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What is computation?
To compute a function

x→ f(x)

x = xn−1xn−2 . . . x1x0, xi = 0, 1

Example

f(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn
where the exclusive OR (XOR) gate:

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0

And a function with multi-bit output x⊕ y, where

x = xn−1xn−2 . . . x1x0

y = yn−1yn−2 . . . y1y0



More gates

NOT OR AND NAND

0 → 1
1 → 0

00 → 0
01 → 1
10 → 1
11 → 1

00 → 0
01 → 0
10 → 0
11 → 1

00 → 1
01 → 1
10 → 1
11 → 0

NAND = NOT ◦AND



Circuit Diagrams



Circuits

Example

Build AND from NAND

NAND AND

00 → 1
01 → 1
10 → 1
11 → 0

00 → 0
01 → 0
10 → 0
11 → 1

Universal Gates
Any function on bits can be computed from the

composition of NAND gates alone.



Circuits

Size of a circuit: # of gates in the circuit

Example f(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn, size n− 1

Measure of complexity:
Polynomial: Size(f) ∼ p(n)
Exponential: Size(f) ∼ eαn

Strong Church-Turing Thesis
Any model of computation can be simulated on a

probabilistic Turing machine at most a polynomial increase
in the number of elementary operation required



How to compute quantum mechanically

Consider the following unitary operator

Uf (|x〉n|y〉m) = |x〉n|y ⊕ f(x)〉m

note that

UfUf (|x〉n|y〉m) = Uf (|x〉|y ⊕ f(x)⊕ f(x)〉 = |x〉n|y〉m

i.e. U†f = Uf .
For y = 0, we have

Uf (|x〉n|0〉m) = |x〉n|f(x)〉m



The Hadamard Transform

For a single qubit:

H|0〉 =
1√
2

(|0〉+ |1〉) ≡ |+〉

H|1〉 =
1√
2

(|0〉 − |1〉) ≡ |−〉

For two qubits:

H⊗H(|0〉 ⊗ |0〉) = H(|0〉)(H|0〉)

=
1√
2

(|0〉+ |1〉) 1√
2

(|0〉+ |1〉)

=
1

2
(|0〉|0〉+ |0〉|1〉+ |1〉|0〉+ |1〉|1〉)

=
1

2
(|0〉2 + |1〉2 + |2〉2 + |3〉2)



The Hadamard Transform

For n qubits:

H⊗n|0〉n =
1

2n/2

∑
0≤x<2n

|x〉n,

where
H⊗n = H⊗H⊗ · · · ⊗H

Now consider the following operations on n+m qubits:

Uf (H⊗n ⊗ Im)(|0〉n|0〉m)

=
1

2n/2

∑
0≤x<2n

Uf (|x〉n|0〉m)

=
1

2n/2

∑
0≤x<2n

|x〉n|f(x)〉m



Quantum Circuits

Single qubit unitary:
Important single-qubit unitaries are the X,Y,Z rotations:

Xθ = exp(−iθX/2) = cos
θ

2
I − i sin

θ

2
X =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
,

and

Yθ = exp(−iθY/2) = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
,

and

Zθ = exp(−iθZ/2) = cos
θ

2
I − i sin

θ

2
Z =

(
e−i

θ
2 0

0 ei
θ
2

)
.



Circuit Diagram

Single-qubit Unitary
For any unitary operation U on a single qubit, there exist

real numbers α, β, γ, δ such that U = eiαZβYγZδ.

For any 2× 2 unitary matrix U, the rows and columns of U are
orthogonal plus that each row or column is a normalized vector.
This then follows that therethere exist real numbers α, β, γ, δ
such that

U =

(
ei(α−β/2−δ/2) cos γ2 −e−i(α−β/2+δ/2) sin γ

2

ei(α+β/2−δ/2) sin γ
2 ei(α+β/2+δ/2) cos γ2

)
.

|ψ〉 Zδ Yγ Zβ ZδYγZβ|ψ〉

|ψ〉 V W WV|ψ〉



Two-qubit Unitary

Controlled-NOT:

|x〉 ⊗ |y〉 → |x〉 ⊗ |y ⊕ x〉

In the basis of {|00〉, |01〉, |10〉, |11〉} the matrix:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Similarly, a controlled-NOT gate with the second qubit as the
control qubit takes |x〉 ⊗ |y〉 to |x⊕ y〉 ⊗ |y〉.

|x〉 • |x〉 |x〉 ⊕ |x⊕ y〉

|y〉 ⊕ |y ⊕ x〉 |y〉 • |y〉



Two-qubit Unitary

Controlled-Z:

|00〉 → |00〉, |01〉 → |01〉, |10〉 → |10〉, |11〉 → −|11〉.

Given that the controlled-Z operation is symmetric between the
two qubits, it is not necessary to specify which one is the
control qubit and which one is the target qubit. In the basis of
{|00〉, |01〉, |10〉, |11〉} the matrix:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

|x〉 • |x〉

|y〉 • (−1)xy|y〉



Controlled-Z from Controlled-NOT

The Hadamard Transform

H|±〉 =
1√
2

(|0〉 ± |1〉)

In the basis of {|0〉, |1〉} the matrix:

H =
1√
2

(
1 1
1 −1

)
.

H Z H = X

H X H = Z

• •
=

• H ⊕ H



Controlled-U

Controlled-U:

|x〉 • |x〉

|y〉 U Ux|y〉

Controlled-NOT is in fact controlled-X.

|x〉 • |x〉

|y〉 X Xx|y〉

Controlled-Z:

|x〉 • |x〉

|y〉 Z Zx|y〉



Controlled-U from Controlled-NOT

Controlled-U from single-qubit unitaries and controlled-NOT:

• • • D

=

U C ⊕ B ⊕ A

where

D =

(
1 0
0 eiα

)
,

and U, α,A,B,C satisfy

U = eiαAXBXC

I = ABC.



Universal Gates

Universal Gates
Any unitary on qubits can be built from single-qubit

unitaries and controlled-NOT.

Size of a quantum circuit:
# of single-qubit and controlled-NOT gates in the circuit

Measure of complexity:
Polynomial: Size(f) ∼ p(n)
Exponential: Size(f) ∼ eαn



Unitary Evolution

The Ising-type interaction Hamiltonian:

Hin = JZ⊗ Z.

Observe that

exp−iπ
4

(I⊗ I− Z⊗ I− I⊗ Z + Z⊗ Z)

= e−i
π
4 ei

Z⊗I
4
πei

I⊗Z
4
πe−i

Z⊗Z
4
π

which gives the controlled-Z operation.

Unitary Evolutions from Single- and Two-qubit Ones
Single qubit terms and any non-trivial two-qubit interaction

can generate an arbitrary n-qubit unitary evolution.



Reversible Classical Computer

The Toffoli Gate: T|x〉|y〉|z〉 = |x〉|y〉|z ⊕ xy〉

|x〉 • |x〉

|y〉 • |y〉

|z〉 ⊕ |z ⊕ xy〉

To implement NAND:

|x〉 • |x〉

|y〉 • |y〉

|1〉 ⊕ |1⊕ xy〉 = |x NAND y〉



Toffoli Gate from Two-Qubit Gates

Implementation of Toffoli gate using two-qubit controlled gates.

• • • •
• = • ⊕ • ⊕

⊕
√
X

√
X
† √

X

Implementation of Toffoli gate using Hadamard, phase,
controlled-NOT and π/8 gates.

• • • • T

• • T† ⊕ T† ⊕ S

H ⊕ T† ⊕ T ⊕ T† ⊕ T H



Measurements (the Born rule)

For |ψ〉 =
∑
αx|x〉n, measure in the basis of {|x〉n} returns |x〉n

with probability px = |αx|2.

|ψ〉 =
∑
αx|x〉n /

!!!!!!!! """"""""

#######

" " " " " " " "

# #
##
##
#

|x〉n

For |ψ〉 =
∑
αx|x〉n|φx〉m, measure the first register in the basis

of {|x〉n} returns |x〉n|φx〉m with probability px = |αx|2.

/
!!!!!!!! """"""""

#######

" " " " " " " "

# #
##
##
#

|x〉n

|ψ〉 =
∑
αx|x〉n|φx〉m

/ |φx〉m

Measurements in different basis



Example

Find the output state |φ〉 of the following circuit:

•
!!!!!!!! """"""""

#######

" " " " " " " "

# #
##
##
#

|0〉

1√
2
(|000〉+ |111〉) • H ⊕

!!!!!!!! """"""""

#######

" " " " " " " "

# #
##
##
#

|1〉

⊕ • |φ〉

1√
2

(|000〉+ |111〉) Toffoli−−−−→ 1√
2

(|000〉+ |110〉)

H2−−→ 1√
2

[
|0〉 1√

2
(|0〉+ |1〉)|0〉+ |1〉 1√

2
(|0〉 − |1〉)|0〉

]
=

1

2
(|000〉+ |010〉+ |100〉 − |110〉) CNOT32−−−−−→

=
1

2
(|000〉+ |010〉+ |110〉 − |100〉)→ |φ〉 = |0〉



A Quantum Computer: The Circuit Model

DiVincenzo Criteria

I a scalable physical system of well-characterized qubits;

I the ability to initialize the state of the qubits to a simple
fiducial state;

I long (relative) decoherence times, much longer than the
gate-operation time;

I a universal set of quantum gates;

I a qubit-specific measurement capability.



n-Qubit Unitary

Question: how ‘efficient’ this realization is?

A simple counting: an arbitrary n-qubit unitary may be written
as ∼ 4n two-level unitary operations, and implementing a
two-level operation needs ∼ n2 single particle and controlled-U
operations, which gives ∼ n24n single particle and controlled-U
operations to realize an arbitrary n-qubit unitary.

In general, exponentially many single and two-qubit unitaries
are needed for generating an n-qubit unitary evolution.



Quantum Circuit

The circuit model of quantum computing

|ψf 〉 = UKUK−1 . . . U2U1|0〉⊗n,

each Ui is a single- or two-qubit unitary.

Circuit size: the number of unitaries K.
Circuit depth: the number of layers M .



Quantum Simulation

The evolution of few-body Hamiltonians can be simulated
efficiently by single qubit Y,Z terms and any non-trivial
two-qubit interaction.
The Hamiltonian H =

∑L
j=1Hj . Shrödinger’s equation:

i
∂|ψ(t)〉
∂t

= H|ψ(t)〉

For time independent Hamiltonian H, |ψ(t)〉 = exp[−iH(t− t0)].
In the simplest case, if [Hj , Hk] = 0 for all j, k, i.e. all the terms
Hj commute, then the evolution exp−iHt is given by

exp[−iHt] = exp[−it
L∑
j=1

Hj ] =

L∏
j=1

exp[−iHjt].

This directly gives an efficient quantum circuit, as each
exp[−iHjt] is a unitary acting on only a few number of particles.



Quantum Simulation

H =
∑L

j=1Hj , when His do not commute.

Trotter Product Formula
lim
s→∞

(eiAt/seiBt/s)s = ei(A+B)t.

Taylor expansion for eiAt/s:

eiAt/s = I +
1

s
(iAt) +O(

1

s2
).

→ eiAt/seiBt/s = I +
1

s
i(A+B)t+O(

1

s2
),

→
(
eiAt/seiBt/s

)s
=

(
I +

1

s
i(A+B)t+O(

1

s2
)

)

→= I +
s∑

k=1

(
s

k

)
1

sk
[i(A+B)t]k +O(

1

s2
).



Quantum Simulation

Since (
s

k

)
1

sk
=

1

k!

[
1 +O(

1

s
)

]
,

taking the limit s→∞ gives

lim
s→∞

(
eiAt/seiBt/s

)s
= lim

s→∞

s∑
k=0

[i(A+B)t]k

k!
(1 +O(

1

s
)) +O(

1

s2
) = ei(A+B)t.

The idea for quantum simulation is similar.

ei(A+B)∆t = eiA∆teiB∆t +O(∆t2),

similarly

ei(A+B)∆t = eiA∆t/2eiB∆teiA∆t/2 +O(∆t3).



Quantum Simulation

For H =
∑L

j=1Hj , one can further show that

e−2iH∆t =
[
e−iH1∆te−iH2∆t . . . e−iHL∆t

]
×
[
e−iHL∆te−iHL−1∆t . . . e−iH1∆t

]
+O(∆t3),

A more detailed analysis will show that in order to achieve the
precision ε for the simulation, in a sense that the output of the
simulation is |ψ′(t)〉 such that

|〈ψ′(t)|e−iHt|ψ(0)〉|2 ≥ 1− ε,

then one would need a quantum circuit with poly(1
ε ) (i.e.

polynomial in 1
ε ) number of single and two-particle unitary

operations.


