The Circuit Model

Bei Zeng

University of Guelph

What is computation?

To compute a function

$$
x \rightarrow f(x)
$$

$x=x_{n-1} x_{n-2} \ldots x_{1} x_{0}, \quad x_{i}=0,1$
Example

$$
f(x)=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

where the exclusive OR (XOR) gate:
$0 \oplus 0=0$
$0 \oplus 1=1$
$1 \oplus 0=1$
$1 \oplus 1=0$

And a function with multi-bit output $x \oplus y$, where

$$
\begin{aligned}
x & =x_{n-1} x_{n-2} \ldots x_{1} x_{0} \\
y & =y_{n-1} y_{n-2} \ldots y_{1} y_{0}
\end{aligned}
$$

More gates

$$
\begin{aligned}
& \text { NOT OR AND NAND } \\
& \begin{array}{llllllllll}
& & 00 & \rightarrow & 0 & 00 & \rightarrow & 0 & 00 & \rightarrow \\
1 \\
0 & \rightarrow & 1 & 01 & \rightarrow & 1 & 01 & \rightarrow & 0 & 01
\end{array} \rightarrow 1
\end{aligned}
$$

NAND $=$ NOT \circ AND

Circuit Diagrams

Figure 3.4. Elementary circuits performing the AND, OR, XOR, NAND, and NOR gates.

Circuits

Example

Build AND from NAND

\[

\]

Universal Gates
Any function on bits can be computed from the composition of NAND gates alone.

Circuits

Size of a circuit: \# of gates in the circuit

Example

$$
f(x)=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}, \quad \text { size } n-1
$$

> Measure of complexity:
> Polynomial: $\operatorname{Size}(f) \sim p(n)$
> Exponential: $\operatorname{Size}(f) \sim e^{\alpha n}$

Strong Church-Turing Thesis

Any model of computation can be simulated on a probabilistic Turing machine at most a polynomial increase in the number of elementary operation required

How to compute quantum mechanically

Consider the following unitary operator

$$
\mathbf{U}_{f}\left(|x\rangle_{n}|y\rangle_{m}\right)=|x\rangle_{n}|y \oplus f(x)\rangle_{m}
$$

note that

$$
\mathbf{U}_{f} \mathbf{U}_{f}\left(|x\rangle_{n}|y\rangle_{m}\right)=\mathbf{U}_{f}\left(|x\rangle|y \oplus f(x) \oplus f(x)\rangle=|x\rangle_{n}|y\rangle_{m}\right.
$$

i.e. $\mathbf{U}_{f}^{\dagger}=\mathbf{U}_{f}$.

For $y=0$, we have

$$
\mathbf{U}_{f}\left(|x\rangle_{n}|0\rangle_{m}\right)=|x\rangle_{n}|f(x)\rangle_{m}
$$

The Hadamard Transform

For a single qubit:

$$
\begin{aligned}
\mathbf{H}|0\rangle & =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \equiv|+\rangle \\
\mathbf{H}|1\rangle & =\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \equiv|-\rangle
\end{aligned}
$$

For two qubits:

$$
\begin{aligned}
\mathbf{H} \otimes \mathbf{H}(|0\rangle \otimes|0\rangle) & =\mathbf{H}(|0\rangle)(\mathbf{H}|0\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& =\frac{1}{2}(|0\rangle|0\rangle+|0\rangle|1\rangle+|1\rangle|0\rangle+|1\rangle|1\rangle) \\
& =\frac{1}{2}\left(|0\rangle_{2}+|1\rangle_{2}+|2\rangle_{2}+|3\rangle_{2}\right)
\end{aligned}
$$

The Hadamard Transform

For n qubits:

$$
\mathbf{H}^{\otimes n}|0\rangle_{n}=\frac{1}{2^{n / 2}} \sum_{0 \leq x<2^{n}}|x\rangle_{n}
$$

where

$$
\mathbf{H}^{\otimes n}=\mathbf{H} \otimes \mathbf{H} \otimes \cdots \otimes \mathbf{H}
$$

Now consider the following operations on $n+m$ qubits:

$$
\begin{aligned}
& \mathbf{U}_{f}\left(\mathbf{H}^{\otimes n} \otimes \mathbf{I}_{m}\right)\left(|0\rangle_{n}|0\rangle_{m}\right) \\
= & \frac{1}{2^{n / 2}} \sum_{0 \leq x<2^{n}} \mathbf{U}_{f}\left(|x\rangle_{n}|0\rangle_{m}\right) \\
= & \frac{1}{2^{n / 2}} \sum_{0 \leq x<2^{n}}|x\rangle_{n}|f(x)\rangle_{m}
\end{aligned}
$$

Quantum Circuits

Single qubit unitary:
Important single-qubit unitaries are the $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ rotations:

$$
\mathbf{X}_{\theta}=\exp (-i \theta \mathbf{X} / 2)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} \mathbf{X}=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)
$$

and

$$
\mathbf{Y}_{\theta}=\exp (-i \theta \mathbf{Y} / 2)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} \mathbf{Y}=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)
$$

and

$$
\mathbf{Z}_{\theta}=\exp (-i \theta \mathbf{Z} / 2)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} \mathbf{Z}=\left(\begin{array}{cc}
e^{-i \frac{\theta}{2}} & 0 \\
0 & e^{i \frac{\theta}{2}}
\end{array}\right)
$$

Circuit Diagram

Single-qubit Unitary

For any unitary operation \mathbf{U} on a single qubit, there exist real numbers $\alpha, \beta, \gamma, \delta$ such that $\mathbf{U}=e^{i \alpha} \mathbf{Z}_{\beta} \mathbf{Y}_{\gamma} \mathbf{Z}_{\delta}$.

For any 2×2 unitary matrix \mathbf{U}, the rows and columns of \mathbf{U} are orthogonal plus that each row or column is a normalized vector. This then follows that therethere exist real numbers $\alpha, \beta, \gamma, \delta$ such that

$$
\begin{aligned}
& \mathbf{U}=\left(\begin{array}{cc}
e^{i(\alpha-\beta / 2-\delta / 2)} \cos \frac{\gamma}{2} & -e^{-i(\alpha-\beta / 2+\delta / 2)} \sin \frac{\gamma}{2} \\
e^{i(\alpha+\beta / 2-\delta / 2)} \sin \frac{\gamma}{2} & e^{i(\alpha+\beta / 2+\delta / 2)} \cos \frac{\gamma}{2}
\end{array}\right) . \\
&|\psi\rangle-\mathbf{Z}_{\delta}-\mathbf{Y}_{\gamma}-\mathbf{Z}_{\beta}-\mathbf{Z}_{\delta} \mathbf{Y}_{\gamma} \mathbf{Z}_{\beta}|\psi\rangle \\
&|\psi\rangle-\mathbf{V}-\mathbf{W}-\mathbf{W} \mathbf{V}|\psi\rangle
\end{aligned}
$$

Two-qubit Unitary

Controlled-NOT:

$$
|x\rangle \otimes|y\rangle \rightarrow|x\rangle \otimes|y \oplus x\rangle
$$

In the basis of $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ the matrix:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Similarly, a controlled-NOT gate with the second qubit as the control qubit takes $|x\rangle \otimes|y\rangle$ to $|x \oplus y\rangle \otimes|y\rangle$.

$$
\begin{array}{ll}
|x\rangle-\longrightarrow \quad|x\rangle & |x\rangle-\oplus|x \oplus y\rangle \\
|y\rangle \multimap|y \oplus x\rangle & |y\rangle \multimap \quad|y\rangle
\end{array}
$$

Two-qubit Unitary

Controlled-Z:

$$
|00\rangle \rightarrow|00\rangle,|01\rangle \rightarrow|01\rangle,|10\rangle \rightarrow|10\rangle,|11\rangle \rightarrow-|11\rangle .
$$

Given that the controlled-Z operation is symmetric between the two qubits, it is not necessary to specify which one is the control qubit and which one is the target qubit. In the basis of $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ the matrix:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) . \\
& |x\rangle \longrightarrow \quad|x\rangle \\
& |y\rangle \longrightarrow(-1)^{x y}|y\rangle
\end{aligned}
$$

Controlled-Z from Controlled-NOT

The Hadamard Transform

$$
\mathbf{H}| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)
$$

In the basis of $\{|0\rangle,|1\rangle\}$ the matrix:

$$
\mathbf{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

Controlled-U

Controlled-U:

$$
\begin{aligned}
& |x\rangle-\longrightarrow \quad|x\rangle \\
& |y\rangle-\boxed{\mathbf{U}} \quad \mathbf{U}^{x}|y\rangle
\end{aligned}
$$

Controlled-NOT is in fact controlled-X.

$$
\begin{aligned}
& |x\rangle-\longrightarrow \quad|x\rangle \\
& |y\rangle-\mathbf{X}-\mathbf{X}^{x}|y\rangle
\end{aligned}
$$

Controlled-Z:

$$
\begin{aligned}
& |x\rangle-\mathbb{Z} \quad|x\rangle \\
& |y\rangle-\mathbf{Z}-\mathbf{Z}^{x}|y\rangle
\end{aligned}
$$

Controlled-U from Controlled-NOT

Controlled-U from single-qubit unitaries and controlled-NOT:

where

$$
\mathbf{D}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right)
$$

and $\mathbf{U}, \alpha, \mathbf{A}, \mathbf{B}, \mathbf{C}$ satisfy

$$
\begin{aligned}
\mathbf{U} & =e^{i \alpha} \mathbf{A X B X C} \\
\mathbf{I} & =\mathbf{A B C}
\end{aligned}
$$

Universal Gates

Universal Gates

Any unitary on qubits can be built from single-qubit unitaries and controlled-NOT.

Size of a quantum circuit:
\# of single-qubit and controlled-NOT gates in the circuit

Measure of complexity:
Polynomial: Size $(f) \sim p(n)$
Exponential: $\operatorname{Size}(f) \sim e^{\alpha n}$

Unitary Evolution

The Ising-type interaction Hamiltonian:

$$
H_{i n}=J \mathbf{Z} \otimes \mathbf{Z}
$$

Observe that

$$
\begin{aligned}
& \exp -i \frac{\pi}{4}(\mathbf{I} \otimes \mathbf{I}-\mathbf{Z} \otimes \mathbf{I}-\mathbf{I} \otimes \mathbf{Z}+\mathbf{Z} \otimes \mathbf{Z}) \\
= & e^{-i \frac{\pi}{4}} e^{i \frac{\mathbf{Z} \otimes \mathbf{I}}{4} \pi} e^{i \frac{i \otimes \mathbf{Z}}{4} \pi} e^{-i \frac{\mathbf{Z} \otimes \mathbf{Z}}{4} \pi}
\end{aligned}
$$

which gives the controlled-Z operation.

Unitary Evolutions from Single- and Two-qubit Ones Single qubit terms and any non-trivial two-qubit interaction can generate an arbitrary n-qubit unitary evolution.

Reversible Classical Computer

The Toffoli Gate: $\mathbf{T}|x\rangle|y\rangle|z\rangle=|x\rangle|y\rangle|z \oplus x y\rangle$

$\|x\rangle$	\bullet
$\|y\rangle$	$\|x\rangle$
$\|z\rangle$	$\|y\rangle$
$\mid z$	$\|z \oplus x y\rangle$

To implement NAND:

$\|x\rangle$	\bullet
$\|y\rangle \bullet \bullet$	$\|x\rangle$
$\|1\rangle \multimap-\|1 \oplus x y\rangle=$	$\mid x$ NAND $y\rangle$

Toffoli Gate from Two-Qubit Gates

Implementation of Toffoli gate using two-qubit controlled gates.

Implementation of Toffoli gate using Hadamard, phase, controlled-NOT and $\pi / 8$ gates.

Measurements (the Born rule)

For $|\psi\rangle=\sum \alpha_{x}|x\rangle_{n}$, measure in the basis of $\left\{|x\rangle_{n}\right\}$ returns $|x\rangle_{n}$ with probability $p_{x}=\left|\alpha_{x}\right|^{2}$.

$$
|\psi\rangle=\sum \alpha_{x}|x\rangle_{n}+\pitchfork=|x\rangle_{n}
$$

For $|\psi\rangle=\sum \alpha_{x}|x\rangle_{n}\left|\phi_{x}\right\rangle_{m}$, measure the first register in the basis of $\left\{|x\rangle_{n}\right\}$ returns $|x\rangle_{n}\left|\phi_{x}\right\rangle_{m}$ with probability $p_{x}=\left|\alpha_{x}\right|^{2}$.

$$
|\psi\rangle=\sum \alpha_{x}|x\rangle_{n}\left|\phi_{x}\right\rangle_{m}
$$

$$
\xlongequal{ }\left|\phi_{x}\right\rangle_{m}
$$

Measurements in different basis

Example

Find the output state $|\phi\rangle$ of the following circuit:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \xrightarrow{\text { Toffoli }} \frac{1}{\sqrt{2}}(|000\rangle+|110\rangle) \\
& \xrightarrow{\mathbf{H}_{2}} \frac{1}{\sqrt{2}}\left[|0\rangle \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|0\rangle+|1\rangle \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)|0\rangle\right] \\
& =\frac{1}{2}(|000\rangle+|010\rangle+|100\rangle-|110\rangle) \xrightarrow{\mathrm{CNOT}_{32}} \\
& =\frac{1}{2}(|000\rangle+|010\rangle+|110\rangle-|100\rangle) \rightarrow|\phi\rangle=|0\rangle
\end{aligned}
$$

A Quantum Computer: The Circuit Model

DiVincenzo Criteria

- a scalable physical system of well-characterized qubits;
- the ability to initialize the state of the qubits to a simple fiducial state;
- long (relative) decoherence times, much longer than the gate-operation time;
- a universal set of quantum gates;
- a qubit-specific measurement capability.

n-Qubit Unitary

Question: how 'efficient' this realization is?
A simple counting: an arbitrary n-qubit unitary may be written as $\sim 4^{n}$ two-level unitary operations, and implementing a two-level operation needs $\sim n^{2}$ single particle and controlled- U operations, which gives $\sim n^{2} 4^{n}$ single particle and controlled- U operations to realize an arbitrary n-qubit unitary.

In general, exponentially many single and two-qubit unitaries are needed for generating an n-qubit unitary evolution.

Quantum Circuit

The circuit model of quantum computing

$$
\left|\psi_{f}\right\rangle=U_{K} U_{K-1} \ldots U_{2} U_{1}|0\rangle^{\otimes n}
$$

each U_{i} is a single- or two-qubit unitary.

Circuit size: the number of unitaries K.
Circuit depth: the number of layers M.

Quantum Simulation

The evolution of few-body Hamiltonians can be simulated efficiently by single qubit Y, Z terms and any non-trivial two-qubit interaction.
The Hamiltonian $H=\sum_{j=1}^{L} H_{j}$. Shrödinger's equation:

$$
i \frac{\partial|\psi(t)\rangle}{\partial t}=H|\psi(t)\rangle
$$

For time independent Hamiltonian $H,|\psi(t)\rangle=\exp \left[-i H\left(t-t_{0}\right)\right]$. In the simplest case, if $\left[H_{j}, H_{k}\right]=0$ for all j, k, i.e. all the terms H_{j} commute, then the evolution $\exp -i H t$ is given by

$$
\exp [-i H t]=\exp \left[-i t \sum_{j=1}^{L} H_{j}\right]=\prod_{j=1}^{L} \exp \left[-i H_{j} t\right]
$$

This directly gives an efficient quantum circuit, as each $\exp \left[-i H_{j} t\right]$ is a unitary acting on only a few number of particles.

Quantum Simulation

$H=\sum_{j=1}^{L} H_{j}$, when $H_{i} \mathrm{~s}$ do not commute.

$$
\begin{gathered}
\text { Trotter Product Formula } \\
\lim _{s \rightarrow \infty}\left(e^{i A t / s} e^{i B t / s}\right)^{s}=e^{i(A+B) t}
\end{gathered}
$$

Taylor expansion for $e^{i A t / s}$:

$$
\begin{gathered}
e^{i A t / s}=I+\frac{1}{s}(i A t)+O\left(\frac{1}{s^{2}}\right) \\
\rightarrow e^{i A t / s} e^{i B t / s}=I+\frac{1}{s} i(A+B) t+O\left(\frac{1}{s^{2}}\right) \\
\rightarrow\left(e^{i A t / s} e^{i B t / s}\right)^{s}=\left(I+\frac{1}{s} i(A+B) t+O\left(\frac{1}{s^{2}}\right)\right) \\
\rightarrow=I+\sum_{k=1}^{s}\binom{s}{k} \frac{1}{s^{k}}[i(A+B) t]^{k}+O\left(\frac{1}{s^{2}}\right) .
\end{gathered}
$$

Quantum Simulation

Since

$$
\binom{s}{k} \frac{1}{s^{k}}=\frac{1}{k!}\left[1+O\left(\frac{1}{s}\right)\right],
$$

taking the limit $s \rightarrow \infty$ gives

$$
\begin{aligned}
& \lim _{s \rightarrow \infty}\left(e^{i A t / s} e^{i B t / s}\right)^{s} \\
& =\lim _{s \rightarrow \infty} \sum_{k=0}^{s} \frac{[i(A+B) t]^{k}}{k!}\left(1+O\left(\frac{1}{s}\right)\right)+O\left(\frac{1}{s^{2}}\right)=e^{i(A+B) t} .
\end{aligned}
$$

The idea for quantum simulation is similar.

$$
e^{i(A+B) \Delta t}=e^{i A \Delta t} e^{i B \Delta t}+O\left(\Delta t^{2}\right)
$$

similarly

$$
e^{i(A+B) \Delta t}=e^{i A \Delta t / 2} e^{i B \Delta t} e^{i A \Delta t / 2}+O\left(\Delta t^{3}\right)
$$

Quantum Simulation

For $H=\sum_{j=1}^{L} H_{j}$, one can further show that

$$
\begin{aligned}
& e^{-2 i H \Delta t}=\left[e^{-i H_{1} \Delta t} e^{-i H_{2} \Delta t} \ldots e^{-i H_{L} \Delta t}\right] \\
& \times\left[e^{-i H_{L} \Delta t} e^{-i H_{L-1} \Delta t} \ldots e^{-i H_{1} \Delta t}\right]+O\left(\Delta t^{3}\right),
\end{aligned}
$$

A more detailed analysis will show that in order to achieve the precision ϵ for the simulation, in a sense that the output of the simulation is $\left|\psi^{\prime}(t)\right\rangle$ such that

$$
\left.\left|\left\langle\psi^{\prime}(t)\right| e^{-i H t}\right| \psi(0)\right\rangle\left.\right|^{2} \geq 1-\epsilon
$$

then one would need a quantum circuit with poly $\left(\frac{1}{\epsilon}\right)$ (i.e. polynomial in $\frac{1}{\epsilon}$) number of single and two-particle unitary operations.

