which shrinks quickly to cover all the
positive examples but no negative ones.

RACOS classification algorithm is presented in Algorithm
2. In each run of this classification algorithm, Bt, a set of
solutions with their objective values is given as the input.
Initially, a positive example is randomly selected from the
positive examples of Bt (Line 3) and the positive region
of the hypothesis Dht is set to the solution space X (Line
4). Iteratively, the negative examples which is in Dht

are
selected one by one and the region is shrunk to exclude the
selected negative example (Line 5-17). Besides, the number
of uncertain bits of dimension is controlled and reduced to
the specified number N . If there are more uncertain bits than
expected, some uncertain bits are randomly selected and their
values are constrained to be the values of corresponding bits
of the previous selected positive sample (Line 18-21).

RACOS optimization algorithm is obtained by equipping
this classification algorithm (Algorithm 2) into the ordinary
classification-based optimization framework (Algorithm 1).

Algorithm 2 The randomized coordinate shrinking classifica-
tion algorithm for X = [0, 1]n

1: B+
t =the positive solutions in Bt

2: B−t =the negative solutions in Bt

3: Randomly select x+ = (x
(1)
+ , · · · , x(n)+ ) from B+

t

4: let Dht = X , I = {1, · · · , n}
5: while ∃x ∈ B−t : ht(x) == +1 do
6: k = randomly selected index from the index set I
7: I = I − {k}
8: x− = randomly selected solution from B−t
9: Bt = Bt − {x−}

10: if x(k)+ ≥ x(k)− then
11: r = uniformly sampled value in (x

(k)
− , x

(k)
+ )

12: Dht
= Dht

− {x ∈ X|x(k) < r}
13: else
14: r = uniformly sampled value in (x

(k)
+ , x

(k)
− )

15: Dht
= Dht

− {x ∈ X|x(k) > r}
16: end if
17: end while
18: while #I > N do
19: k = randomly selected index from the index set I
20: Dht

= Dht
− {x ∈ X|x(k) 6= x

(k)
+ }, I = I − {k}

21: end while
22: return ht

When the algorithm is applied to the training of multilayer
feedforward network, a vector formed by all the elements
of the weights in the whole network is optimized. That is
x = θ1,MW , where Θ1,M

W is rearranged and formed as a vector
θ1,MW . Therefore, the dimension of this optimization problem
is
∑M−1

i=1 didi+1, where di is the number of neurons on i-th
layer. The objective function f(x) = f(θ1,MW ) can be defined
as the global loss with regard to given dataset {(x,y)}.

It has to be noticed that the solution space in RACOS
has an absolute boundary and can be designated as [0, 1]n

after proper scaling, whereas in the case of the weights of a
feedforward network, there is no specified boundary. However,
since it is continuous optimization, the results will not be
deteriorated if an arbitrary boundary which is big enough is
imposed. Empirically, [−4

√
6

di+di+1
, 4
√

6
di+di+1

] is used as
the boundary of weights on i-th layer.

V. HYBRID STRATEGIES

RACOS is applicable for optimization of complex functions
such as the training of feedforward network. However, it
ignores the structure of the feedforward network, loses gradi-
ent information and thus has low efficiency. Backpropagation
converge faster than RACOS, but it can be trapped in local
minima and misled by the gradient.

In order to inherit the merits of the both and compensate for
the shortcomings, BP is designed to incorporate into RACOS
and serve as inner evaluator, inner optimizer and/or outer
optimizer.



BP can be incorporated as inner evaluator. Instead of
evaluating the loss for potential solution generated by RACOS
directly, several iterations of BP is firstly applied to the
generated potential solution and then the updated solution
is used to evaluate corresponding loss. Using BP as inner
evaluator can exploit the gradient information around the
solution generated by RACOS. This inner evaluator gives a
good evaluation if the evaluated solution and its neighborhood
are both satisfying. This kind of incorporation is designated
as RACOS(BP).

BP can also be incorporated as inner optimizer. In RACOS,
the potential solution for the next generation x is sampled
from the latest hypothesis in every epoch (Algorithm 1 Line
8). When BP is used as inner optimizer, the solution population
is updated by BP once it is sampled from latest hypothesis.
In another word, the solution is updated by BP and RACOS
alternately epoch by epoch. By alternately applying zeroth-
and first-order method, it will not only converge faster for the
use of gradient information but also avoid local minima for the
use of zeroth-order method. This is designated as RACOS*BP.

Again, BP can be incorporated as post-optimizer. Likewise,
epochs of BP is applied to the solution found by RACOS.
RACOS, as a type of zeroth-order method, which is not
focusing on the local situation and not misled by the gradient
information, can find a solution close to the global minima
faster. However, the found solution usually does not lie exactly
on the minima. Therefore, epochs of BP is needed to find the
minima. This strategy is denoted as RACOS+BP.

The above three ways of incorporating BP into RACOS can
be adopted in combination. Thus forming two more strategies
- RACOS(BP)+BP and RACOS*BP+BP. The former one is
applying epochs of BP to the solution found by RACOS(BP),
whereas the latter one is applying BP to the solution found by
RACOS*BP. The reason why BP inner evaluator and BP inner
optimizer are not combined is that using BP as inner optimizer
is actually spontaneously indicating the incorporation of BP as
inner evaluator.

To sum up, five hybrid strategies are proposed - that is
RACOS(BP), RACOS*BP, RACOS+BP, RACOS(BP)+BP and
RACOS*BP+BP. Meanwhile, two single strategies, BP and
RACOS, are also adopted as comparison with the above five
in later experiment.

In order to measure and compare different strategies where
zeroth- and first-order method are both applied, the cost of the
hybrid strategies must be cleared. The computational cost is
defined as follows. Either one query for the global error of
the feedforward neural network in RACOS or one iteration of
BP is defined as 1 unit of cost, since each of them involves
iterating through all the training data once. The global loss on
testing dataset is used as the merit function in the end.

Since as for RACOS+BP, RACOS(BP)+BP and
RACOS*BP+BP the number of epochs of BP appended
to the former hybrid step is not specified, their costs are
hard to measure and compare. The ratio of concoction η is

Fig. 3. Decrease of error over training cost for MNIST dataset on a network
structured as [784, 100, 100, 10].

introduced and defined as

η(algo + BP) =
the cost of algo

total cost (8)

=
the cost of algo

the cost of algo+the cost of BP

For example, if the total cost is 30000 units, η(RACOS +
BP ) = 0.5 indicates that half of the total cost (that is 15000)
is used by RACOS and the other half is used by BP.

VI. EXPERIMENTS

The comparison of the strategies are carried out on MNIST
dataset, which is a database of handwritten digits. It gives
training data (x,y), where x is the input training data whose
dimension is 28 × 28 = 784 representing for an image of
handwritten digits, and y is the output training data whose
dimension is 10, representing for the possibility of the ten
digits.

This classification problem is examined by a 4-layer feed-
forward network, where there is one layer as input layer
whose dimension d1 = 784, one as output layer whose
dimension d4 = 10, and two as hidden layers whose dimension
d2 = d3 = 100. Hence, the network structure is written like
[784, 100, 100, 10].

All the results are tested parallelly 60 times with mean and
standard deviation calculated. MNIST dataset is divided where
85% of the data is for training and 15% of the data is for
testing. The error rate shown below is calculated from testing
data.

Figure 3 is the graph of the decrease of error over training
cost for MNIST dataset on above-mentioned feedforward
network. Four strategies are examined - RACOS, RACOS*BP,
RACOS(BP) and BP. Why these four are firstly presented is
because they do not involve the ratio η. The x axis is the cost
of the training and the y axis is the error rate on the testing
data from MNIST dataset. For clarity of demonstration, here
show only first 100 epochs. The comparison of RACOS with



Fig. 4. The final error rate after a fixed training cost of 30000 when different
ratios η are adopted. The black line horizontal to x axis is the reference line
whose value equals to that of pure BP. The last point of RACOS+BP (η = 1)
is out of plot range and not shown.

RACOS*BP and RACOS(BP) clearly suggests that the adoption
of BP can promote the performance of RACOS. The adoption
of BP as inner optimizer (RACOS*BP) is the most effective
among these four. It is competitive with BP and shows better
performance in the beginning epochs of the training.

Figure 4 is the final error rate after a training of fixed
cost of 30000 when different ratio η are adopted. Notably,
η(RACOS + BP ) = 0 indicates that only pure BP is
adopted whose final error rate is shown by the left end point.
Therefore, left end point in the graph can serve as a reference
point to examine the performance of hybrid strategies in
comparison with pure BP . The black line horizontal to x
axis is the reference line whose final error rate equals to
pure BP, indicating that the points below this line have better
performance than pure BP.

The result (especially the points inside the black box) shows
that some hybrid strategies do better than pure BP when the
ratio η is properly configured. RACOS+BP with η = 0.1
shows better performance over pure BP. Since the ratios η
is quite small, RACOS can be regarded as preprocessing of
BP. The meaning of this preprocessing is to find a more
potential starting point for BP and avoid being trapped into
local minima which often happens if the starting point is
randomly generated. RACOS*BP+BP with η equivalent to 0.1
or 0.2 shows even better performance, which indicate that
RACOS*BP is a more effective algorithm for preprocessing.

Table I concludes the best performance of each strategy after
a training of fixed 30000 units of cost, where RACOS*BP +
BP with η = 0.2 is the best (highlighted in bold).

Although only BP is being used as the representative of
first-order method in our experiment, we believe that the
performance of other first-order methods will also be improved
if such zeroth-order preprocessing is being applied.

TABLE I
BEST PERFORMANCE OF EACH STRATEGY AFTER A TRAINING OF FIXED

COST OF 30000

Algorithm Final error rate

RACOS 58.523× 10−3

RACOS*BP 2.124× 10−3

RACOS(BP) 10.523× 10−3

RACOS+BP 1.442× 10−3

RACOS*BP+BP 1.408× 10−3

RACOS(BP)+BP 1.500× 10−3

BP 1.501× 10−3

VII. CONCLUSION

The training of feedforward neural network is decomposed
as an optimization problem in nature and a zeroth-order
method RACOS is successfully adopted to solve this prob-
lem, though this problem is canonically solved by first-order
methods. Furthermore, incorporating backpropagation algo-
rithm, several hybrid strategies are proposed, examined and
compared. The hybrid strategies inherit the merits of zeroth-
and first-order method and compensate for the shortcomings
of both, thus presenting features like fast convergence and
avoidance of being trapped into local minima. All of the
hybrid strategies promote the performance of pure RACOS,
and one of them shows better performance than conventional
BP algorithm. This is a successful attempt of combining
zeroth- and first-order method to the training of feedforward
neural network and it is open to further exploring.
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