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Quantum error correction

Quantum code

A quantum code is a subspace of the N -qubit Hilbert space.

For a given subspace:

Choose an orthonormal, or basis {|ψi〉}
Use the projection onto the code space Π =

∑
i |ψi〉〈ψi|

Now suppose the error of the system is characterized by the
quantum noise E = {Ek}, where Eks are the Kraus operators.

Quantum error-correcting criteria

A quantum code with orthonormal basis {|ψi〉} corrects the
error set E = {Ek} if and only if

〈ψi|E†kEl|ψj〉 = cklδij ,

or in terms of Π
ΠE†kElΠ = cklΠ.



Quantum code distance
Consider an N -qubit operator O of the form

O = O1 ⊗O2, . . . ,⊗ON ,

where each Ok acting on the kth qubit.
wt(O): the weight of M , i.e. the number of non-trivial Oks.
Consider the depolarizing noise E⊗NDP , where we want a quantum
code capable of correcting t-errors, it is enough to consider only
Kraus operator M of weight ≤ t where each Ok are one of the
Pauli operators {I,Xk, Yk, Zk}. In other words, a code is
capable of correcting t errors for any O with weight ≤ 2t+ 1.

Quantum code distance

The distance for quantum code with orthonormal basis {|ψi〉} is
the largest possible weight d such that

〈ψi|O|ψj〉 = cOδij

holds for all operators O with wt(O) < d.



The stabilizer formalism
N -qubit Pauli operators:

O1 ⊗O2, . . . ,⊗ON ,

where each Ok ∈ {Ik, Xk, Yk, Zk}, is a Pauli operator acting on
the kth qubit. All such N -qubit Pauli operators together form a
group that we denote by PN .

The stabilizer formalism
Let S ⊂ PN be an abelian subgroup of the Pauli group that
does not contain −I, and let

Q(S) = {|ψ〉 s.t. P |ψ〉 = |ψ〉, ∀P ∈ S}.

Then Q(S) is a stabilizer code and S is its stabilizer.

Let S⊥ = {E ∈ PN , s.t. [E,S] = 0, ∀S ∈ S}.
Stabilizer code: dimension and distance
Let S be a stabilizer with N −M generators. Then S encodes
M qubits and has distance d, where d is the smallest weight of
a Pauli operator in S⊥ \ S.



The five-qubit code

Consider the stabilizer

S = 〈g1, g2, g3, g4〉,

where
g1 = X Z Z X I
g2 = I X Z Z X
g3 = X I X Z Z
g4 = X I X Z Z

The smallest weight operator in S⊥ \ S has weight 3. So this
code has length 5, dimension 21, and distance 3, denoted by
[[5, 1, 3]]. The projection onto the code space

Π =
1

24

4∏
i=1

(I + gi)



The five-qubit code

g1 = X Z Z X I
g2 = I X Z Z X
g3 = X I X Z Z
g4 = X I X Z Z
Z̄ = Z Z Z Z Z
X̄ = X X X X X

This defines |0L〉 and |1L〉.
Π = 1

24
∏4

i=1(I + gi), and

ΠE†kElΠ = cklΠ.

The code space spanned by {|0L〉, |1L〉} is the ground state
space of the Hamiltonian

H = −
4∑

i=1

gi



The four-qubit code

Consider a length 4 code with stabilizer S generated by the
following two Pauli operators.

g1 = X X X X
g2 = Z Z Z Z

There are total n = 4 qubits and 2 generators for the stabilizer,
so this code encodes 4− 2 = 2 qubits. The logical |0L〉|0L〉 can
be chosen as the state stabilized by the following four Pauli
operators.

g1 = X X X X
g2 = Z Z Z Z
Z̄1 = I Z Z I
Z̄2 = I I Z Z

The distance of this code is 2, meaning that the smallest weight
Pauli operator which commute with g1, g2 is 2, for instance, Z̄1

is such an operator with weight 2. Hence this is a [[4, 2, 2]] code.



Stabilizer states
If a stabilizer code of N -qubit has N generators, then the
dimension of the common eigenspace of eigenvalue 1 will be of
dimension 2N−N = 1. That is, the stabilizer code contains
indeed only a unique state. Such kind of state is called
stabilizer state.
For example, the 4-qubit version of the GHZ state

|GHZ4〉 =
1

2
(|0000〉+ |1111〉)

is a stabilizer state. To see why, consider the following 4
stabilizer generators

g1 = Z Z I I
g2 = I Z Z I
g3 = I I Z Z
g4 = X X X X,

and it is straightforward to check that gi|GHZ〉4 = |GHZ〉4.



Graph states
There is a special kind of stabilizer states called the graph
states, whose stabilizer generators correspond to some given
graphs. We start from an undirected graph G with n-vertices.
For the ith vertex, we associate it with a stabilizer generator

gi = Xi

⊗
k∈neighbor i

Zk,

For a 4-qubit complete graph , the 4 stabilizer
generators are given by

g1 = X Z Z Z
g2 = Z X Z Z
g3 = Z Z X Z
g4 = Z Z Z X



Toric code
The square lattice

p
s

There are two types of stabilizer generators.

Type I (Star type): AZ
s =

∏
j∈star(s) Zj

Type II (Plaquette type): AX
p =

∏
j∈plaquette(p)Xj∏

s

AZ
s =

∏
p

AX
p = I



Code distance

p
s

Total 2r2 qubits, but r2 + r2 − 2 = 2r2 − 2 stabilizer generators.
So the code has dimension 22.

The logical operators are cycles on the torus, hence the distance
of the code is r.



The Hamiltonian

Htoric = −
∑
s

AZ
s −

∑
p

AX
p

= −
∑
s

∏
j∈star(s)

Zj −
∑
p

∏
p∈plaquette(p)

Xj .

A ground state |ψg〉 =
∑

g∈SX g|0〉
⊗2r2 .



Properties

· Every stabilizer generator is local
· The code space encodes two qubits (i.e. four-dimensional
subspace)
· The code distance grows with r, as an order of

√
n when

n goes arbitrarily large

S p



The Wen-plaquette model

Hwp = −
∑
ij

Xi,jZi,j+1Xi+1,j+1Zi+1,j .

p

x

x

z

z

s P

For any qubit i on any of the diagonal dashed lines, perform

Xi ↔ Zi



Codeword stabilized (CWS) quantum code

Recall the classical repetition code

0→ 000, 1→ 111

This code has d = 3: corrects one error, or detects two errors.

E = {100, 010, 001, 101, 011, 110}

Error detection condition
The code C detects error set E iff

ci 6= cj ⊕ e, ∀ci, cj ∈ C, ∀e ∈ E .

Codeword stabilized (CWS) quantum code

Ingredient 1: a graph G of n vertices

Ingredient 2: a binary classical code C

C detects errors induced by G



Codeword stabilized (CWS) quantum code

((n,K, d)): length n, dimension K, distance d

Ingredient 1: a graph G of n vertices G↔ |G〉
Ingredient 2: a binary classical code C ∈ {0, 1}n

Basis for quantum code

|ψi〉 = Zci |G〉, ci ∈ C

C = {00000, 11111}.

|ψ0〉 = IIIII|G〉, |ψ1〉 = ZZZZZ|G〉.



The X-Z rule

On a graph state X errors are equivalent to
(possibly multiple) Z errors: the X-Z rule. We call these the
‘induced’ errors.

Xi|ψj〉 = XiZ
cj |G〉 = XiZ

cjgi|G〉

where gi = XiZ
neighbor(i). Therefore

Xi|ψj〉 = ±Zneighbor(i)|ψj〉,

and note that 〈ψi|E|ψj〉 = 0.
X-Z rule: Xi → Zneighbor(i), Yi → Zneighbor(i)Zi.



Error detection conditions

Since all induced errors are Zs, things are essentially classical.
To detect errors from a set E ,

〈ψi|E|ψj〉 = 0, ∀E ∈ E .

For basis of the form

|ψi〉 = Zci |G〉, ci ∈ C,

the condition becomes

〈G|ZciEZcj |G〉 = 0.

X-Z rule: ∀E ∈ E → Ze.

E|ψi〉 = Ze|ψi〉 = ZeZci |G〉 = Zci⊕e|G〉



Error detection conditions

〈G|ZciEZcj |G〉 = 0.

⇒ 〈G|Zci⊕e⊕cj |G〉 = 0.

Based on the property of graph states, this holds if and only if

ci 6= e⊕ cj .

This is nothing but the classical error detection condition.

Q = {Zci |G〉} detects errors set E ⇔
C = {ci} detects the induced error set given by the graph G



Example: the ((5, 2, 3)) code

d = 3 need to detect double errors
C = {00000, 11111}.

|ψ0〉 = IIIII|G〉, |ψ1〉 = ZZZZZ|G〉.

The error set

Z : {10000, 01000, 00100, 00010, 00001}

X : {01001, 10100, 01010, 00101, 10010}

Y : {11001, 11100, 01110, 00111, 10011}

Need to show

00000 6= two errors ⊕ 11111



Example: the ((5, 6, 2)) code

d = 3 need to detect single errors
The error set

Z : {10000, 01000, 00100, 00010, 00001}

X : {01001, 10100, 01010, 00101, 10010}

Y : {11001, 11100, 01110, 00111, 10011}

C = { 00000, 11010, 01101

10110, 01011, 10101}

ci 6= e⊕ cj


