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Why Error Correction?

The Power of quantum computing:

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉

therefore

Uf
1√
2n

2n−1∑
x=0

|x〉|0〉 → 1√
2n

2n−1∑
x=0

|x〉|f(x)〉

Coherence – quantum parallelism!

Decoherence! |ψ〉 = α|0〉+ β|1〉 → |0〉 or |1〉.

Schrodingers cat Coherence is ok for a few atoms or photons in
lab when the coupling to environment is weak enough. For a
system as big as a cat, comprised of billions upon billions of
atoms, decoherence happens almost instantaneously, so that the
cat can never be both alive and dead for any measurable
instant.



Why Error Correction?

Reading: by Serge Haroche and Jean-Michel Raimond, Physics
Today, 51, August 1996
Peter Shor: There is no real hard problem in the world...We are
simply not smart enough...

Analog Computer Quantum Computer
Input ~x(0) |ψ〉
Computing d~x

dt = f(~x) i ∂∂t |ψ〉 = H|ψ〉
Output ~x(T ) measurement

Analog Computers are Continuous, Unreliable. They have been
replaced by digital computers for almost all uses.
Can we build a DIGITAL quantum computer?



Basic ideas for Error Correction



Classical Error Correction

Digital Communication.

Binary Symmetric Channel.
The Repetition Code:

0→ 000, 1→ 111.

Decoding: Majority Voting.

Probability of Two flips: 3p2(1− p) + p3, therefore probability
of error: pe = 3p2 − 2p3. pe < p if p < 1

2 .



Classical Error Correction

In Classical World... Digital computer with error correction:

0→ 000, 1→ 111.

Errors 0↔ 1, discrete.
But in Quantum World...
� Continuous errors:

|0〉 → U |0〉, |1〉 → U |1〉

� Measurement destroys coherence!

|ψ〉 = α|0〉+ β|1〉

� No-cloning theorem!

|ψ〉|ψ〉 6= α|0〉|0〉+ β|1〉|1〉

Still hopeless?



Starting from a Simple Case

Binary Symmetric Channel: 0↔ 1.

Quantum Bit flip Channel: |0〉 ↔ |1〉. X =

(
0 1
1 0

)
The Repetition Code:

0→ 000, 1→ 111.

The Quantum Bit Flip Code:

|0〉 → |000〉 ≡ |0L〉, |1〉 → |111〉 ≡ |1L〉

|ψ〉 = a|0〉+ b|1〉 → a|000〉+ b|111〉

Encoding Circuit:

|ψ〉 • •

|0〉 ⊕

|0〉 ⊕



Quantum Bit Flip Code

|ψ〉 = a|0〉+ b|1〉 → a|000〉+ b|111〉

Bit Flip Errors:

|ψ0〉 = a|000〉+ b|111〉 No Error
|ψ1〉 = a|100〉+ b|011〉 flip on the 1st qubit
|ψ2〉 = a|010〉+ b|101〉 flip on the 2nd qubit
|ψ3〉 = a|001〉+ b|110〉 flip on the 3rd qubit

Syndrome Diagnosis:

P0 ≡ |000〉〈000|+ |111〉〈111| No Error
P1 ≡ |100〉〈100|+ |011〉〈011| flip on the 1st qubit
P2 ≡ |010〉〈010|+ |101〉〈101| flip on the 2nd qubit
P3 ≡ |001〉〈001|+ |110〉〈110| flip on the 3rd qubit



Quantum Bit Flip Code

Syndrome Measurements:

Z1Z2 Z2Z3 Recovery
|ψ0〉 = a|000〉+ b|111〉 0 0 I
|ψ1〉 = a|100〉+ b|011〉 1 0 X1

|ψ2〉 = a|010〉+ b|101〉 1 1 X2

|ψ3〉 = a|001〉+ b|110〉 0 1 X3

Z1Z2

Z2Z3

|0〉 H • H

|0〉 H • H



The Phase Flip Code

The Quantum Phase Flip Channel

|0〉 → |0〉 |1〉 → −|1〉, Z =

(
1 0
0 −1

)

Recall the Hadamard Transform H = 1√
2

(
1 1
1 −1

)
, and

HXH = Z, which transforms |0〉 → |+〉, |1〉 → |−〉. Therefore
we can do the encoding

|0〉 → |+ ++〉 ≡ |0L〉, |1〉 → | − −−〉 ≡ |1L〉

|ψ〉 • • H

|0〉 ⊕ H

|0〉 ⊕ H



Combination of Errors

Theorem
If a Quantum Code corrects errors A and B, it also corrects
αA + βB.

Example

For the bit flip channel X =

(
0 1
1 0

)
, I =

(
1 0
0 1

)
, consider the

error αI1 + βX1. Use the encoding

|ψ〉 = a|0〉+ b|1〉 → a|000〉+ b|111〉

the output will be α|ψ0〉+ β|ψ1〉, with

|ψ0〉 = a|000〉+ b|111〉, |ψ1〉 = a|100〉+ b|011〉

We can still use the syndrome measurements Z1Z2 and Z2Z3.

An arbitrary single-qubit error: a linear combination of
I,X,Y,Z.



Shor Code

Bit Flip: |0〉 → |000〉, |1〉 → |111〉.
Phase Flip: |0〉 → |+ ++〉, |1〉 → | − −−〉.
And

|+〉 =
1√
2

(|0〉+ |1〉)→ 1√
2

(|000〉+ |111〉)

|−〉 =
1√
2

(|0〉 − |1〉)→ 1√
2

(|000〉 − |111〉)

To fight against both bit flip and phase flip errors, we do a two
step encoding: first encode to a phase flip code, then further
encode to a bit flip code, we get the Shor Code

|0L〉 → 1
2
√
2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1L〉 → 1
2
√
2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)



Shor Code
Encoding circuit:

|ψ〉 • • H • •

|0〉 ⊕

|0〉 ⊕

|0〉 ⊕ H • •

|0〉 ⊕

|0〉 ⊕

|0〉 ⊕ H • •

|0〉 ⊕

|0〉 ⊕

Syndrome measurements:
Bit Flip:

Z1Z2, Z2Z3

Z4Z5, Z5Z6

Z7Z8, Z7Z9

Phase Flip:

X1X2X3X4X5X6

X4X5X6X7X8X9

Recovery:
Zi for phase flip,
Xi for bit flip.



Commuting Pauli Operators

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
The commutation relations:

XY = −YX, XZ = −ZX, YZ = −ZY

Shor Code:

Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z
X X X X X X I I I
I I I X X X X X X

|0L〉 → 1
2
√
2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1L〉 → 1
2
√
2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)



A Picture of Shor’s code



Quantum Error Correcting Criterion

Quantum Code: A subspace of C⊗n2

Code space basis {|ψi〉}

Errors: {Eα}

Quantum Error Correcting Criterion:

〈ψi|E†αEβ|ψj〉 = cαβδij

� Orthogonal Condition: Eα|ψi〉 ⊥ Eβ|ψj〉.

Classical: i 6= j.

� Coherence Condition: 〈ψi|E†αEβ|ψi〉 = cαβ.

Quantum: i = j.



Hamming Code

Recall that the Repetition Code, with encoding
0→ 000, 1→ 111, we write the Code Parameters for this code
as [3, 1].
This code corrects t = 1 error. Define the Code Distance
d = 2t+ 1. We write it as [3, 1, 3].
In general, for an [n, k, d] code, we would want n small, k large
and d large. But there are certainly trade-offs.
Let us first fix d = 3, and want a large rate k/n. We will show
the construction of the [7, 4, 3] Hamming Code.
We start from the following encoding to make a Linear Code

1000 → 1000110

0100 → 0100101

0010 → 0010011

0001 → 0001111



Hamming Code

We can write a Generator
Matrix

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


then the encoding becomes

x = aG

where

a = a3a2a1a0,

and

x = x6x5x4x3x2x1x0

d1d2d3d4p1p2p3

Syndrome: p1, p2, p3.



Quantum 7-bit Code

Hamming code

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


Write its even subcode

Ge =

1 1 0 0 0 1 1
0 1 1 0 1 1 0
0 0 0 1 1 1 1


We now build a quantum 7-bit code via the encoding

|0〉 → |0〉L =
1

2
√

2

∑
x∈Ge

|x〉

= |0000000〉+ |1100011〉+ |0110110〉+ |0001111〉
+ |1010101〉+ |1101100〉+ |0111001〉+ |1011010〉

|1〉 → |1〉L =
1

2
√

2

∑
x∈G\Ge

|x〉

= |1111111〉+ |0011100〉+ |1001001〉+ |1110000〉
+ |0101010〉+ |0010011〉+ |1000110〉+ |0100101〉



Syndrome Measurements

For

Ge =

1 1 0 0 0 1 1
0 1 1 0 1 1 0
0 0 0 1 1 1 1


Let

M1 = X1X2X6X7

M2 = X2X3X5X6

M3 = X4X5X6X7

Then we can write

|0L〉 =
1

2
√

2

∑
x∈Ge

|x〉 = (I + M1)(I + M2)(I + M3)|0〉7

|1L〉 =
1

2
√

2

∑
x∈G\Ge

|x〉 = (I + M1)(I + M2)(I + M3)XL|0〉7

where
XL = X1X2X3X4X5X6X7

Phase flip syndromes: M1,M2,M3.



Syndrome Measurements

M1 = X1X2X6X7

M2 = X2X3X5X6

M3 = X4X5X6X7

N1 = Z1Z2Z6Z7

N2 = Z2Z3Z5Z6

N3 = Z4Z5Z6Z7

Then for

|0L〉 = (I + M1)(I + M2)(I + M3)|0〉7
|1L〉 = (I + M1)(I + M2)(I + M3)XL|0〉7

Bit flip syndromes: N1,N2,N3.
Logic Operations: (Fault-Tolerance)

XL = X1X2X3X4X5X6X7

ZL = Z1Z2Z3Z4Z5Z6Z7

HL = H1H2H3H4H5H6H7

CNOTL = C1,8C2,9C3,10C4,11C5,12C6,13C7,14



Five Qubit Code

For the parameters [5, 1, 3], we have a perfect code because
(1 + (3× 5))× 2 = 25. Let

M1 = Z X X Z I
M2 = I Z X X Z
M3 = Z I Z X X
M4 = X Z I Z X
XL = X X X X X
ZL = Z Z Z Z Z

we do the encoding

|0L〉 =
1

4
(I + M1)(I + M2)(I + M3)(I + M4)|0〉5

|1L〉 =
1

4
(I + M1)(I + M2)(I + M3)(I + M4)XL|0〉5



Note that M2
i = 1 and (I + Mi)

2 = I + Mi and

(I + Mi)(I−Mi) = 0

so it is straightforward to show that

〈0L|1L〉 = 0,

and further the quantum error correcting criterion, e.g.

〈0L|X1Y2|1L〉 = 0, 〈0L|X1Y2|0L〉 = 0, 〈1L|X1Y2|1L〉 = 0

Syndrome measurements:
I X1Y1Z1 X2Y2Z2 X3Y3Z3 X4Y4Z4 X5Y5Z5

M1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0
M2 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0
M3 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1
M4 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1



Threshold Theorem

Error Correcting Code: p→ Cp2

Concatenation of Codes:
Twice: error probability C(Cp2)2

k times: error probability C(Cp2)2 doubly exponential
size of the circuit dk exponential

Threshold Theorem
An arbitrary long quantum computation can be performed
reliably, provided that the average probability of error per
gate is less than a certain critical value, the accuracy
threshold.

Note: The accuracy threshold depends on quantum code
ALONE!



Threshold Theorem

So....are we below threshold?

� Perhaps NOT: p ∼ 10−5, orders of magnitude away....

� We are...BELOW threshold! – Recent advances combining
physics and computer science: Quantum computing against
biased noise http://arxiv.org/abs/0710.1301

� Should we celebrate? Perhaps NO – we are JUST below
threshold overhead are large...

Both threshold and overhead depend on quantum code ALONE!

� Yes? Making BETTER quantum codes! Better quantum
codes can be designed. We are full of hope, when computer
scientists meeting with physicists...


