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Open Quantum Systems

Consider the system S is coupled with the environment E .
The evolution of the wave function |ψSE 〉 ∈ HS ⊗HE is governed
by the Shrödinger’s equation

i
∂|ψSE (t)〉

∂t
= HSE |ψSE (t)〉,

which is unitary

|ψSE (t)〉 = USE (t, t0)|ψSE (t0)〉.

Or in terms of the density operator

ρSE (t) = USE (t, t0)ρSE (t0)U†SE (t, t0).

Question: what is the time evolution of the system state ρS(t)?



Kraus representation

Assume ρSE (t0) = ρS(t0)⊗ |0E 〉〈0E |.

ρS(t) = TrE ρSE (t)

= TrE USE (t, t0)(ρS(t0)⊗ |0E 〉〈0E |)U†SE (t, t0)

=
∑
k

〈kE |USE (t, t0)|0E 〉ρS(t0)〈0E |U†SE (t, t0)|kE 〉.

Write Ek = 〈kE |USE (t, t0)|0E 〉, then we get:
Kraus Representation for non-Unitary Evolution

E(ρS(0)) = ρS(t) =
∑
k

EkρS(t0)E †k ,

where∑
k

E †kEk =
∑
k

〈0E |U†SE (t, t0)|kE 〉〈kE |USE (t, t0)|0E 〉

= 〈0E |U†SE (t, t0)USE (t, t0)|0E 〉 = I



Kraus representation

ρS(t) =
∑
k

EkρS(t0)E †k

I ρ(t) is Hermitian:

ρ(t)† =

(∑
k

Ekρ(t0)E †k

)†
=
∑
k

Ekρ
†(t0)E †k = ρ(t)

I ρ(t) is with unit trace:

Tr ρ(t) = Tr

(∑
k

Ekρ(t0)E †k

)
= Tr

(∑
k

E †kEkρ(t0)

)
= 1

I ρ(t) is positive:

〈ψ|ρ(t)|ψ〉 =
∑
k

(〈ψ|Ek)ρ(t0)(E †k |ψ〉) ≥ 0.



Example

Orthogonal measurements {Πk}:

Πk = Π†k , ΠjΠk = δjkΠk ,
∑
k

Πk = I ,

then the quantum operation M describing the measurement is

M(ρ) =
∑
k

ΠkρΠk .

When ρ is a pure state |ψ〉, the measurement will take |ψ〉〈ψ| to

Πk |ψ〉〈ψ|Πk

〈ψ|Πk |ψ〉
,

with probability
pk = 〈ψ|Πk |ψ〉.



Master Equation

Shrödinger’s equation

dρSE
dt

= −i [HSE , ρSE ].

Tracing out the environment:

dρS
dt

= TrE (
dρSE
dt

) = TrE (−i [HSE , ρSE ]).

We only care about the system, we omit the subscript S .
We know that in general

ρ(t) = E(ρ) =
∑
k

Ek(t)ρ(t0)E †k (t).

We will want a differential equation for ρ(t), which is not always
possible.



Markov Approximation

ρ(t + dt) is completely determined by ρ(t):

ρ(t + dt) = ρ(t) + O(dt).

Expand the Kraus operators in terms of dt

E0 = I + (−iH + M)dt,

Ek =
√
dtLk , k > 0

where both H,M are chosen to be Hermitian and are zeroth order
in dt, Lk are chosen to be Hermitian and are zeroth order in dt.
The condition

∑
k E
†
kEk = I the gives M = −1

2

∑
k>0 L

†
kLk .

The Lindblad Equation

dρ

dt
= −i [H, ρ] +

∑
k>0

(LkρL
†
k −

1

2
L†kLkρ−

1

2
ρL†kLk).



Master equations for a single qubit

Recall that ~σ = (X ,Y ,Z ), and here we denote
σ1 = X , σ2 = Y , σ3 = Z . Then let

σ± = X ± iY .

To look at the interaction picture. Let

ρ̃(t) = e iHtρ(t)e−iHt ,

which then gives

d ρ̃(t)

dt
=
∑
k>0

(L̃kρL̃
†
k −

1

2
L̃†k L̃kρ−

1

2
ρL̃†k L̃k),

where
L̃k = e iHtLke

−iHt .



Amplitude Damping

Spontaneous emission: two-level atom interacting with an
electromagnetic environment.

H = HS + HE + V ,

HS =
ωa

2
σz ,

HE =
∑
j

ωjb
†
j bj ,

V =
∑
j

gj(σ+bj + σ−b
†
j ).

In the interaction picture:

d ρ̃

dt
= −i [Ṽ , ρ̃],

where

Ṽ =
∑
j

gj(σ+bje
−i(ωj−ωa)t + σ−b

†
j e

i(ωj−ωa)t).



Amplitude Damping

The master equation of amplitude damping is given by

dρ

dt
=

Γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−),

where Γ is the decay rate of the excited level.
Let γ = 1− e−Γt , then one has

ρ(t) =

(
ρ00 + γρ11

√
1− γρ01√

1− γρ10 (1− γ)ρ11

)
ρ(t) = E0ρE

†
0 + E1ρE

†
1 ,

where the Kraus operators E0,E1 are given as the following.

Kraus Operators for Amplitude Damping

E0 =

(
1 0
0
√

1− γ

)
, E1 =

(
0
√
γ

0 0

)
.



Amplitude Damping

The unitary picture USE

|0〉S |0〉E → |0〉S |0〉E
|1〉S |0〉E →

√
1− γ|1〉S |0〉E +

√
γ|0〉S |1〉E

From the derivation of the Kraus representation we know that

Ek = 〈kE |USE |0E 〉,

so we get

E0 = |0〉S〈0|S +
√

1− γ|1〉S〈1|S
E1 =

√
γ|0〉S〈1|S

Then the probability for the atom keeping in the excited state is

〈1|ρ|1〉(t) =
1− rz(t)

2
= e−Γt .



Phase Damping

The interaction
V =

∑
j

gjσz(bj + b†j ).

The master equation can be simplified as

dρ

dt
= Γ[2σ+σ−ρσ+σ− − σ+σ−ρ− ρσ+σ−],

where Γ is the decay rate from |+〉 to |−〉.
The Kraus operators

E0 =
√

1− γI , E1 =

(
1 0
0 0

)
, E2 =

(
0 0
0 1

)
,

where γ = 1− e−Γt .
The physical effect

〈0|ρ(t)|1〉 = 〈0|ρ(0)|1〉e−Γt .



Depolarizing

A two-level atom interacting with three independent reservoirs,

H =
3∑

j=1

HEj
+ Vj ,

where HEj
=
∑

k ωjkb
†
jkbjk ,Vj =

∑
k gjkσj(b

†
jk + bjk).

The master equation

dρ

dt
=

Γ

6

3∑
j=1

(2σjρσj − σjσjρ− ρσjσj).

The Kraus operators

E0 =
√

1− ΓI , Ej =
√

Γ
3σj , j = 1, 2, 3.

The physical effect

ρ(t) = ρ(0)e−Γt + (1− e−Γt)
I

2
.


