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What is computation?
To compute a function
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Example
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And a function with multi-bit output x & y, where
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More gates
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Circuit Diagrams
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Figure 3.4. Elementary circuits performing the AND, OR, XOR, NAND, and NOR gates.
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Circuits

Example
Build AND from NAND

NAND AND
00 — 1 00 — O
01 — 1 01 — 0
10 — 1 10 — O
11 — 0 11 — 1
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Universal Gates
Any function on bits can be computed from the
composition of NAND gates alone.




Circuits

Size of a circuit: # of gates in the circuit

Example fX)=2,®r0® - - ®xp, sizen—1

Measure of complexity:
Polynomial: Size(f) ~ p(n)
Exponential: Size(f) ~ e*"

Strong Church-Turing Thesis
Any model of computation can be simulated on a
probabilistic Turing machine at most a polynomial increase
in the number of elementary operation required




How to compute quantum mechanically

Consider the following unitary operator
Uf<|x>n|y>m) = |2)nly @ f(2))m
note that
UsUs(z)nly)m) = Up(la)ly & f(z) @ f(2)) = [2)aly)m

ie. UL =10y
For y = 0, we have

Us([2)n|0)m) = [2)n|f(2))m



The Hadamard Transform

For a single qubit:

H|0) = (!0> +0) =1+)

Sl

H[) = (!0> ==

Sl

For two qubits:
H®H(|0)®(0)) = H(|0))(H|0))

1 1
= ﬁ(\0>+ll>)\ﬁ(l0>+\1>)

_ %(‘0>\0>+|0>|1>+|1>|0>+|1>|1>)

_ %(\o>2+|1>2+|2>2+l3>2>



The Hadamard Transform

For n qubits:

H®"(0), =

1
on/2 Z ‘x>n’

0<z<2m
where

Now consider the following operations on n + m qubits:
Uf(H®n ® 11) (10)[0) )
1
= Sz 2 Us([2)al0hm)

0<z<2m

= om X ol @)m

0<zx<2m




Quantum Circuits

Single qubit unitary:
Important single-qubit unitaries are the X, Y, Z rotations:
0

0 0 [4 _igin?
Xy = exp(—ifX/2) = cos I —isin-X = [ 2, ~'a)
2 2 —ising  cosg

and

0 0 g —sinf
Yy = exp(—ifY /2) = cos 5[ — gsin §Y = <COSg sm92> )

S1n 5 COS 5

and

_;8
Zy = exp(—ifZ/2) = cos gl - isingz = (e ’ ? ) .



Circuit Diagram

Single-qubit Unitary
For any unitary operation U on a single qubit, there exist
real numbers «, 3,7, d such that U = e'*Z3zY,Zs.

For any 2 x 2 unitary matrix U, the rows and columns of U are
orthogonal plus that each row or column is a normalized vector.
This then follows that therethere exist real numbers «, 3,7, §
such that

- et(a=B/2-6/2) g % —e~Ua=B/2+6/2) gipy %
- ei(a+ﬁ/2*6/2) sin % ei(a+ﬁ/2+§/2) CcOS % ’
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Two-qubit Unitary
Controlled-NOT:
z) ® ly) = |z) @ |y & z)

In the basis of {|00), |01), |10), |11)} the matrix:

1000
0100
0 001
0010

Similarly, a controlled-NOT gate with the second qubit as the
control qubit takes |z) ® |y) to |z ® y) ® |y).

z) —o—  |z) |z) o~ |z @ y)

ly) —— ly @) ly) —o— [y)



Two-qubit Unitary
Controlled-Z:
|00) — |00), |01) — |01), |10) — |10), |11) — —|11).

Given that the controlled-Z operation is symmetric between the
two qubits, it is not necessary to specify which one is the
control qubit and which one is the target qubit. In the basis of
{]00), |01), |10), |11)} the matrix:

1 0 0 O
01 0 O
001 0
00 0 -1
) 4~ )




Controlled-Z from Controlled-NOT

The Hadamard Transform

1
V2
In the basis of {|0), |1)} the matrix:

1 /1 1
H= (0 L)
—HHzHul = x|
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Controlled-U

Controlled-U:
) )
ly) Uly)
Controlled-NOT is in fact controlled-X.

2) 2)
|y> X=y)
2) 2)

|y> Z¢|y)

Controlled-Z:



Controlled-U from Controlled-NOT

Controlled-U from single-qubit unitaries and controlled-NOT:

D—

Bl

where

and U, o, A, B, C satisfy

U = ¢“AXBXC
I = ABC.



Universal Gates

Universal Gates
Any unitary on qubits can be built from single-qubit
unitaries and controlled-NOT.

Size of a quantum circuit:
# of single-qubit and controlled-NOT gates in the circuit

Measure of complexity:
Polynomial: Size(f) ~ p(n)
Exponential: Size(f) ~ e*"




Unitary Evolution

The Ising-type interaction Hamiltonian:
H,, =JZ®Z.
Observe that

exp—i%(l@I—Z@I—I@Z—FZ@Z)

T LRl JIRZ .

ZQZ
= e tae' 4 TetTa T a

™

which gives the controlled-Z operation.

Unitary Evolutions from Single- and Two-qubit Ones
Single qubit terms and any non-trivial two-qubit interaction
can generate an arbitrary n-qubit unitary evolution.




Reversible Classical Computer

The Toffoli Gate: T|z)|y)|z) = |z)|y)|z & zy)

) o)
) —4— |y
|2) —&— |z @ ay)

To implement NAND:

|z) —o— )
ly) —9— v)
|1) =& |1 @ ay) = |z NAND vy)



Toffoli Gate from Two-Qubit Gates

Implementation of Toffoli gate using two-qubit controlled gates.
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Implementation of Toffoli gate using Hadamard, phase,
controlled-NOT and 7/8 gates.
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Measurements (the Born rule)

For |¢) =Y ag|z),, measure in the basis of {|z),} returns |z),
with probability p, = |a.|?.

) = ¥ azlz)n —— = lo)n

For |¢) =Y ag|z)n|ds)m, measure the first register in the basis
of {|x),} returns |z),|¢s)m with probability p, = |a,|?.

2}
V) = >~ az|T)nl@z)m
—————— |¢2)m

Measurements in different basis



Example
Find the output state |¢) of the following circuit:

~——1 1 10)
75(1000) +111)) —p-{E}-{ A= 1)

|#)

Toffoli

\1[(;000> ) 2 L 000y 4 o))

\/>
&f[\o>f<|o>+\1>>|o>+m\[(m \1>>|0>}
= §<!000> +1010) + [100) — [110)) <NOTs2,

- %(\000) +(010) + [110) — [100)) — |¢) = [0)



A Quantum Computer: The Circuit Model

DiVincenzo Criteria

v

a scalable physical system of well-characterized qubits;

v

the ability to initialize the state of the qubits to a simple
fiducial state;

v

long (relative) decoherence times, much longer than the
gate-operation time;

v

a universal set of quantum gates;

v

a qubit-specific measurement capability.



n-Qubit Unitary

Question: how ‘efficient’ this realization is?

A simple counting: an arbitrary n-qubit unitary may be written
as ~ 4™ two-level unitary operations, and implementing a
two-level operation needs ~ n? single particle and controlled-U
operations, which gives ~ n?4™ single particle and controlled-U
operations to realize an arbitrary n-qubit unitary.

In general, exponentially many single and two-qubit unitaries
are needed for generating an n-qubit unitary evolution.



Quantum Circuit

The circuit model of quantum computing
1) = UgUg—1 ... UsUp|0)*™,

each U; is a single- or two-qubit unitary.

[:'Ij layer M
L1 (L _]
[ Uas |
t e
’ ] i layer 2
E{] layer 1
1 2 3 n

Circuit size: the number of unitaries K.
Circuit depth: the number of layers M.



Quantum Simulation

The evolution of few-body Hamiltonians can be simulated
efficiently by single qubit Y, Z terms and any non-trivial
two-qubit interaction.

The Hamiltonian H = Zle Hj. Shrédinger’s equation:

Alp(1))
ot

For time independent Hamiltonian H, |¢(t)) = exp[—iH (t —to)].
In the simplest case, if [H;, Hy] = 0 for all j, k, i.e. all the terms
Hj; commute, then the evolution exp —iHt is given by

?

= Hly(1))

L L
exp[—iHt] = exp[—it Z Hj| = H exp[—iH,t].
j=1 j=1

This directly gives an efficient quantum circuit, as each
exp[—iH;t| is a unitary acting on only a few number of particles.



Quantum Simulation
H= ZJL:1 H;, when H;s do not commute.

Trotter Product Formula

lim (eiAt/SeiBt/s)s _ Gi(A+B)t
S§—00

Taylor expansion for e4/s:
s — 14 Lian 4 o)
s s27
tAt/s iBt/s 1 1
— "% =1+ -i(A+ B)t+0(=),
s s

o G I <I LA+ B+ 0(512)>

S



Quantum Simulation

s\ 1 1 1
-1 -
<k> sk k! [ +O(S):| ’
taking the limit s — oo gives

lim ( A/ ez‘Bt/s) s

S5§—00

Since

s

Y [i(A+ B)t)* 1 Lo ia+B)
= slil?okzom(HO(s)) +0(5)=¢ :

The idea for quantum simulation is similar.

ei(A+B)At _ eiAAteiBAt + O(At2),

similarly

62’(A+B)At _ eiAAt/QeiBAteiAAt/2 + O(At3)



Quantum Simulation
For H = Z]'L:1 Hj, one can further show that
6—2iHAt — [e—iHlAte—ngAt . e—iHLAt]

X [e_iHLAte_iHLflAt . 6—iH1At] + O(At3),

A more detailed analysis will show that in order to achieve the
precision € for the simulation, in a sense that the output of the
simulation is [¢(¢)) such that

(W' @)le )P 21—,

then one would need a quantum circuit with poly(2) (i.e.
polynomial in %) number of single and two-particle unitary
operations.



