Quantum Error Correction 11

Bei Zeng

University of Guelph



Quantum error correction

Quantum code
A quantum code is a subspace of the N-qubit Hilbert space.
For a given subspace:

Choose an orthonormal, or basis {[i;)}

Use the projection onto the code space IT =), |4;) (1]
Now suppose the error of the system is characterized by the
quantum noise £ = {Ey}, where Ejs are the Kraus operators.
Quantum error-correcting criteria

A quantum code with orthonormal basis {|1);)} corrects the
error set £ = {Ej} if and only if

(G| ELE ;) = cadiy,

or in terms of II
E| BTl = el



Quantum code distance
Consider an N-qubit operator O of the form

O0O=01®0,,...,°0y,

where each Oy acting on the kth qubit.

wt(O): the weight of M, i.e. the number of non-trivial Oys.
Consider the depolarizing noise Sgg , where we want a quantum
code capable of correcting t-errors, it is enough to consider only
Kraus operator M of weight < ¢t where each Oy are one of the
Pauli operators {I, X}, Yx, Zx}. In other words, a code is
capable of correcting t errors for any O with weight < 2t + 1.

Quantum code distance

The distance for quantum code with orthonormal basis {|¢;)} is
the largest possible weight d such that

(VilOlhs) = codij

holds for all operators O with wt(O) < d.



The stabilizer formalism
N-qubit Pauli operators:

01®02,...,®0N,

where each Oy € {Ix, Xi, Yk, Zx}, is a Pauli operator acting on
the kth qubit. All such N-qubit Pauli operators together form a
group that we denote by Py .

The stabilizer formalism

Let S C Pn be an abelian subgroup of the Pauli group that
does not contain —1I, and let

Q(S) = {[¥) s.t. Plp) = |¢h), VP € S}.

Then Q(S) is a stabilizer code and § is its stabilizer.

Let St = {E € Py, st. [E,8] =0, VS € S}.

Stabilizer code: dimension and distance

Let S be a stabilizer with NV — M generators. Then S encodes
M qubits and has distance d, where d is the smallest weight of
a Pauli operator in S+ \ S.



The five-qubit code

Consider the stabilizer

S = <91792,g3794>a

where
g= X Z Z X 1
=1 X Z Z X
gg= X I X Z Z
a= X I X Z Z

The smallest weight operator in St \ S has weight 3. So this
code has length 5, dimension 2', and distance 3, denoted by
[[5,1,3]]. The projection onto the code space

4

1
I = o1 H(I + 9i)
i=1



The five-qubit code

o= X Z Z X I
=1 X Z Z X
= X1 X Z Z
w= X1 X Z Z
Z= 2 Z Z Z Z
X=X X X X X

This defines |0z) and |17).
= 2i4 H’L4:1(I + 92)7 and

NE] BT = eyl

The code space spanned by {|0z),|11)} is the ground state
space of the Hamiltonian

4
H= _Zgz’
i=1



The four-qubit code

Consider a length 4 code with stabilizer S generated by the
following two Pauli operators.

g= X X X X

Ggp= Z Z 7 Z
There are total n = 4 qubits and 2 generators for the stabilizer,
so this code encodes 4 — 2 = 2 qubits. The logical |01)|0z) can

be chosen as the state stabilized by the following four Pauli
operators.

a= X X X X
o= Z Z Z Z
Zv= 1 Z 7 1
Zo= 1 I Z Z
The distance of this code is 2, meaning that the smallest weight

Pauli operator which commute with g1, go is 2, for instance, Z;
is such an operator with weight 2. Hence this is a [[4, 2, 2]] code.



Stabilizer states

If a stabilizer code of N-qubit has N generators, then the
dimension of the common eigenspace of eigenvalue 1 will be of
dimension 2V~N = 1. That is, the stabilizer code contains
indeed only a unique state. Such kind of state is called
stabilizer state.

For example, the 4-qubit version of the GHZ state

1
(GHZ4) = 5(/0000) + [1111))

is a stabilizer state. To see why, consider the following 4
stabilizer generators

g= Z Z I I
=1 272 Z I
=1 1 Z Z
u= X X X X

and it is straightforward to check that ¢;|(GHZ)s = |GHZ),.



Graph states

There is a special kind of stabilizer states called the graph
states, whose stabilizer generators correspond to some given
graphs. We start from an undirected graph G with n-vertices.
For the ith vertex, we associate it with a stabilizer generator

9i = X; ® L,

kéeneighbor 4

For a 4-qubit complete graph , the 4 stabilizer
generators are given by

o= X Z Z Z

go= Z X Z Z

g3= Z Z X Z

gp= Z 7 Z X



Toric code
The square lattice

There are two types of stabilizer generators.

Type I (Star type)f AsZ - Hjestar(s)

Type II (Plaquette type): Aif = Hjeplaquette(p)

[T4a7 =114 =1
s D

Zj



Code distance

Total 2r? qubits, but r2 4+ 2 — 2 = 2r2 — 2 stabilizer generators.
So the code has dimension 22.

The logical operators are cycles on the torus, hence the distance
of the code is r.



The Hamiltonian
Htom'c = _ZASZ_ZA;(
s p
- X T %y I %

s jestar(s) P péEplaguette(p)

A ground state [¢g) = > g0)y®2r*.

gESX




Properties

- Every stabilizer generator is local

- The code space encodes two qubits (i.e. four-dimensional
subspace)

- The code distance grows with r, as an order of \/n when
n goes arbitrarily large



The Wen-plaquette model
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For any qubit ¢ on any of the diagonal dashed lines, perform
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Codeword stabilized (CWS) quantum code

Recall the classical repetition code
0— 000, 1—111
This code has d = 3: corrects one error, or detects two errors.

£ = {100,010,001,101,011, 110}

Error detection condition
The code C detects error set &£ iff

c;#cjde, Ve;,c;jel, Vecf.
Codeword stabilized (CWS) quantum code

Ingredient 1: a graph G of n vertices

Ingredient 2: a binary classical code C

C detects errors induced by G



Codeword stabilized (CWS) quantum code

((n, K,d)): length n, dimension K, distance d
Ingredient 1: a graph G of n vertices G <> |G)
Ingredient 2: a binary classical code C € {0,1}"

Basis for quantum code

i) = Z291G), cieC

Q C = {00000,11111}.

o) = IIIIIIG), |v1) = Z222Z]G).



The X-Z rule
—
0 —

z
‘gz On a graph state X errors are equivalent to
(possibly multiple) Z errors: the X-Z rule. We call these the
‘induced’ errors.

Xilyy) = XiZ%9G) = X; 2% g;|G)
where g; = X; zneighbor(i) - Therefore
X7,|wj> — iZneighbor(i)‘wj%

and note that (¢;|E|¢;) = 0.
X-Z rule: X; — Zneighbor(i), Y; — Zneighbor(i)Zi.



Error detection conditions

Since all induced errors are Zs, things are essentially classical.
To detect errors from a set &£,

(Wl Elisy) = 0, VE € €.
For basis of the form
i) = Z2%1G),  cieC,
the condition becomes
(G|IZ“EZ%|G) = 0.
X-Z rule: VE € € — Z°.

Elhi) = Z°\4s) = Z°Z°|G) = Z9%°|G)



Error detection conditions

(G|Z“EZ%|G) = 0.
= (G|Z°1%°%%|@G) = 0.
Based on the property of graph states, this holds if and only if
c; #edcj.

This is nothing but the classical error detection condition.

Q = {Z%|G)} detects errors set £ <
C = {c;} detects the induced error set given by the graph G



Example: the ((5,2,3)) code

J

d = 3 need to detect double errors
C ={00000,11111}.

|vo) = IIIIIG), |W1)=ZZZZZ|G).
The error set
Z : {10000, 01000, 00100,00010, 00001}

X : {01001, 10100,01010,00101, 10010}
Y :{11001,11100,01110,00111, 10011}
Need to show

00000 # two errors @ 11111



Example: the ((5,6,2)) code

J

d = 3 need to detect single errors
The error set

Z : {10000, 01000, 00100, 00010, 00001}

X : {01001, 10100, 01010, 00101, 10010}
Y : {11001, 11100, 01110,00111, 10011}

C=A{ 00000, 11010,01101
10110,01011,10101}

c, #edcj



