Quantum Error Correction I

Bei Zeng

University of Guelph

Why Error Correction?

The Power of quantum computing:

$$
U_{f}:|x\rangle|y\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle
$$

therefore

$$
U_{f} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle|0\rangle \rightarrow \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle|f(x)\rangle
$$

Coherence - quantum parallelism!

Decoherence! $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \rightarrow|0\rangle$ or $|1\rangle$.
Schrodingers cat Coherence is ok for a few atoms or photons in lab when the coupling to environment is weak enough. For a system as big as a cat, comprised of billions upon billions of atoms, decoherence happens almost instantaneously, so that the cat can never be both alive and dead for any measurable instant.

Why Error Correction?

Reading: by Serge Haroche and Jean-Michel Raimond, Physics Today, 51, August 1996
Peter Shor: There is no real hard problem in the world...We are simply not smart enough...

	Analog Computer	Quantum Computer
Input	$\vec{x}(0)$	$\|\psi\rangle$
Computing	$\frac{d \vec{x}}{d t}=f(\vec{x})$	$i \vec{\partial}\|\psi\rangle=\mathcal{H}\|\psi\rangle$
Output	$\vec{x}(T)$	measurement

Analog Computers are Continuous, Unreliable. They have been replaced by digital computers for almost all uses.
Can we build a DIGITAL quantum computer?

Basic ideas for Error Correction

Noisy communication channel

Classical Error Correction

Digital Communication.

Binary Symmetric Channel.

The Repetition Code:

$$
0 \rightarrow 000, \quad 1 \rightarrow 111
$$

Decoding: Majority Voting.
Probability of Two flips: $3 p^{2}(1-p)+p^{3}$, therefore probability of error: $p_{e}=3 p^{2}-2 p^{3} . p_{e}<p$ if $p<\frac{1}{2}$.

Classical Error Correction

In Classical World... Digital computer with error correction:

$$
0 \rightarrow 000, \quad 1 \rightarrow 111
$$

Errors $0 \leftrightarrow 1$, discrete.
But in Quantum World...
\diamond Continuous errors:

$$
|0\rangle \rightarrow U|0\rangle,|1\rangle \rightarrow U|1\rangle
$$

\diamond Measurement destroys coherence!

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

\diamond No-cloning theorem!

$$
|\psi\rangle|\psi\rangle \neq \alpha|0\rangle|0\rangle+\beta|1\rangle|1\rangle
$$

Still hopeless?

Starting from a Simple Case

Binary Symmetric Channel: $0 \leftrightarrow 1$.
Quantum Bit flip Channel: $|0\rangle \leftrightarrow|1\rangle . \mathbf{X}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
The Repetition Code:

$$
0 \rightarrow 000, \quad 1 \rightarrow 111
$$

The Quantum Bit Flip Code:

$$
\begin{gathered}
|0\rangle \rightarrow|000\rangle \equiv\left|0_{L}\right\rangle, \quad|1\rangle \rightarrow|111\rangle \equiv\left|1_{L}\right\rangle \\
|\psi\rangle=a|0\rangle+b|1\rangle \rightarrow a|000\rangle+b|111\rangle
\end{gathered}
$$

Encoding Circuit:

Quantum Bit Flip Code

$$
|\psi\rangle=a|0\rangle+b|1\rangle \rightarrow a|000\rangle+b|111\rangle
$$

Bit Flip Errors:

$$
\begin{array}{lc}
\left|\psi_{0}\right\rangle=a|000\rangle+b|111\rangle & \text { No Error } \\
\left|\psi_{1}\right\rangle=a|100\rangle+b|011\rangle & \text { flip on the 1st qubit } \\
\left|\psi_{2}\right\rangle=a|010\rangle+b|101\rangle & \text { flip on the 2nd qubit } \\
\left|\psi_{3}\right\rangle=a|001\rangle+b|110\rangle \quad \text { flip on the 3rd qubit }
\end{array}
$$

Syndrome Diagnosis:

$$
\begin{aligned}
& P_{0} \equiv|000\rangle\langle 000|+|111\rangle\langle 111| \quad \text { No Error } \\
& P_{1} \equiv|100\rangle\langle 100|+|011\rangle\langle 011| \quad \text { flip on the 1st qubit } \\
& P_{2} \equiv|010\rangle\langle 010|+|101\rangle\langle 101| \quad \text { flip on the 2nd qubit } \\
& P_{3} \equiv|001\rangle\langle 001|+|110\rangle\langle 110| \quad \text { flip on the 3rd qubit }
\end{aligned}
$$

Quantum Bit Flip Code

Syndrome Measurements:

$$
\left.\begin{array}{rlrr}
& \mathbf{Z}_{1} \mathbf{Z}_{2} & \mathbf{Z}_{2} \mathbf{Z}_{3} & \text { Recovery } \\
\left|\psi_{0}\right\rangle & =a|000\rangle+b|111\rangle & 0 & 0
\end{array}\right)
$$

The Phase Flip Code

The Quantum Phase Flip Channel

$$
|0\rangle \rightarrow|0\rangle \quad|1\rangle \rightarrow-|1\rangle, \quad \mathbf{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Recall the Hadamard Transform $\mathbf{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$, and $\mathbf{H X H}=\mathbf{Z}$, which transforms $|0\rangle \rightarrow|+\rangle,|1\rangle \rightarrow|-\rangle$. Therefore we can do the encoding

$$
|0\rangle \rightarrow|+++\rangle \equiv\left|0_{L}\right\rangle, \quad|1\rangle \rightarrow|---\rangle \equiv\left|1_{L}\right\rangle
$$

Combination of Errors

Theorem
If a Quantum Code corrects errors \mathbf{A} and \mathbf{B}, it also corrects $\alpha \mathbf{A}+\beta \mathbf{B}$.

Example
For the bit flip channel $\mathbf{X}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, consider the error $\alpha \mathbf{I}_{\mathbf{1}}+\beta \mathbf{X}_{\mathbf{1}}$. Use the encoding

$$
|\psi\rangle=a|0\rangle+b|1\rangle \rightarrow a|000\rangle+b|111\rangle
$$

the output will be $\alpha\left|\psi_{0}\right\rangle+\beta\left|\psi_{1}\right\rangle$, with

$$
\left|\psi_{0}\right\rangle=a|000\rangle+b|111\rangle, \quad\left|\psi_{1}\right\rangle=a|100\rangle+b|011\rangle
$$

We can still use the syndrome measurements $\mathbf{Z}_{1} \mathbf{Z}_{2}$ and $\mathbf{Z}_{2} \mathbf{Z}_{3}$. An arbitrary single-qubit error: a linear combination of $\mathbf{I}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$.

Shor Code

Bit Flip: $|0\rangle \rightarrow|000\rangle,|1\rangle \rightarrow|111\rangle$.
Phase Flip: $|0\rangle \rightarrow|+++\rangle,|1\rangle \rightarrow|---\rangle$.
And

To fight against both bit flip and phase flip errors, we do a two step encoding: first encode to a phase flip code, then further encode to a bit flip code, we get the Shor Code

$$
\begin{aligned}
\left|0_{L}\right\rangle & \rightarrow \frac{1}{2 \sqrt{2}}(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle) \\
\left|1_{L}\right\rangle & \rightarrow \frac{1}{2 \sqrt{2}}(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)
\end{aligned}
$$

Shor Code

Encoding circuit:

Syndrome measurements:
Bit Flip:

$$
\begin{array}{ll}
\mathbf{Z}_{1} \mathbf{Z}_{2}, & \mathbf{Z}_{2} \mathbf{Z}_{3} \\
\mathbf{Z}_{4} \mathbf{Z}_{5}, & \mathbf{Z}_{5} \mathbf{Z}_{6} \\
\mathbf{Z}_{7} \mathbf{Z}_{8}, & \mathbf{Z}_{7} \mathbf{Z}_{9}
\end{array}
$$

Phase Flip:

$$
\begin{aligned}
& \mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \mathbf{X}_{4} \mathbf{X}_{5} \mathbf{X}_{6} \\
& \mathbf{X}_{4} \mathbf{X}_{5} \mathbf{X}_{6} \mathbf{X}_{7} \mathbf{X}_{8} \mathbf{X}_{9}
\end{aligned}
$$

Recovery:
\mathbf{Z}_{i} for phase flip,
\mathbf{X}_{i} for bit flip.

Commuting Pauli Operators

$$
\mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{X}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \mathbf{Y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \mathbf{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The commutation relations:

Shor Code:

$$
\mathbf{X Y}=-\mathbf{Y X}, \mathbf{X Z}=-\mathbf{Z X}, \mathbf{Y Z}=-\mathbf{Z Y}
$$

	Z	I	I	I	I	I			
I	Z	Z	I	I	I	I			
I	I	I	Z	Z	I	I			
I	I	I	I	Z	Z	I			
I	I	I	I	I	I	Z	Z		
I	I	I	I	I	I	I			
	X	X	X	X	X	I			
	I	I	X						

$$
\begin{aligned}
& \left|0_{L}\right\rangle \rightarrow \frac{1}{2 \sqrt{2}}(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle) \\
& \left|1_{L}\right\rangle \rightarrow \frac{1}{2 \sqrt{2}}(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)
\end{aligned}
$$

A Picture of Shor's code

Quantum Error Correcting Criterion

Quantum Code: A subspace of $\mathbb{C}_{2}^{\otimes n}$
Code space basis $\left\{\left|\psi_{i}\right\rangle\right\}$
Errors: $\left\{\mathbf{E}_{\alpha}\right\}$
Quantum Error Correcting Criterion:

$$
\left\langle\psi_{i}\right| \mathbf{E}_{\alpha}^{\dagger} \mathbf{E}_{\beta}\left|\psi_{j}\right\rangle=c_{\alpha \beta} \delta_{i j}
$$

\diamond Orthogonal Condition: $\mathbf{E}_{\alpha}\left|\psi_{i}\right\rangle \perp \mathbf{E}_{\beta}\left|\psi_{j}\right\rangle$.
Classical: $\quad i \neq j$.
\diamond Coherence Condition: $\left\langle\psi_{i}\right| \mathbf{E}_{\alpha}^{\dagger} \mathbf{E}_{\beta}\left|\psi_{i}\right\rangle=c_{\alpha \beta}$.
Quantum: $\quad i=j$.

Hamming Code

Recall that the Repetition Code, with encoding
$0 \rightarrow 000,1 \rightarrow 111$, we write the Code Parameters for this code as $[3,1]$.
This code corrects $t=1$ error. Define the Code Distance $d=2 t+1$. We write it as $[3,1,3]$.
In general, for an $[n, k, d]$ code, we would want n small, k large and d large. But there are certainly trade-offs.
Let us first fix $d=3$, and want a large rate k / n. We will show the construction of the $[7,4,3]$ Hamming Code.
We start from the following encoding to make a Linear Code

$$
\begin{aligned}
& 1000 \rightarrow 1000110 \\
& 0100 \rightarrow 0100101 \\
& 0010 \rightarrow 0010011 \\
& 0001 \rightarrow 0001111
\end{aligned}
$$

Hamming Code

We can write a Generator
Matrix

$$
\mathbf{G}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

then the encoding becomes

$$
\mathbf{x}=\mathbf{a G}
$$

where

$$
\mathbf{a}=a_{3} a_{2} a_{1} a_{0}
$$

and

$$
\begin{aligned}
\mathbf{x}= & x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0} \\
& d_{1} d_{2} d_{3} d_{4} p_{1} p_{2} p_{3}
\end{aligned}
$$

Syndrome: p_{1}, p_{2}, p_{3}.

Quantum 7-bit Code

Hamming code
$\mathbf{G}=\left(\begin{array}{ccccccc}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right)$

Write its even subcode

$$
\mathbf{G}_{\mathbf{e}}=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

We now build a quantum 7 -bit code via the encoding

$$
\begin{aligned}
& |0\rangle \rightarrow|0\rangle_{L}=\frac{1}{2 \sqrt{2}} \sum_{\mathbf{x} \in \mathbf{G}_{\mathbf{e}}}|\mathbf{x}\rangle \\
= & |0000000\rangle+|1100011\rangle+|0110110\rangle+|0001111\rangle \\
+ & |1010101\rangle+|1101100\rangle+|0111001\rangle+|1011010\rangle \\
& |1\rangle \rightarrow|1\rangle_{L}=\frac{1}{2 \sqrt{2}} \sum_{\mathbf{x} \in \mathbf{G} \backslash \mathbf{G}_{\mathbf{e}}}|\mathbf{x}\rangle \\
= & |1111111\rangle+|0011100\rangle+|1001001\rangle+|1110000\rangle \\
+ & |0101010\rangle+|0010011\rangle+|1000110\rangle+|0100101\rangle
\end{aligned}
$$

Syndrome Measurements

For
Let

$$
\mathbf{G}_{\mathbf{e}}=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \quad \begin{aligned}
& \mathbf{M}_{1}=\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{6} \mathbf{X}_{7} \\
& \mathbf{M}_{2}=\mathbf{X}_{2} \mathbf{X}_{3} \mathbf{X}_{5} \mathbf{X}_{6} \\
& \mathbf{M}_{3}=\mathbf{X}_{4} \mathbf{X}_{5} \mathbf{X}_{6} \mathbf{X}_{7}
\end{aligned}
$$

Then we can write

$$
\begin{aligned}
\left|0_{L}\right\rangle & =\frac{1}{2 \sqrt{2}} \sum_{\mathbf{x} \in \mathbf{G}_{\mathbf{e}}}|\mathbf{x}\rangle=\left(\mathbf{I}+\mathbf{M}_{1}\right)\left(\mathbf{I}+\mathbf{M}_{2}\right)\left(\mathbf{I}+\mathbf{M}_{3}\right)|0\rangle_{7} \\
\left|1_{L}\right\rangle & =\frac{1}{2 \sqrt{2}} \sum_{\mathbf{x} \in \mathbf{G} \backslash \mathbf{G}_{\mathbf{e}}}|\mathbf{x}\rangle=\left(\mathbf{I}+\mathbf{M}_{1}\right)\left(\mathbf{I}+\mathbf{M}_{2}\right)\left(\mathbf{I}+\mathbf{M}_{3}\right) \mathbf{X}_{L}|0\rangle_{7}
\end{aligned}
$$

where

$$
\mathbf{X}_{L}=\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \mathbf{X}_{4} \mathbf{X}_{5} \mathbf{X}_{6} \mathbf{X}_{7}
$$

Phase flip syndromes: $\mathbf{M}_{1}, \mathbf{M}_{2}, \mathbf{M}_{3}$.

Syndrome Measurements

$$
\begin{array}{ll}
\mathbf{M}_{1}=\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{6} \mathbf{X}_{7} & \mathbf{N}_{1}=\mathbf{Z}_{1} \mathbf{Z}_{2} \mathbf{Z}_{6} \mathbf{Z}_{7} \\
\mathbf{M}_{2}=\mathbf{X}_{2} \mathbf{X}_{3} \mathbf{X}_{5} \mathbf{X}_{6} & \mathbf{N}_{2}=\mathbf{Z}_{2} \mathbf{Z}_{3} \mathbf{Z}_{5} \mathbf{Z}_{6} \\
\mathbf{M}_{3}=\mathbf{X}_{4} \mathbf{X}_{5} \mathbf{X}_{6} \mathbf{X}_{7} & \mathbf{N}_{3}=\mathbf{Z}_{4} \mathbf{Z}_{5} \mathbf{Z}_{6} \mathbf{Z}_{7}
\end{array}
$$

Then for

$$
\begin{aligned}
\left|0_{L}\right\rangle & =\left(\mathbf{I}+\mathbf{M}_{1}\right)\left(\mathbf{I}+\mathbf{M}_{2}\right)\left(\mathbf{I}+\mathbf{M}_{3}\right)|0\rangle_{7} \\
\left|1_{L}\right\rangle & =\left(\mathbf{I}+\mathbf{M}_{1}\right)\left(\mathbf{I}+\mathbf{M}_{2}\right)\left(\mathbf{I}+\mathbf{M}_{3}\right) \mathbf{X}_{L}|0\rangle_{7}
\end{aligned}
$$

Bit flip syndromes: $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathbf{N}_{3}$.
Logic Operations: (Fault-Tolerance)

$$
\begin{aligned}
\mathbf{X}_{L} & =\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3} \mathbf{X}_{4} \mathbf{X}_{5} \mathbf{X}_{6} \mathbf{X}_{7} \\
\mathbf{Z}_{L} & \mathbf{Z}_{1} \mathbf{Z}_{2} \mathbf{Z}_{3} \mathbf{Z}_{4} \mathbf{Z}_{5} \mathbf{Z}_{6} \mathbf{Z}_{7} \\
\mathbf{H}_{L} & =\mathbf{H}_{1} \mathbf{H}_{2} \mathbf{H}_{3} \mathbf{H}_{4} \mathbf{H}_{5} \mathbf{H}_{6} \mathbf{H}_{7} \\
\mathbf{C N O T}_{L} & =\mathbf{C}_{1,8} \mathbf{C}_{2,9} \mathbf{C}_{3,10} \mathbf{C}_{4,11} \mathbf{C}_{5,12} \mathbf{C}_{6,13} \mathbf{C}_{7,14}
\end{aligned}
$$

Five Qubit Code

For the parameters $[5,1,3]$, we have a perfect code because $(1+(3 \times 5)) \times 2=2^{5}$. Let

$$
\begin{array}{lllllll}
\mathbf{M}_{1} & = & \mathbf{Z} & \mathbf{X} & \mathbf{X} & \mathbf{Z} & \mathbf{I} \\
\mathbf{M}_{2} & = & \mathbf{I} & \mathbf{Z} & \mathbf{X} & \mathbf{X} & \mathbf{Z} \\
\mathbf{M}_{3} & =\mathbf{Z} & \mathbf{I} & \mathbf{Z} & \mathbf{X} & \mathbf{X} \\
\mathbf{M}_{4} & =\mathbf{X} & \mathbf{Z} & \mathbf{I} & \mathbf{Z} & \mathbf{X} \\
\mathbf{X}_{L} & =\mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\
\mathbf{Z}_{L} & =\mathbf{Z} & \mathbf{Z} & \mathbf{Z} & \mathbf{Z} & \mathbf{Z}
\end{array}
$$

we do the encoding

$$
\begin{aligned}
\left|0_{L}\right\rangle & =\frac{1}{4}\left(\mathbf{I}+\mathbf{M}_{1}\right)\left(\mathbf{I}+\mathbf{M}_{2}\right)\left(\mathbf{I}+\mathbf{M}_{3}\right)\left(\mathbf{I}+\mathbf{M}_{4}\right)|0\rangle_{5} \\
\left|1_{L}\right\rangle & =\frac{1}{4}\left(\mathbf{I}+\mathbf{M}_{1}\right)\left(\mathbf{I}+\mathbf{M}_{2}\right)\left(\mathbf{I}+\mathbf{M}_{3}\right)\left(\mathbf{I}+\mathbf{M}_{4}\right) \mathbf{X}_{L}|0\rangle_{5}
\end{aligned}
$$

Note that $\mathbf{M}_{i}^{2}=1$ and $\left(\mathbf{I}+\mathbf{M}_{i}\right)^{2}=\mathbf{I}+\mathbf{M}_{i}$ and

$$
\left(\mathbf{I}+\mathbf{M}_{i}\right)\left(\mathbf{I}-\mathbf{M}_{i}\right)=0
$$

so it is straightforward to show that

$$
\left\langle 0_{L} \mid 1_{L}\right\rangle=0
$$

and further the quantum error correcting criterion, e.g.

$$
\left\langle 0_{L}\right| \mathbf{X}_{1} \mathbf{Y}_{\mathbf{2}}\left|1_{L}\right\rangle=0,\left\langle 0_{L}\right| \mathbf{X}_{1} \mathbf{Y}_{\mathbf{2}}\left|0_{L}\right\rangle=0,\left\langle 1_{L}\right| \mathbf{X}_{1} \mathbf{Y}_{\mathbf{2}}\left|1_{L}\right\rangle=0
$$

Syndrome measurements:
$\begin{array}{llllll}\mathbf{I} & \mathbf{X}_{1} \mathbf{Y}_{1} \mathbf{Z}_{1} & \mathbf{X}_{2} \mathbf{Y}_{2} \mathbf{Z}_{2} & \mathbf{X}_{3} \mathbf{Y}_{3} \mathbf{Z}_{3} & \mathbf{X}_{4} \mathbf{Y}_{4} \mathbf{Z}_{4} & \mathbf{X}_{5} \mathbf{Y}_{5} \mathbf{Z}_{5}\end{array}$

\mathbf{M}_{1}	0	1	1	0	0	1	1	0	1	1	1	1	0	0	0	0
\mathbf{M}_{2}	0	0	0	0	1	1	0	0	1	1	0	1	1	1	1	0
\mathbf{M}_{3}	0	1	1	0	0	0	0	1	1	0	0	1	1	0	1	1
\mathbf{M}_{4}	0	0	1	1	1	1	0	0	0	0	1	1	0	0	1	1

Threshold Theorem

Error Correcting Code: $p \rightarrow C p^{2}$
Concatenation of Codes:
Twice: error probability $C\left(C p^{2}\right)^{2}$
k times: error probability $C\left(C p^{2}\right)^{2}$ doubly exponential size of the circuit d^{k} exponential

Threshold Theorem

An arbitrary long quantum computation can be performed reliably, provided that the average probability of error per gate is less than a certain critical value, the accuracy threshold.

Note: The accuracy threshold depends on quantum code ALONE!

Threshold Theorem

So....are we below threshold?
\diamond Perhaps NOT: $p \sim 10^{-5}$, orders of magnitude away....
\diamond We are...BELOW threshold! - Recent advances combining physics and computer science: Quantum computing against biased noise http://arxiv.org/abs/0710.1301
\diamond Should we celebrate? Perhaps NO - we are JUST below threshold overhead are large...

Both threshold and overhead depend on quantum code ALONE!
\diamond Yes? Making BETTER quantum codes! Better quantum codes can be designed. We are full of hope, when computer scientists meeting with physicists...

