Open Quantum Systems

Bei Zeng

University of Guelph
Oct, 2016

Open Quantum Systems

Consider the system S is coupled with the environment E.
The evolution of the wave function $\left|\psi_{S E}\right\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{E}$ is governed by the Shrödinger's equation

$$
i \frac{\partial\left|\psi_{S E}(t)\right\rangle}{\partial t}=H_{S E}\left|\psi_{S E}(t)\right\rangle
$$

which is unitary

$$
\left|\psi_{S E}(t)\right\rangle=U_{S E}\left(t, t_{0}\right)\left|\psi_{S E}\left(t_{0}\right)\right\rangle
$$

Or in terms of the density operator

$$
\rho_{S E}(t)=U_{S E}\left(t, t_{0}\right) \rho_{S E}\left(t_{0}\right) U_{S E}^{\dagger}\left(t, t_{0}\right)
$$

Question: what is the time evolution of the system state $\rho_{S}(t)$?

Kraus representation

Assume $\rho_{S E}\left(t_{0}\right)=\rho_{S}\left(t_{0}\right) \otimes\left|0_{E}\right\rangle\left\langle 0_{E}\right|$.

$$
\begin{aligned}
\rho_{S}(t) & =\operatorname{Tr}_{E} \rho_{S E}(t) \\
& =\operatorname{Tr}_{E} U_{S E}\left(t, t_{0}\right)\left(\rho_{S}\left(t_{0}\right) \otimes\left|0_{E}\right\rangle\left\langle 0_{E}\right|\right) U_{S E}^{\dagger}\left(t, t_{0}\right) \\
& =\sum_{k}\left\langle k_{E}\right| U_{S E}\left(t, t_{0}\right)\left|0_{E}\right\rangle \rho_{S}\left(t_{0}\right)\left\langle 0_{E}\right| U_{S E}^{\dagger}\left(t, t_{0}\right)\left|k_{E}\right\rangle .
\end{aligned}
$$

Write $E_{k}=\left\langle k_{E}\right| U_{S E}\left(t, t_{0}\right)\left|0_{E}\right\rangle$, then we get:
Kraus Representation for non-Unitary Evolution

$$
\mathcal{E}\left(\rho_{S}(0)\right)=\rho_{S}(t)=\sum_{k} E_{k} \rho_{S}\left(t_{0}\right) E_{k}^{\dagger}
$$

where

$$
\begin{aligned}
\sum_{k} E_{k}^{\dagger} E_{k} & =\sum_{k}\left\langle 0_{E}\right| U_{S E}^{\dagger}\left(t, t_{0}\right)\left|k_{E}\right\rangle\left\langle k_{E}\right| U_{S E}\left(t, t_{0}\right)\left|0_{E}\right\rangle \\
& =\left\langle 0_{E}\right| U_{S E}^{\dagger}\left(t, t_{0}\right) U_{S E}\left(t, t_{0}\right)\left|0_{E}\right\rangle=I
\end{aligned}
$$

Kraus representation

$$
\rho_{S}(t)=\sum_{k} E_{k} \rho_{S}\left(t_{0}\right) E_{k}^{\dagger}
$$

- $\rho(t)$ is Hermitian:

$$
\rho(t)^{\dagger}=\left(\sum_{k} E_{k} \rho\left(t_{0}\right) E_{k}^{\dagger}\right)^{\dagger}=\sum_{k} E_{k} \rho^{\dagger}\left(t_{0}\right) E_{k}^{\dagger}=\rho(t)
$$

- $\rho(t)$ is with unit trace:

$$
\operatorname{Tr} \rho(t)=\operatorname{Tr}\left(\sum_{k} E_{k} \rho\left(t_{0}\right) E_{k}^{\dagger}\right)=\operatorname{Tr}\left(\sum_{k} E_{k}^{\dagger} E_{k} \rho\left(t_{0}\right)\right)=1
$$

- $\rho(t)$ is positive:

$$
\langle\psi| \rho(t)|\psi\rangle=\sum_{k}\left(\langle\psi| E_{k}\right) \rho\left(t_{0}\right)\left(E_{k}^{\dagger}|\psi\rangle\right) \geq 0 .
$$

Example

Orthogonal measurements $\left\{\Pi_{k}\right\}$:

$$
\Pi_{k}=\Pi_{k}^{\dagger}, \quad \Pi_{j} \Pi_{k}=\delta_{j k} \Pi_{k}, \quad \sum_{k} \Pi_{k}=I,
$$

then the quantum operation \mathcal{M} describing the measurement is

$$
\mathcal{M}(\rho)=\sum_{k} \Pi_{k} \rho \Pi_{k}
$$

When ρ is a pure state $|\psi\rangle$, the measurement will take $|\psi\rangle\langle\psi|$ to

$$
\frac{\Pi_{k}|\psi\rangle\langle\psi| \Pi_{k}}{\langle\psi| \Pi_{k}|\psi\rangle}
$$

with probability

$$
p_{k}=\langle\psi| \Pi_{k}|\psi\rangle .
$$

Master Equation

Shrödinger's equation

$$
\frac{d \rho_{S E}}{d t}=-i\left[H_{S E}, \rho_{S E}\right]
$$

Tracing out the environment:

$$
\frac{d \rho_{S}}{d t}=\operatorname{Tr}_{E}\left(\frac{d \rho_{S E}}{d t}\right)=\operatorname{Tr}_{E}\left(-i\left[H_{S E}, \rho_{S E}\right]\right)
$$

We only care about the system, we omit the subscript S.
We know that in general

$$
\rho(t)=\mathcal{E}(\rho)=\sum_{k} E_{k}(t) \rho\left(t_{0}\right) E_{k}^{\dagger}(t)
$$

We will want a differential equation for $\rho(t)$, which is not always possible.

Markov Approximation

$\rho(t+d t)$ is completely determined by $\rho(t)$:

$$
\rho(t+d t)=\rho(t)+O(d t)
$$

Expand the Kraus operators in terms of $d t$

$$
\begin{aligned}
& E_{0}=I+(-i H+M) d t \\
& E_{k}=\sqrt{d t} L_{k}, k>0
\end{aligned}
$$

where both H, M are chosen to be Hermitian and are zeroth order in $d t, L_{k}$ are chosen to be Hermitian and are zeroth order in $d t$. The condition $\sum_{k} E_{k}^{\dagger} E_{k}=I$ the gives $M=-\frac{1}{2} \sum_{k>0} L_{k}^{\dagger} L_{k}$.

The Lindblad Equation

$$
\frac{d \rho}{d t}=-i[H, \rho]+\sum_{k>0}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}\right)
$$

Master equations for a single qubit

Recall that $\vec{\sigma}=(X, Y, Z)$, and here we denote $\sigma_{1}=X, \sigma_{2}=Y, \sigma_{3}=Z$. Then let

$$
\sigma_{ \pm}=X \pm i Y
$$

To look at the interaction picture. Let

$$
\tilde{\rho}(t)=e^{i H t} \rho(t) e^{-i H t},
$$

which then gives

$$
\frac{d \tilde{\rho}(t)}{d t}=\sum_{k>0}\left(\tilde{L}_{k} \rho \tilde{L}_{k}^{\dagger}-\frac{1}{2} \tilde{L}_{k}^{\dagger} \tilde{L}_{k} \rho-\frac{1}{2} \rho \tilde{L}_{k}^{\dagger} \tilde{L}_{k}\right)
$$

where

$$
\tilde{L}_{k}=e^{i H t} L_{k} e^{-i H t}
$$

Amplitude Damping

Spontaneous emission: two-level atom interacting with an electromagnetic environment.

$$
\begin{aligned}
& H=H_{S}+H_{E}+V \\
H_{S} & =\frac{\omega_{a}}{2} \sigma_{z} \\
H_{E} & =\sum_{j}^{2} \omega_{j} b_{j}^{\dagger} b_{j} \\
V & =\sum_{j} g_{j}\left(\sigma_{+} b_{j}+\sigma_{-} b_{j}^{\dagger}\right) .
\end{aligned}
$$

In the interaction picture:

$$
\frac{d \tilde{\rho}}{d t}=-i[\tilde{V}, \tilde{\rho}]
$$

where

$$
\tilde{V}=\sum_{j} g_{j}\left(\sigma_{+} b_{j} e^{-i\left(\omega_{j}-\omega_{a}\right) t}+\sigma_{-} b_{j}^{\dagger} e^{i\left(\omega_{j}-\omega_{\mathrm{a}}\right) t}\right)
$$

Amplitude Damping

The master equation of amplitude damping is given by

$$
\frac{d \rho}{d t}=\frac{\Gamma}{2}\left(2 \sigma_{-} \rho \sigma_{+}-\sigma_{+} \sigma_{-} \rho-\rho \sigma_{+} \sigma_{-}\right),
$$

where Γ is the decay rate of the excited level. Let $\gamma=1-e^{-\Gamma t}$, then one has

$$
\begin{gathered}
\rho(t)=\left(\begin{array}{ll}
\rho_{00}+\gamma \rho_{11} & \sqrt{1-\gamma} \rho_{01} \\
\sqrt{1-\gamma} \rho_{10} & (1-\gamma) \rho_{11}
\end{array}\right) \\
\rho(t)=E_{0} \rho E_{0}^{\dagger}+E_{1} \rho E_{1}^{\dagger},
\end{gathered}
$$

where the Kraus operators E_{0}, E_{1} are given as the following.

$$
\begin{aligned}
& \text { Kraus Operators for Amplitude Damping } \\
& E_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\gamma}
\end{array}\right), \quad E_{1}=\left(\begin{array}{cc}
0 & \sqrt{\gamma} \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Amplitude Damping

The unitary picture $U_{S E}$

$$
\begin{aligned}
|0\rangle_{S}|0\rangle_{E} & \rightarrow|0\rangle_{S}|0\rangle_{E} \\
|1\rangle_{S}|0\rangle_{E} & \rightarrow \sqrt{1-\gamma}|1\rangle_{S}|0\rangle_{E}+\sqrt{\gamma}|0\rangle_{S}|1\rangle_{E}
\end{aligned}
$$

From the derivation of the Kraus representation we know that

$$
E_{k}=\left\langle k_{E}\right| U_{S E}\left|0_{E}\right\rangle,
$$

so we get

$$
\begin{aligned}
& E_{0}=|0\rangle_{S}\left\langle\left. 0\right|_{S}+\sqrt{1-\gamma} \mid 1\right\rangle_{S}\left\langle\left. 1\right|_{S}\right. \\
& E_{1}=\sqrt{\gamma}|0\rangle_{S}\left\langle\left. 1\right|_{S}\right.
\end{aligned}
$$

Then the probability for the atom keeping in the excited state is

$$
\langle 1| \rho|1\rangle(t)=\frac{1-r_{z}(t)}{2}=e^{-\Gamma t}
$$

Phase Damping

The interaction

$$
V=\sum_{j} g_{j} \sigma_{z}\left(b_{j}+b_{j}^{\dagger}\right)
$$

The master equation can be simplified as

$$
\frac{d \rho}{d t}=\Gamma\left[2 \sigma_{+} \sigma_{-} \rho \sigma_{+} \sigma_{-}-\sigma_{+} \sigma_{-} \rho-\rho \sigma_{+} \sigma_{-}\right]
$$

where Γ is the decay rate from $|+\rangle$ to $|-\rangle$.
The Kraus operators

$$
E_{0}=\sqrt{1-\gamma} I, \quad E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

where $\gamma=1-e^{-\Gamma t}$.
The physical effect

$$
\langle 0| \rho(t)|1\rangle=\langle 0| \rho(0)|1\rangle e^{-\Gamma t} .
$$

Depolarizing

A two-level atom interacting with three independent reservoirs,

$$
H=\sum_{j=1}^{3} H_{E_{j}}+V_{j}
$$

where $H_{E_{j}}=\sum_{k} \omega_{j k} b_{j k}^{\dagger} b_{j k}, V_{j}=\sum_{k} g_{j k} \sigma_{j}\left(b_{j k}^{\dagger}+b_{j k}\right)$.
The master equation

$$
\frac{d \rho}{d t}=\frac{\Gamma}{6} \sum_{j=1}^{3}\left(2 \sigma_{j} \rho \sigma_{j}-\sigma_{j} \sigma_{j} \rho-\rho \sigma_{j} \sigma_{j}\right)
$$

The Kraus operators

$$
E_{0}=\sqrt{1-\Gamma} /, \quad E_{j}=\sqrt{\frac{\Gamma}{3}} \sigma_{j}, j=1,2,3 .
$$

The physical effect

$$
\rho(t)=\rho(0) e^{-\Gamma t}+\left(1-e^{-\Gamma t}\right) \frac{l}{2}
$$

