Generating 3 Qubit Quantum
Circuits with Neural

Networks

Journal Club, 20 Apr 2017
Zhang Chuheng, CQl, IS, THU




Preface

« Quantum Machine Learning[1]

« Machine learning algorithm find application in
understanding and controlling quantum systems

o Eg. Solving quantum many-body system by ML

« Quantum computational devices promote the
performance of machine learning algorithms

o Eg. Quantum version of SVM[2]

[1] Biamonte, Jacob, et al. "Quantum Machine Learning." arXiv preprint arXiv:1611.09347 (2016).
[2] Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum support vector machine for big data classification."
Physical review letters 113.13 (2014): 130503.
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Abstract

Generating 3 qubit quantum circuits with neural networks

Michael Swaddle,''* Lyle Noakes,? Liam Salter,®> Harry Smallbone,®> and Jingbo Wang!

'School of Physics, The University of Western Australia, Crawley 6009, Australia
Faculty of Engineering, Computing and Mathematics,
The University of Western Australia, Crawley 6009, Australia
3The University of Western Australia, Crawley 6009, Australia
(Dated: April 3, 2017)

A new method for compiling quantum algorithms is proposed and tested for a three qubit system. The
proposed method is to decompose a a unitary matrix U, into a product of simpler U; via a neural network.
These U; can then be decomposed into product of known quantum gates. Key to the effectiveness of this
approach is the restriction of the set of training data generated to paths which approximate minimal normal
subRiemannian geodesics, as this removes unnecessary redundancy and ensures the products are unique.
The two neural networks are shown to work effectively, each individually returning low loss values on
validation data after relatively short training periods. The two networks are able to return coefficients that
are sufficiently close to the true coefficient values to validate this method as an approach for generating
quantum circuits. There is scope for more work in scaling this approach for larger quantum systems.

[1] Swaddle, Michael, et al. "Generating 3 qubit quantum circuits with neural networks." arXiv preprint arXiv:1703.10743 (2017).
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Overview

« Problem Description

« Proposed Neural Network Solution
« Reformulation of the problem
« (Generation of training data
« Neural network design

e« Results
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Problem Description

o Statement |: Given an arbitrary unitary operation
U e SU(2™), tind an optimal quantum circuit
approximates U.

o Statement lI: Suppose U is generated by some time
dependent Hamiltonian Z—Z = —iH({)U(t), U0) =1,
U(tr) = U, find the optimal control function H(t) for

synthesizing U. H(t) should be easy-to-implement,
finite number of quantum gates.
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Problem Description

« Remark: the minimal geodesic distance between the
identity operation I and U is essentially equivalent to the
number of gates required to synthesize U.[1]
(Geometric view)

« (Geodesic: given the initial point and initial velocity, the
rest of geodesic is determined by geodesic equation

2 : k l .
SRS VR dxt = 0, with I/, Christoffel symbol
representing fBcal geometry.

dt2 = "kl gt

e Like Newtonian and Lagrangian Formulations in
Mechanics / geometric optics and Fermat's principle in
optics

[1] Nielsen, Michael A. "A geometric approach to quantum circuit lower bounds." arXiv preprint quant-ph/0502070 (2005).
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Problem Description

« Remark: H(t) could be found via finding minimal
geodesics of the Riemannian geometry from I to U.

« Remark: Computing geodesics requires one to

solve a boundary value problem in a high
dimensional space, which is hard.

Zhang Chuheng © 2017



Problem Description

 Remark: using one- and two-qubit gates, It IS
possible to well approximate U (well approximate
the geodesics)[1].

« Remark: One- and two-qubit gates are easy to
implement.

[1] Nielsen, Michael A., et al. "Quantum computation as geometry." Science 311.5764 (2006): 1133-1135.
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Proposed Solution

» Use neural network (NN), supervised learning
scheme

e find U = E(c) = exp(city) ---exp(ci,t,,) < segment

exp(CivTﬂ -+ eXp(CmTm)

- ;i =1, m) S ba3|s of A su(zn) _
Span{r i \/— } Where a represents the n

fold Kronecker producta =]Q® R0, K -RI,
with g; on the |-th slot.
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Proposed Solution

« Quantum circuit construction of exp(if71).

e Whent=1Q --Q0; ® --Q I, itis |ust a single qubit
gate exp(i 6 g;), it can be constructed by H R;(0)H™
(fori =1), YR;(0)Y™ (fori = 2) or R;(8) (fori = 3)

e Whent=1Q --0;---0;---Q I, It's atwo qubit gate
exp(i 8 0; ® o). It can also be generated similarly, for
example, exp(ifo; K I & o,)

_CTDT T_é; H ® ° HT
$ IQ%

1
T mole Y —&—Ry(9)

i
3/

YT
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Proposed Solution

e Supervised learning scheme

e Training data ® = {(x;,y;)}, find parameters 6 =
arg min loss(y;, f (x;, 0)) | (x,yped

e TestdataT = {(x;,y;)}, not seen by the model In
the training phase, is used to test the efficiency of
the model.
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Proposed Solution

. U= E(c) =exp(city) - exp(cl,t,,) « segment

exp(c1 T1) ++ exp(CimTm)

» (Global decomposition: factor U into segments.
U=~UU,:- Uj Uy

« Local decomposition: factor U; into sequence of
one- and two-qubit gates.

U; = exp(c{rl) exp(c,f;lrm)
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Proposed Solution

Generation of training data for global decomposition

There are infinitely many ways to tfactor U, training data
should be generated in a unique way.

These paths should be chosen to be minimal normal
subRiemannian geodesics. By Pontryagin Maximum
Principle, obtain geodesic equation.
X = Ux

A=[Au] = x=projs(xAyx™)x
u = proja(A)
x:10,1] - SU(2™),A: [0,1] - su(2™),u:[0,1] > A c
su(2m)
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Proposed Solution

« (Generation of training data for global decomposition

« Randomly select a A

« lteratively repeat x(t;41) = Ujx(t;), U; =
exp(h projp (xjAOijr))

» Obtain a training data {U,{Uj}}, where U =
UyUy - U; -+ Uy

e Distance between U and I approximates the complexity
to Implement U. In order U be well approximated by the
imited sequence, they bounded the norm

Iproja(Ag)l| = [luel|, which determines distance.
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Proposed Solution

o (Generation of training data for local decomposition

 Uj = exp(c{rl) exp(c,{lrm)

o SImply randomly generates data {cq, -+, ¢} (¢; €
[—hm, +hr], i.e. should be small) and construct

Uj = eXp(C{ﬁ) eXP(Cvjv.sz)
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Proposed Solution

U~ E(c) = exp(city) - exp(ci, T ) « segment

exp(c1 T1) ++ exp(CimTm)

Global decomposition: Use GRU (Gated Recurrent
Unit) network to factor U into segments. U =
U Uy -+ Uj - Uy

Input: Uyny,n - 2™ real vectors representing rows

Output: U U, -+ U; -+ Uy - N2™ row vectors
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Proposed Solution

e GRU network is a kind of recurrent neural network
(RNN)

ITITITIT

=2 zzIz Iz
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Proposed Solution

« GRU

(1) — (2) 5, (£) ()5, (t-1)
Reset: Include AV in new memory? Update: How much A" in next state? 27 =W + U™k ) (Update gate)
C T { E r(t) = O‘(W(r)x(t) - U(r)h(t_l)) (Reset gate)
E 1) = tanh(r® o ULE-D 4 W) (New memory)
| B = (1-2) 0 ht) 4 2(t) o p(t=1) (Hidden state)

— x(t), h(t_l)
- h(O O = £ IR0

New memory: Compute new memory based on
current word input 2! and potentially A1

Image from http://cs224n.stanford.edu
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Proposed Solution

U~ E(c) = exp(city) - exp(ci, T ) « segment

exp(c1 T1) ++ exp(CimTm)

Local decomposition: Use a four-layer fully
connected network to decompose U; =

exp(c{ Tl) - exp(CiTm)

Input: U; - 2™ %2™" numbers

Janx2n
Output: coetficients (c{, " c,,f,'l)
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Proposed Solution

o Fully connect network

For each layer
Vi = f(Wix;)

Where f(-) Is a non-linear
function — they use RelLU
here

o

nnnnnnnnnnnnnnnnn

fully connected hidden layers
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Proposed Solution

e Non-linear functions

25}
2.03—
15
[ —— ReLU[x]=Max[0, x]

1
1+Exp[-x]

10f
; Sigmoid[x]=

05t / Tanh[x]

L05F

~1.0}
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Proposed Solution

e Problem:
« Not well scaled, also exponentially increasing
e [uture:

. U is always sparse, make full use sparsity
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Results

(a) Real components of a U; generated by the NN. (a) Real components of a U; generated by the NN.

12 3 45 6 7 12 3 4.5 6 7 ¢

T

(b) The respective known real components of a U; from the (b) The respective known real components of a U; from the
validation dataset. validation dataset.
Global Decomposition Local Decomposition
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Thanks for your attention
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