Diamond Fabrication

Zhang Chuheng, CQI, IIIS, TSU 6 Apr 2017

Overview

- Fabrication Methods in S-102
- Current Low Temperature Fabrication Scheme
- Notice and Problems in Each Step

Fabrication Methods

Patterning	EBL / Optical Lithography (with Spin Coating / Baker) FIB
Layering & Etching	Sputter / Electron Beam Evaporation / ALD ICP / Plasma Clean
Observing	Optical Microscopy / Step Profiler / Film Thickness Gauge / AFM / SEM
Others	Chemical Process / Annealing

Current Fabrication Scheme: Overview

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency

continue on next slide ...

Current Fabrication Scheme: Overview

Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

NV Density Estimation

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate Al 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

NV Density Estimation

• Ideal case:

>1NV per 100um*100um area @ depth 5~8um

• Problem:

few shallow NVs -> ICP etch several microns

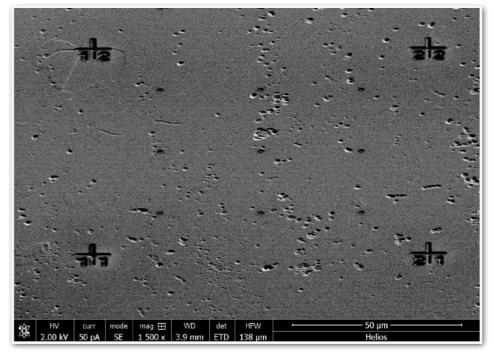
(deep NV leads to inefficient SIL fabrication)

Piranha Clean

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

Piranha Clean

- Purpose: remove organic residual, especially oil
- Notice:


- Use microscope dark field mode to see whether it is clean after piranha
- Operation side up all the time (111 strip sample will roll during piranha clean)
- Nitrogen blow from inside, do NOT blow sample away
- Problem: time consuming -> multiple sample clean
- Link: <u>http://sealzhang.tk/experimental%20physics/2016/11/23/Piranha-Clean</u>

ICP Etch

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB > No ICP here
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

ICP Etch

- Purpose:
 - Remove several microns of surface (for 1. strain is strange near surface 2. few NVs near surface)
 - Remove Ga+ ion after FIB
 - Improve surface properties (eg. get a distinguished surface peak / a smooth surface)
- Notice:
 - Careful piranha clean before a deep etch
 - Outcome is quite recipe related
- Problem:
 - Gullies after ICP

• Link: <u>http://sealzhang.tk/experimental%20physics/2016/11/23/ICP</u>

ICP Etch

- Machine: Oxford Instruments Plasmalab System 100
- Link: <u>http://www.oxfordplasma.de/systems/100II.htm</u>

Electron Beam Evaporation

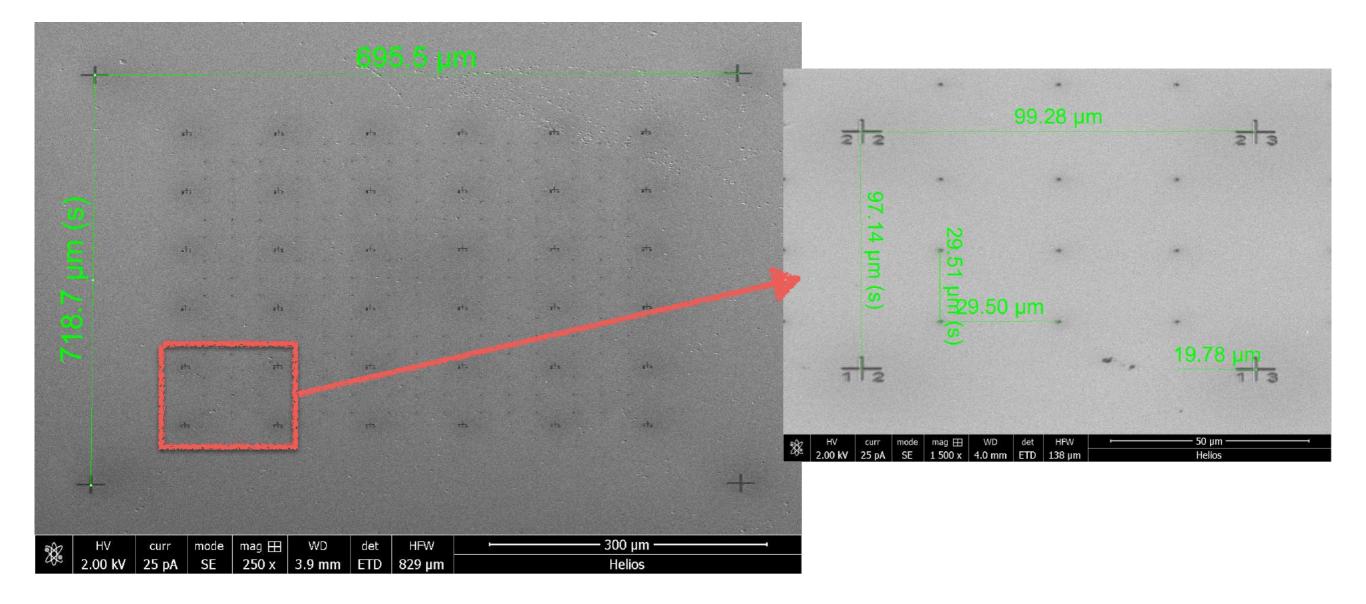
Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate Al 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

Electron Beam Evaporation

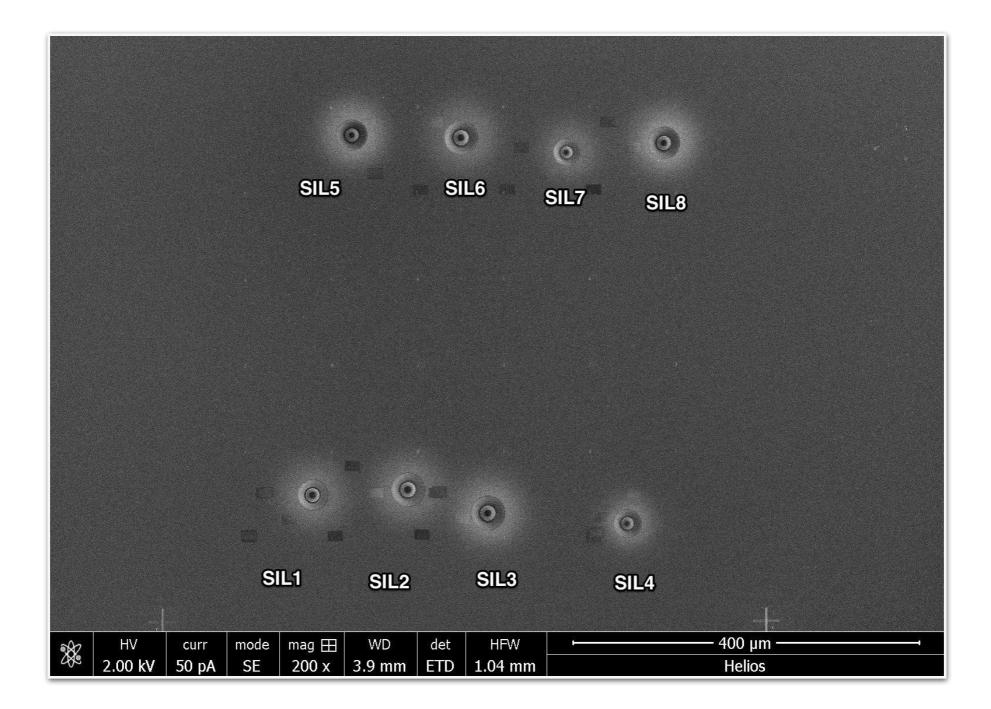
- Purpose:
 - Avoid charge accumulation on the surface during FIB (20nm Al)
 - Serve as the master mask of waveguide (Ti60nm+Cr60nm+Au60nm)
- Notice:
 - Make sure the samples are well clipped
- Link: <u>http://sealzhang.tk/experimental%20physics/2016/11/23/</u> Electron-beam-Evaporation-Deposition

Electron Beam Evaporation

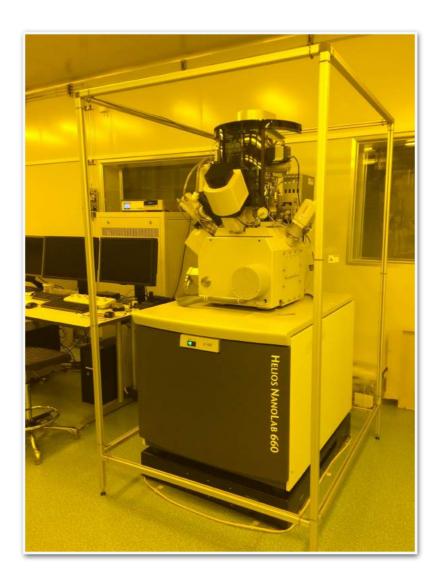
- Machine: PLASSYS MEB 550S4
- Link: <u>https://plassys.com/evaporation-hv-uhv/</u>


Focused Ion Beam

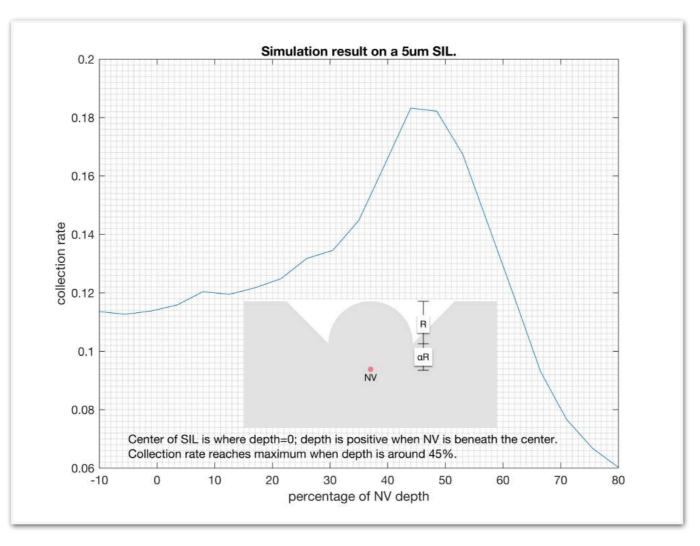
Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

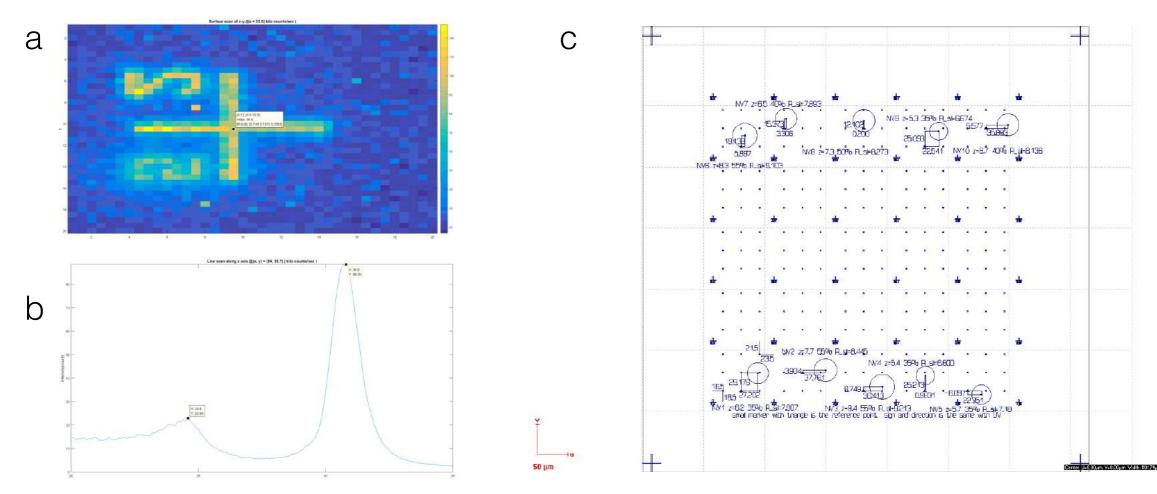

Focused Ion Beam

- Purpose:
 - Generation of makers (for location of NVs) and chip names (for distinguish among different samples and different sides of a sample)
 - Generation of solid immersion lens (SIL)
- Notice:
 - Fix sample to stage by silver colloid before FIB
 - Remove silver colloid and AI after FIB
- Problem:
 - Processing time is long to fabricate a big SIL -> find shallow NVs / increase yield rate
- Link: <u>http://sealzhang.tk/experimental%20physics/2017/03/24/FIB-chipname-marker / http://sealzhang.tk/experimental%20physics/2016/11/23/FIB-SIL</u>


Focused Ion Beam: Markers

Focused Ion Beam: SILs


Focused Ion Beam


- Machine: Helios Nanolab 660
- Datasheet link: <u>https://www.fei.com/documents/helios-nanolab-660-datasheet/</u>

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

- Purpose:
 - Find relative xy position and depth of NVs (markers as reference)
 - Design the size of SIL based on depth of NV
- Problem:
 - Enhancement of collection efficiency is largely dependent on relative depth of NV w.r.t. SIL center
 - Inaccuracy in location (especially in z direction) leads to low collection efficiency
- Link: <u>https://github.com/zhangchuheng123/NV_program</u>

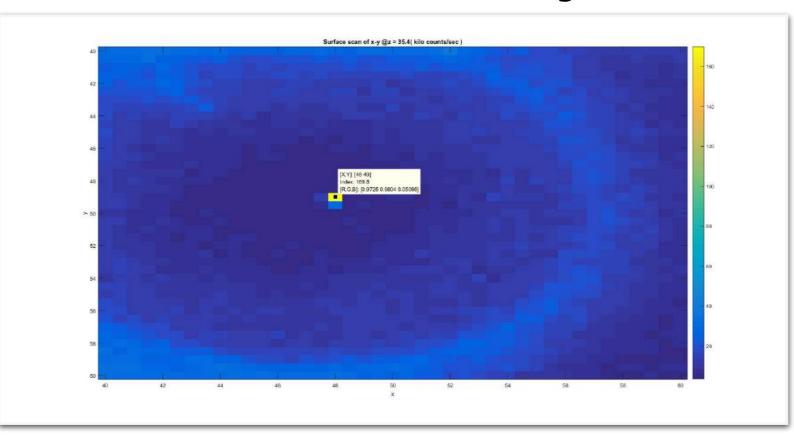
- Simulation -> unimodal with depth, optimal around 45%
- Empirical -> optimal around 30%

a. marker in confocal system

- b. surface peak and NV peak
- c. design graph of SIL

Three-acid Clean

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding


Three-acid Clean

- Purpose:
 - Remove carbon residual induced by FIB etch
- Notice:
 - more or less similar to piranha clean
- Link: <u>http://sealzhang.tk/experimental%20physics/</u> 2016/11/23/three-acid-clean

SIL Efficiency Test

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

SIL Efficiency Test

- Purpose:
 - Test NV count after SIL fabrication generally 5~10 times enhancement after SIL
 - Accumulate data: NV count vs. NV depth

Depth Related Formulas

•
$$R_{SIL} = \eta d_{measure} / (1 + \alpha)$$

before SIL

- $R_{SIL} = d_{measure} / (1 + \eta \alpha)$ after SIL
- Relation between real and measured depth

$$d_{real} = \sqrt{\frac{n_o n_d - NA^2}{n_o^2 - NA^2}} d_{measure} = \eta d_{measure}$$

oil 1.518 diamond 2.408 NA 1.49

• empirically, $\eta \approx 1.7$

EBL and Relevant

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

EBL and Relevant: Process

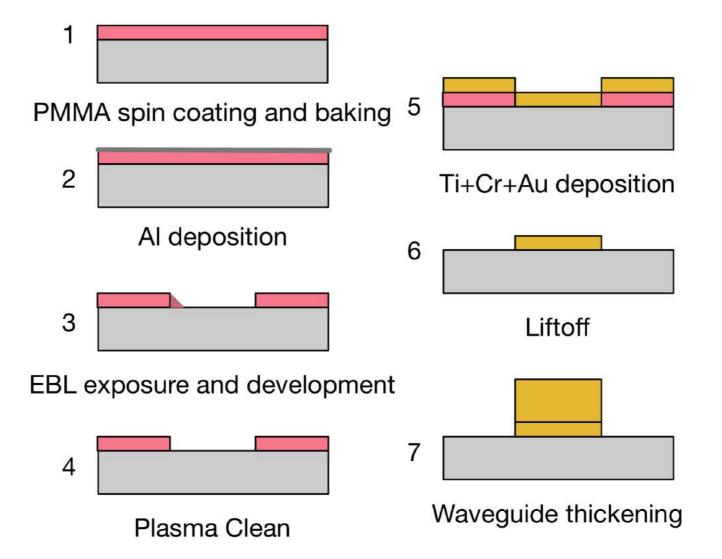


Figure. waveguide fabrication process

EBL and Relevant: Result

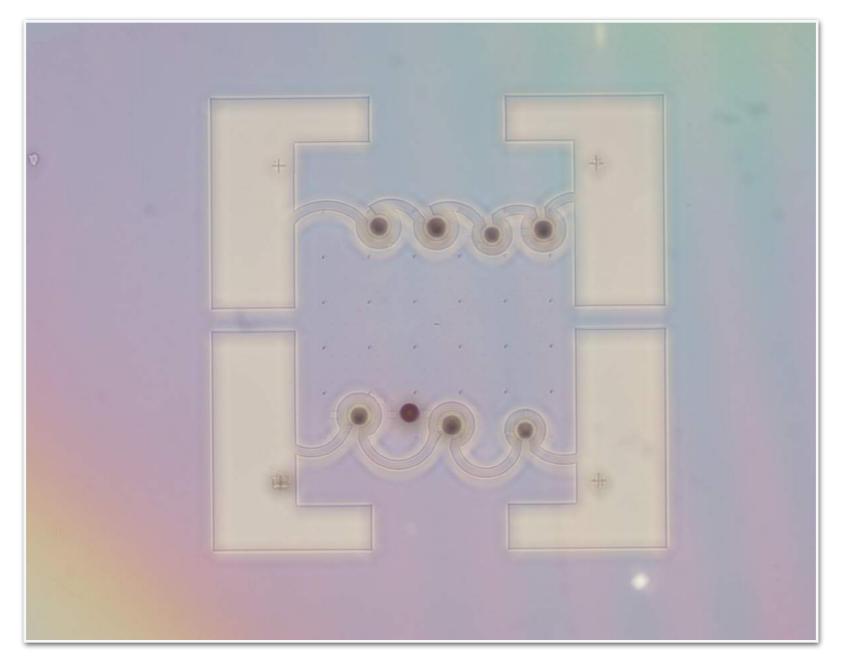
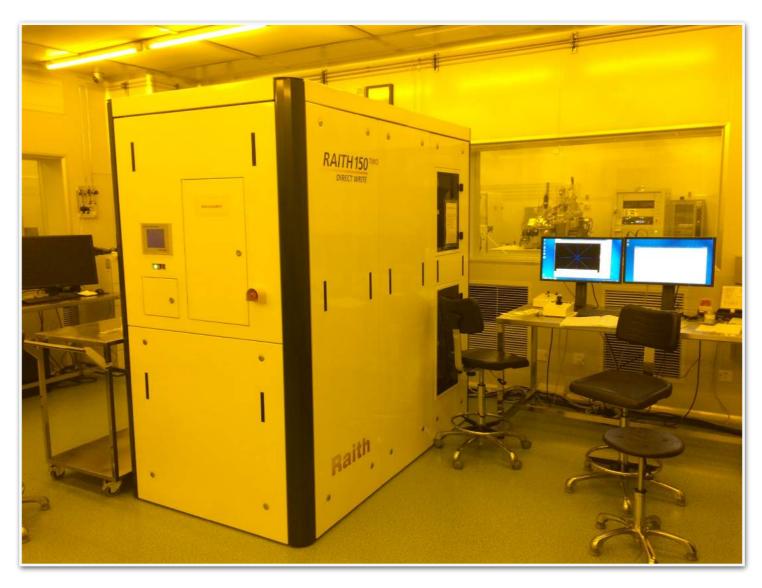



Figure. microscopy image of waveguide after liftoff

EBL and Relevant

- Purpose:
 - Waveguide fabrication
- Notice:
 - Check EBL design file before start processing
 - Metal layer on SIL is hard to remove do liftoff carefully
- Problem:
 - NV disappearance after NV thickening
- Link: <u>http://sealzhang.tk/experimental%20physics/2016/11/23/PMMA-Spin-coating</u> <u>http://sealzhang.tk/experimental%20physics/2016/11/23/EBL</u> <u>http://sealzhang.tk/experimental%20physics/2017/03/24/liftoff</u>

EBL and Relevant: EBL

- Machine: Raith 150 Two https://www.raith.com/products/raith150-two.html
- Line width: ~10nm
- Stitching / Overlay accuracy: ~ 35nm

AR Coating

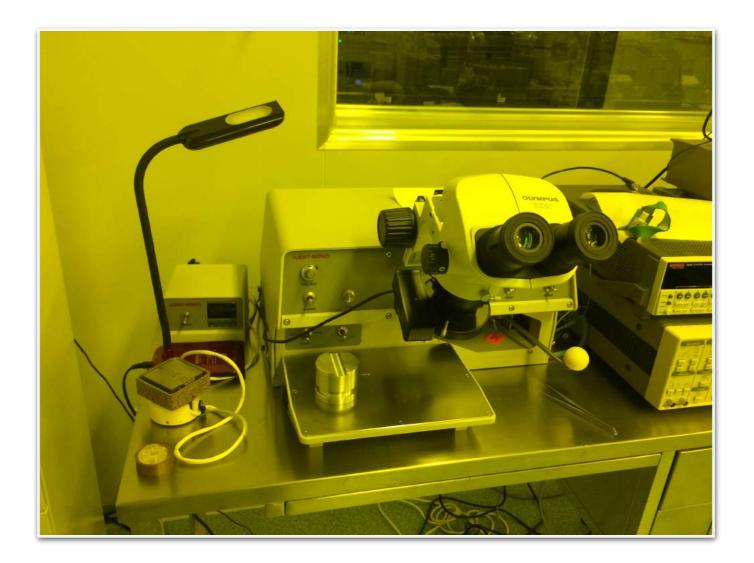
Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

AR Coating: ALD

- Purpose:
 - Avoid NV fluorescence reflection on the surface
- Problem:
 - Thickness of dielectric layer vs. NV count > optimal found theoretically and experimentally (by Huili)

AR Coating: ALD

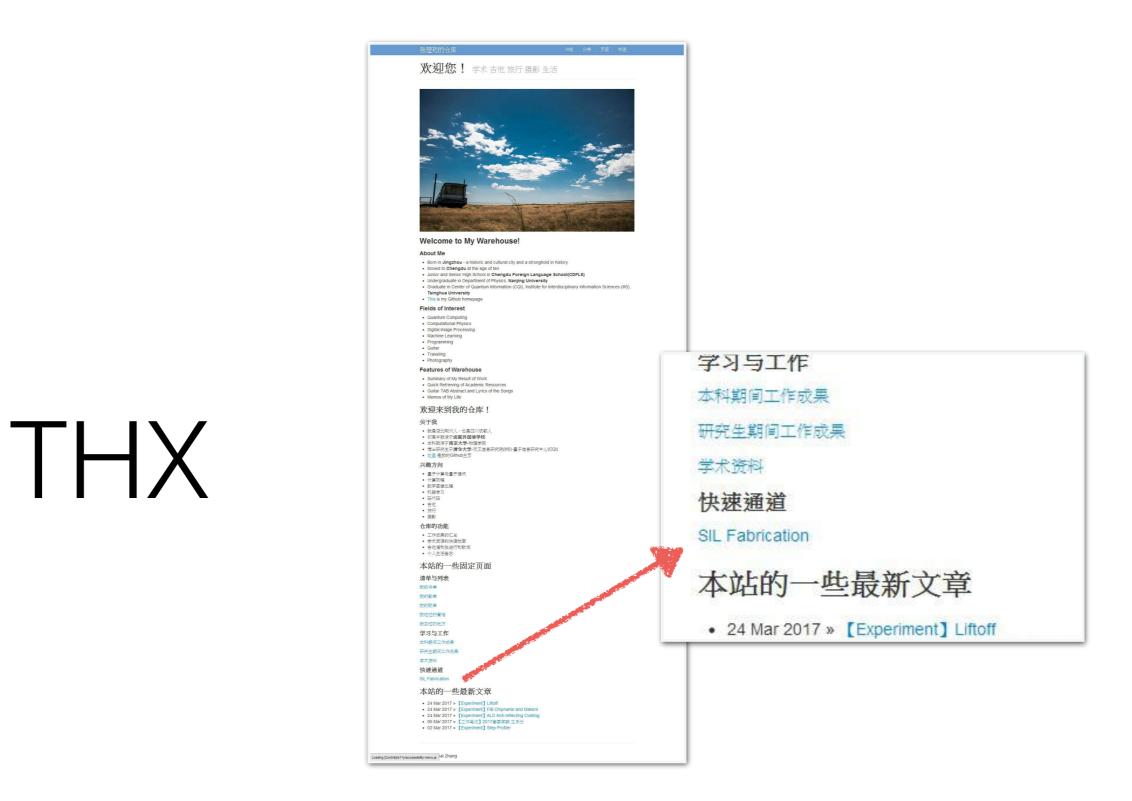
- Machine: Oxford Instruments FlexAL
- Link: <u>http://www.oxford-instruments.cn/products/etching-deposition-and-growth/tools/ald-systems/flexal</u>


Wire Bonding

Prepare	NV Density Estimation > Piranha Clean > ICP Etch
Chipname & Marker	Evaporation of AI > FIB > Clean after FIB
NV Location	NV Location and SIL Calculation
SIL Fabrication	Piranha Clean > Al Evaporate > FIB Fabrication > Clean and Remove Al > Three-acid Clean to Remove Carbon > ICP Etch
Test	Test for Efficiency
Waveguide	Piranha Clean > PMMA Spin-coating and Baking > Evaporate AI 20nm > EBL and Develop > Plasma Clean > Evaporate Ti+Au > Liftoff
Waveguide Thickening	Waveguide Thickening
AR Coating	Antireflection Coating by ALD
Mount	Fix by Cryogenic Colloid > Wire Bonding

Wire Bonding

- Purpose:
 - Connect waveguide with microwave electrodes
- Notice:
 - Bonding voltage is dependent on wire material and substrate material - better follow empirical solution


Wire Bonder

- Machine: West-bond
- Link: <u>http://www.westbond.com/machines_manual_wire_bonders.htm</u>

Main Problem

- Unsatisfactory yield rate:
 - NV missing
 - Mechanism of missing after galvanization
 - Strange NV spectrum
 - Check NV spectrum before SIL fabrication
 - Etch several microns near surface / annealing
 - Unstable NV count promotion
 - More precise NV location
 - 111 face sample
 - AR coating

... up to date fabrication scheme @ http://sealzhang.tk