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Eligibility traces are 

Another way of interpolating between MC and TD methods

A way of implementing compound λ-return targets

A basic mechanistic idea — a short-term, fading memory

A new style of algorithm development/analysis

the forward-view ⇔ backward-view transformation

Forward view: 
conceptually simple — good for theory, intuition

Backward view: 
computationally congenial implementation of the f. view
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Recall n-step targets

For example, in the episodic case,  
with linear function approximation:

2-step target:

n-step target:

with
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for all n, t such that n � 1 and 0  t < T�n. All n-step returns can be considered approximations to the
full return, truncated after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t+n � T (if the n-step return extends to or beyond termination), then all the missing terms are taken
as zero, and the n-step return defined to be equal to the ordinary full return (Gt:t+n

.
= Gt if t+n � T ).

Note that n-step returns for n > 1 involve future rewards and states that are not available at the
time of transition from t to t + 1. No real algorithm can use the n-step return until after it has seen
Rt+n and computed Vt+n�1. The first time these are available is t+n. The natural state-value learning
algorithm for using n-step returns is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

⇥
Gt:t+n � Vt+n�1(St)

⇤
, 0  t < T, (7.2)

while the values of all other states remain unchanged: Vt+n(s) = Vt+n�1(s), for all s 6=St. We call this
algorithm n-step TD. Note that no changes at all are made during the first n� 1 steps of each episode.
To make up for that, an equal number of additional updates are made at the end of the episode, after
termination and before starting the next episode.

n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T  1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T  t+ 1
| ⌧  t� n+ 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G 
Pmin(⌧+n,T )

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G+ �nV (S⌧+n) (G⌧ :⌧+n)
| V (S⌧ ) V (S⌧ ) + ↵ [G� V (S⌧ )]
Until ⌧ = T � 1

Exercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written as the sum of TD
errors (6.6) if the value estimates don’t change from step to step. Show that the n-step error used in
(7.2) can also be written as a sum TD errors (again if the value estimates don’t change) generalizing
the earlier result. ⇤

Exercise 7.2 (programming) With an n-step method, the value estimates do change from step to
step, so an algorithm that used the sum of TD errors (see previous exercise) in place of the error in
(7.2) would actually be a slightly di↵erent algorithm. Would it be a better algorithm or a worse one?
Devise and program a small experiment to answer this question empirically. ⇤

The n-step return uses the value function Vt+n�1 to correct for the missing rewards beyond Rt+n.
An important property of n-step returns is that their expectation is guaranteed to be a better estimate
of v⇡ than Vt+n�1 is, in a worst-state sense. That is, the worst error of the expected n-step return is



Any set of update targets can be averaged 
to produce new compound update targets

For example, half a 2-step plus half a 4-step

Called a compound backup

Draw each component

Label with the weights for that component

A compound backup
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⇤Exercise 7.3 In the lower part of Figure 7.2, notice that the plot for n = 3 is
di↵erent from the others, dropping to low performance at a much lower value of
↵ than similar methods. In fact, the same was observed for n = 5, n = 7, and
n = 9. Can you explain why this might have been so? In fact, we are not sure
ourselves. See http://www.cs.utexas.edu/~ikarpov/Classes/RL/RandomWalk/
for an attempt at a thorough answer by Igor Karpov.

7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average
of n-step returns. For example, a backup can be done toward a return that
is half of a two-step return and half of a four-step return: G

ave

t
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2G
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t

. Any set of returns can be averaged in this way, even an infinite set,
as long as the weights on the component returns are positive and sum to
1. The overall return possesses an error reduction property similar to that of
individual n-step returns (7.2) and thus can be used to construct backups with
guaranteed convergence properties. Averaging produces a substantial new
range of algorithms. For example, one could average one-step and infinite-
step backups to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with
DP backups to get a simple combination of experience-based and model-based
methods (see Chapter 8).

A backup that averages simpler component backups in this way is called
a complex backup. The backup diagram for a complex backup consists of the
backup diagrams for each of the component backups with a horizontal line
above them and the weighting fractions below. For example, the complex
backup mentioned above, mixing half of a two-step backup and half of a four-
step backup, has the diagram:
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The λ-return is a compound update target

The λ-return a target that  
averages all n-step targets 

each weighted by λn-1
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introduction of temporal di↵erence learning, but have become much more powerful and sophisticated
since 2014. Here we present the basics of the modern view.

As usual, first we fully develop the ideas for state values and prediction, then extend them to action
values and control. We develop them first for the on-policy case then extend them to o↵-policy learning.
Our treatment pays special attention to the case of linear function approximation, for which the results
with eligibility traces are stronger. All these results apply also to the tabular and state aggregation
cases because these are special cases of linear function approximation.

12.1 The �-return

In Chapter 7 we defined an n-step return as the sum of the first n rewards plus the estimated value of
the state reached in n steps, each appropriately discounted (7.1). The general form of that equation,
for any parameterized function approximator, is

Gt:t+n
.
= Rt+1 + �Rt+2 + · · ·+ �n�1Rt+n + �nv̂(St+n,wt+n�1), 0  t  T � n. (12.1)

We noted in Chapter 7 that each n-step return, for n � 1, is a valid update target for a tabular learning
update, just as it is for an approximate SGD learning update such as (9.7).

Now we note that a valid update can be done not just toward any n-step return, but toward any
average of n-step returns. For example, an update can be done toward a target that is half of a two-step
return and half of a four-step return: 1

2Gt:t+2 + 1
2Gt:t+4. Any set of n-step returns can be averaged

in this way, even an infinite set, as long as the weights on the component returns are positive and
sum to 1. The composite return possesses an error reduction property similar to that of individual
n-step returns (7.3) and thus can be used to construct updates with guaranteed convergence properties.
Averaging produces a substantial new range of algorithms. For example, one could average one-step and
infinite-step returns to obtain another way of interrelating TD and Monte Carlo methods. In principle,
one could even average experience-based updates with DP updates to get a simple combination of
experience-based and model-based methods (cf. Chapter 8).

1

2

1

2

An update that averages simpler component updates is called a compound update. The
backup diagram for a compound update consists of the backup diagrams for each of the
component updates with a horizontal line above them and the weighting fractions below.
For example, the compound update for the case mentioned at the start of this section,
mixing half of a two-step return and half of a four-step return, has the diagram shown
to the right. A compound update can only be done when the longest of its component
updates is complete. The update at the right, for example, could only be done at time
t + 4 for the estimate formed at time t. In general one would like to limit the length of
the longest component update because of the corresponding delay in the updates.

The TD(�) algorithm can be understood as one particular way of averaging n-step
updates. This average contains all the n-step updates, each weighted proportional to
�n�1, where � 2 [0, 1], and is normalized by a factor of 1� � to ensure that the weights
sum to 1 (see Figure 12.1). The resulting update is toward a return, called the �-return,
defined in its state-based form by

G�
t

.
= (1� �)

1X

n=1

�n�1Gt:t+n. (12.2)

Figure 12.2 further illustrates the weighting on the sequence of n-step returns in the �-
return. The one-step return is given the largest weight, 1��; the two-step return is given
the next largest weight, (1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
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Figure 12.1: The update digram for TD(�). If � = 0, then the overall update reduces to its first component,
the one-step TD update, whereas if � = 1, then the overall update reduces to its last component, the Monte
Carlo update.
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Figure 12.2: Weighting given in the �-return to each of the n-step returns.

weight fades by � with each additional step. After a terminal state has been reached, all subsequent
n-step returns are equal to Gt. If we want, we can separate these post-termination terms from the main
sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1Gt:t+n + �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional return, Gt. Thus, for � = 1,
updating according to the �-return is a Monte Carlo algorithm. On the other hand, if � = 0, then the
�-return reduces to Gt:t+1, the one-step return. Thus, for � = 0, updating according to the �-return is
a one-step TD method.

Exercise 12.1 Just as the return can be written recursively in terms of the first reward and itself
one-step later (3.9), so can the �-return. Derive the analogous recursive relationship from (12.2) and
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want, we can separate these post-termination terms from the main sum, yielding

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when
� = 1. In this case the main sum goes to zero, and the remaining term reduces to
the conventional return, Gt. Thus, for � = 1, backing up according to the �-return
is a Monte Carlo algorithm. On the other hand, if � = 0, then the �-return reduces

to G(1)
t , the one-step return. Thus, for � = 0, backing up according to the �-return

is a one-step TD method.

Exercise 12.1 The parameter � characterizes how fast the exponential weighting
in Figure 12.2 falls o↵, and thus how far into the future the �-return algorithm looks
in determining its backup. But a rate factor such as � is sometimes an awkward way
of characterizing the speed of the decay. For some purposes it is better to specify a
time constant, or half-life. What is the equation relating � and the half-life, ⌧�, the
time by which the weighting sequence will have fallen to half of its initial value?

We are now ready to define our first learning algorithm based on the �-return:
the o↵-line �-return algorithm. As an o↵-line algorithm, it makes no changes to the
weight vector during the episode. Then, at the end of the episode, a whole sequence
of o↵-line updates are made according to our usual semi-gradient rule, using the
�-return as the target:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t), t = 0, . . . , T � 1. (12.4)

The �-return gives us an alternative way of moving smoothly between Monte
Carlo and one-step TD methods that can be compared with the n-step TD way of
Chapter 7. There we assessed e↵ectiveness on a 19-state random walk task (Example
7.1). Figure 12.3 shows the performance of the o↵-line �-return algorithm on this task
alongside that of the n-step methods (repeated from Figure 7.2). The experiment was
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weight fades by � with each additional step. After a terminal state has been reached, all subsequent
n-step returns are equal to Gt. If we want, we can separate these post-termination terms from the main
sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1Gt:t+n + �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional return, Gt. Thus, for � = 1,
updating according to the �-return is a Monte Carlo algorithm. On the other hand, if � = 0, then the
�-return reduces to Gt:t+1, the one-step return. Thus, for � = 0, updating according to the �-return is
a one-step TD method.

Exercise 12.1 Just as the return can be written recursively in terms of the first reward and itself
one-step later (3.9), so can the �-return. Derive the analogous recursive relationship from (12.2) and
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Relation to TD(0) and MC

The λ-return can be rewritten as:

If λ = 1, you get the MC target:

If λ = 0, you get the TD(0) target:

Until termination After termination

12.1. THE �-RETURN 237

1 � �

(1 � �)�

(1 � �)�2

�T�t�1

· · ·

···

St

At

At+1

AT�1

St+1 Rt+1

ST RT

· · ·

St+2 Rt+2

At+2

TD(�)

X
= 1

Figure 12.1: The update digram for TD(�). If � = 0, then the overall update reduces to its first component,
the one-step TD update, whereas if � = 1, then the overall update reduces to its last component, the Monte
Carlo update.

1!"

weight given to

the 3-step return

decay by "

weight given to

actual, final return

t T

Time

Weight

total area = 1

is (1 � �)�2

is �T�t�1

Weighting

Figure 12.2: Weighting given in the �-return to each of the n-step returns.

weight fades by � with each additional step. After a terminal state has been reached, all subsequent
n-step returns are equal to Gt. If we want, we can separate these post-termination terms from the main
sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1Gt:t+n + �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional return, Gt. Thus, for � = 1,
updating according to the �-return is a Monte Carlo algorithm. On the other hand, if � = 0, then the
�-return reduces to Gt:t+1, the one-step return. Thus, for � = 0, updating according to the �-return is
a one-step TD method.

Exercise 12.1 Just as the return can be written recursively in terms of the first reward and itself
one-step later (3.9), so can the �-return. Derive the analogous recursive relationship from (12.2) and

G�
t = (1� 0)

T�t�1X

n=1

0n�1Gt:t+n + 0T�t�1Gt = Gt:t+1

G�
t = (1� 1)

T �t�1X

n=1

1n�1Gt:t+n + 1T �t�1Gt = Gt



The off-line λ-return “algorithm”

Wait until the end of the episode (offline)

Then go back over the time steps, updating
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(12.1). ⇤
Exercise 12.2 The parameter � characterizes how fast the exponential weighting in Figure 12.2 falls
o↵, and thus how far into the future the �-return algorithm looks in determining its update. But a
rate factor such as � is sometimes an awkward way of characterizing the speed of the decay. For some
purposes it is better to specify a time constant, or half-life. What is the equation relating � and the
half-life, ⌧�, the time by which the weighting sequence will have fallen to half of its initial value? ⇤

We are now ready to define our first learning algorithm based on the �-return: the o↵-line �-return
algorithm. As an o↵-line algorithm, it makes no changes to the weight vector during the episode.
Then, at the end of the episode, a whole sequence of o↵-line updates are made according to our usual
semi-gradient rule, using the �-return as the target:

wt+1
.
= wt + ↵

h
G�

t � v̂(St,wt)
i
rv̂(St,wt), t = 0, . . . , T � 1. (12.4)

The �-return gives us an alternative way of moving smoothly between Monte Carlo and one-step TD
methods that can be compared with the n-step TD way of Chapter 7. There we assessed e↵ectiveness
on a 19-state random walk task (Example 7.1). Figure 12.3 shows the performance of the o↵-line �-
return algorithm on this task alongside that of the n-step methods (repeated from Figure 7.2). The
experiment was just as described earlier except that for the �-return algorithm we varied � instead of
n. The performance measure used is the estimated root-mean-squared error between the correct and
estimated values of each state measured at the end of the episode, averaged over the first 10 episodes
and the 19 states. Note that overall performance of the o↵-line �-return algorithms is comparable to
that of the n-step algorithms. In both cases we get best performance with an intermediate value of the
bootstrapping parameter, n for n-step methods and � for the o✏ine �-return algorithm.

↵
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Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the o✏ine �-return algorithm
alongside that of the n-step TD methods. In both case, intermediate values of the bootstrapping parameter (�
or n) performed best. The results with the o↵-line �-return algorithm are slightly better at the best values of
↵ and �, and at high ↵.

The approach that we have been taking so far is what we call the theoretical, or forward, view of a
learning algorithm. For each state visited, we look forward in time to all the future rewards and decide
how best to combine them. We might imagine ourselves riding the stream of states, looking forward
from each state to determine its update, as suggested by Figure 12.4. After looking forward from and
updating one state, we move on to the next and never have to work with the preceding state again.



The λ-return alg performs similarly to n-step algs  
on the 19-state random walk (Tabular)
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Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the o✏ine �-
return algorithm alongside that of the n-step TD methods. In both case, intermediate values
of the bootstrapping parameter (� or n) performed best. The results with the o↵-line �-return
algorithm are slighly better at the best values of ↵ and �, and at high ↵.

just as described earlier except that for the �-return algorithm we varied � instead of
n. The performance measure used is the estimated root-mean-squared error between
the correct and estimated values of each state measured at the end of the episode,
averaged over the first 10 episodes and the 19 states. Note that overall performance
of the o↵-line �-return algorithms is comparable to that of the n-step algorithms. In
both cases we get best performance with an intermediate value of the bootstrapping
parameter, n for n-step methods and � for the o✏ine �-return algorithm.

The approach that we have been taking so far is what we call the theoretical, or
forward, view of a learning algorithm. For each state visited, we look forward in time
to all the future rewards and decide how best to combine them. We might imagine
ourselves riding the stream of states, looking forward from each state to determine
its update, as suggested by Figure 12.4. After looking forward from and updating
one state, we move on to the next and never have to work with the preceding state
again. Future states, on the other hand, are viewed and processed repeatedly, once
from each vantage point preceding them.
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Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

Intermediate λ is best (just like intermediate n is best)
λ-return slightly better than n-step



The forward view looks forward from the state being updated 
to future states and rewards
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The backward view looks back
to the recently visited states (marked by eligibility traces)

Shout the TD error backwards

The traces fade with temporal distance by γλ
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Complete pseudocode for TD(�) is given in the box, and a picture of its operation is suggested by
Figure 12.5.

Semi-gradient TD(�) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rd ! R such that v̂(terminal,·) = 0

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize S
z 0 (a d-dimensional vector)
Repeat (for each step of episode):
. Choose A ⇠ ⇡(·|S)
. Take action A, observe R,S0

. z ��z+rv̂(S,w)

. �  R+ �v̂(S0,w)� v̂(S,w)

. w w + ↵�z

. S  S0

until S0 is terminal

TD(�) is oriented backward in time. At each moment we look at the current TD error and assign
it backward to each prior state according to how much that state contributed to the current eligibility
trace at that time. We might imagine ourselves riding along the stream of states, computing TD errors,
and shouting them back to the previously visited states, as suggested by Figure 12.5. Where the TD
error and traces come together, we get the update given by (12.7).

To better understand the backward view, consider what happens at various values of �. If � = 0,
then by (12.5) the trace at t is exactly the value gradient corresponding to St. Thus the TD(�) update
(12.7) reduces to the one-step semi-gradient TD update treated in Chapter 9 (and, in the tabular case,
to the simple TD rule (6.2)). This is why that algorithm was called TD(0). In terms of Figure 12.5,
TD(0) is the case in which only the one state preceding the current one is changed by the TD error. For
larger values of �, but still � < 1, more of the preceding states are changed, but each more temporally
distant state is changed less because the corresponding eligibility trace is smaller, as suggested by the
figure. We say that the earlier states are given less credit for the TD error.
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Figure 12.5: The backward or mechanistic view. Each update depends on the current TD error combined with
the current eligibility traces of past events.



The Semi-gradient TD(λ) algorithm
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Future states, on the other hand, are viewed and processed repeatedly, once from each vantage point
preceding them.

12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning. It was the first
algorithm for which a formal relationship was shown between a more theoretical forward view and a
more computationally congenial backward view using eligibility traces. Here we will show empirically
that it approximates the o↵-line �-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates the weight vector
on every step of an episode rather than only at the end, and thus its estimates may be better sooner.
Second, its computations are equally distributed in time rather that all at the end of the episode. And
third, it can be applied to continuing problems rather than just episodic problems. In this section we
present the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector zt 2 Rd with the same number of
components as the weight vector wt. Whereas the weight vector is a long-term memory, accumulating
over the lifetime of the system, the eligibility trace is a short-term memory, typically lasting less time
than the length of an episode. Eligibility traces assist in the learning process; their only consequence is
that they a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the episode, is incre-
mented on each time step by the value gradient, and then fades away by ��:

z�1
.
= 0,

zt
.
= ��zt�1 +rv̂(St,wt), 0  t  T,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous section. The eligibility
trace keeps track of which components of the weight vector have contributed, positively or negatively,
to recent state valuations, where “recent” is defined in terms ��. The trace is said to indicate the
eligibility of each component of the weight vector for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-moment one-step TD
errors. The TD error for state-value prediction is

�t
.
= Rt+1 + �v̂(St+1,wt)� v̂(St,wt). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD error and the vector
eligibility trace:

wt+1
.
= wt + ↵�tzt, (12.7)
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Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD(�) alongside that of the o↵-line
�-return algorithm. The two algorithms performed virtually identically at low (less than optimal) ↵ values, but
TD(�) was worse at high ↵ values.

If � = 1, then the credit given to earlier states falls only by � per step. This turns out to be just
the right thing to do to achieve Monte Carlo behavior. For example, remember that the TD error, �t,
includes an undiscounted term of Rt+1. In passing this back k steps it needs to be discounted, like any
reward in a return, by �k, which is just what the falling eligibility trace achieves. If � = 1 and � = 1,
then the eligibility traces do not decay at all with time. In this case the method behaves like a Monte
Carlo method for an undiscounted, episodic task. If � = 1, the algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than those presented
earlier and that significantly increases their range of applicability. Whereas the earlier Monte Carlo
methods were limited to episodic tasks, TD(1) can be applied to discounted continuing tasks as well.
Moreover, TD(1) can be performed incrementally and on-line. One disadvantage of Monte Carlo meth-
ods is that they learn nothing from an episode until it is over. For example, if a Monte Carlo control
method takes an action that produces a very poor reward but does not end the episode, then the agent’s
tendency to repeat the action will be undiminished during the episode. On-line TD(1), on the other
hand, learns in an n-step TD way from the incomplete ongoing episode, where the n steps are all the
way up to the current step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see how well TD(�)
does in approximating the o↵-line �-return algorithm. The results for both algorithms are shown in
Figure 12.6. For each � value, if ↵ is selected optimally for it (or smaller), then the two algorithms
perform virtually identically. If ↵ is chosen larger than is optimal, however, then the �-return algorithm
is only a little worse whereas TD(�) is much worse and may even be unstable. This is not catastrophic
for TD(�) on this problem, as these higher parameter values are not what one would want to use
anyway, but for other problems it can be a significant weakness.

Linear TD(�) has been proved to converge in the on-policy case if the step-size parameter is reduced
over time according to the usual conditions (2.7). Just as discussed in Section 9.4, convergence is not
to the minimum-error weight vector, but to a nearby weight vector that depends on �. The bound on
solution quality presented in that section (9.14) can now be generalized to apply to any �. For the
continuing discounted case,

VE(w1)  1� ��

1� �
min
w

VE(w). (12.8)
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Eligibility traces (mechanism)

The forward view was for theory
The backward view is for mechanism

New memory vector called eligibility trace
On each step, decay each component by γλ and 
increment the trace for the current state by 1
Accumulating trace
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is better to specify a time constant, or half-life. What is the equation relating
� and the half-life, ⌧

�

, the time by which the weighting sequence will have
fallen to half of its initial value?

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Z

t

(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Z

t

(s) =

⇢
��Z

t�1(s) if s 6=S

t

;
��Z

t�1(s) + 1 if s=S

t

,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for

same shape as w
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preceding them.

12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning. It was the first
algorithm for which a formal relationship was shown between a more theoretical forward view and a
more computationally congenial backward view using eligibility traces. Here we will show empirically
that it approximates the o↵-line �-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates the weight vector
on every step of an episode rather than only at the end, and thus its estimates may be better sooner.
Second, its computations are equally distributed in time rather that all at the end of the episode. And
third, it can be applied to continuing problems rather than just episodic problems. In this section we
present the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector zt 2 Rd with the same number of
components as the weight vector wt. Whereas the weight vector is a long-term memory, accumulating
over the lifetime of the system, the eligibility trace is a short-term memory, typically lasting less time
than the length of an episode. Eligibility traces assist in the learning process; their only consequence is
that they a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the episode, is incre-
mented on each time step by the value gradient, and then fades away by ��:

z�1
.
= 0,

zt
.
= ��zt�1 + rv̂(St,wt), 0  t  T,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous section. The eligibility
trace keeps track of which components of the weight vector have contributed, positively or negatively,
to recent state valuations, where “recent” is defined in terms ��. The trace is said to indicate the
eligibility of each component of the weight vector for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-moment one-step TD
errors. The TD error for state-value prediction is

�t
.
= Rt+1 + �v̂(St+1,wt) � v̂(St,wt). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD error and the vector
eligibility trace:

wt+1
.
= wt + ↵�tzt, (12.7)
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TD(�) is one of the oldest and most widely used algorithms in reinforcement learning. It was the first
algorithm for which a formal relationship was shown between a more theoretical forward view and a
more computationally congenial backward view using eligibility traces. Here we will show empirically
that it approximates the o↵-line �-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates the weight vector
on every step of an episode rather than only at the end, and thus its estimates may be better sooner.
Second, its computations are equally distributed in time rather that all at the end of the episode. And
third, it can be applied to continuing problems rather than just episodic problems. In this section we
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components as the weight vector wt. Whereas the weight vector is a long-term memory, accumulating
over the lifetime of the system, the eligibility trace is a short-term memory, typically lasting less time
than the length of an episode. Eligibility traces assist in the learning process; their only consequence is
that they a↵ect the weight vector, and then the weight vector determines the estimated value.
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where � is the discount rate and � is the parameter introduced in the previous section. The eligibility
trace keeps track of which components of the weight vector have contributed, positively or negatively,
to recent state valuations, where “recent” is defined in terms ��. The trace is said to indicate the
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In TD(�), the weight vector is updated on each step proportional to the scalar TD
error and the vector eligibility trace:

wt+1
.
= wt + ↵�tzt, (12.7)

Complete pseudocode for TD(�) is given in the box, and a picture of its operation
is suggested by Figure 12.5.

Semi-gradient TD(�) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rd ! R such that v̂(terminal,·) = 0

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize S
z 0 (a d-dimensional vector)
Repeat (for each step of episode):
. Choose A ⇠ ⇡(·|S)
. Take action A, observe R,S0

. z ��z+rv̂(S,w)

. �  R+ �v̂(S0,w)� v̂(S,w)

. w w + ↵�z

. S  S0

until S0 is terminal

TD(�) is oriented backward in time. At each moment we look at the current TD
error and assign it backward to each prior state according to how much that state
contributed to the current eligibility trace at that time. We might imagine ourselves
riding along the stream of states, computing TD errors, and shouting them back to
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Figure 12.5: The backward or mechanistic view. Each update depends on the current TD
error combined with the current eligibility traces of past events.
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are changed, but each more temporally distant state is changed less because the
corresponding eligibility trace is smaller, as suggested by the figure. We say that the
earlier states are given less credit for the TD error.

If � = 1, then the credit given to earlier states falls only by � per step. This
turns out to be just the right thing to do to achieve Monte Carlo behavior. For
example, remember that the TD error, �t, includes an undiscounted term of Rt+1.
In passing this back k steps it needs to be discounted, like any reward in a return,
by �k, which is just what the falling eligibility trace achieves. If � = 1 and � = 1,
then the eligibility traces do not decay at all with time. In this case the method
behaves like a Monte Carlo method for an undiscounted, episodic task. If � = 1, the
algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than
those presented earlier and that significantly increases their range of applicability.
Whereas the earlier Monte Carlo methods were limited to episodic tasks, TD(1)
can be applied to discounted continuing tasks as well. Moreover, TD(1) can be
performed incrementally and on-line. One disadvantage of Monte Carlo methods is
that they learn nothing from an episode until it is over. For example, if a Monte
Carlo control method takes an action that produces a very poor reward but does not
end the episode, then the agent’s tendency to repeat the action will be undiminished
during the episode. On-line TD(1), on the other hand, learns in an n-step TD way
from the incomplete ongoing episode, where the n steps are all the way up to the
current step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that
same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see
how well TD(�) does in approximating the o↵-line �-return algorithm. The results
for both algorithms are shown in Figure 12.6. For each � value, if ↵ is selected
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Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD(�) alongside
that of the o↵-line �-return algorithm. The two algorithms performed virtually identically
at low (less than optimal) ↵ values, but TD(�) was worse at high ↵ values.Can we do better? Can we update online?

Tabular 19-state random walk task
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That is, the asymptotic error is no more than 1���
1�� times the smallest possible error. As � approaches

1, the bound approaches the minimum error (and it is loosest at �=0). In practice, however, �=1 is
often the poorest choice, as will be illustrated later in Figure 12.14.

Exercise 12.3 Some insight into how TD(�) can closely approximate the o↵-line �-return algorithm
can be gained by seeing that the latter’s error term (from (12.4)) can be written as the sum of TD
errors (12.6) for a single fixed w. Show this, following the pattern of (6.6), and using the recursive
relationship for the �-return you obtained in Exercise 12.1. ⇤
⇤Exercise 12.4 Although online TD(�) is not equivalent to the �-return algorithm, perhaps there’s
a slightly di↵erent online TD method that would maintain equivalence. One idea is to define the TD
error instead as µ0

t
.
= Rt+1+�Vt(St+1)�Vt�1(St). Show that in this case the modified TD(�) algorithm

would then achieve exactly

�Vt(St) = ↵
h
G�

t � Vt�1(St)
i
,

even in the case of on-line updating with large ↵. In what ways might this modified TD(�) be better
or worse than the conventional one described in the text? Describe an experiment to assess the relative
merits of the two algorithms. ⇤

12.3 n-step Truncated �-return Methods

The o↵-line �-return algorithm is an important ideal, but it’s of limited utility because it uses the
�-return (12.2), which is not known until the end of the episode. In the continuing case, the �-return
is technically never known, as it depends on n-step returns for arbitrarily large n, and thus on rewards
arbitrarily far in the future. However, the dependence gets weaker for long-delayed rewards, falling by
�� for each step of delay. A natural approximation then would be to truncate the sequence after some
number of steps. Our existing notion of n-step returns provides a natural way to do this in which the
missing rewards are replaced with estimated values.

In general, we define the truncated �-return for time t, given data only up to some later horizon, h,
as

G�
t:h

.
= (1� �)

h�t�1X

n=1

�n�1Gt:t+n + �h�t�1Gt:h, 0  t < h  T. (12.9)

If you compare this equation with the �-return (12.3), it is clear that the horizon h is playing the same
role as was previously played by T , the time of termination. Whereas in the �-return there is a residual
weighting given to the true return, here it is given to the longest available n-step return, the (h�t)-step
return (Figure 12.2).

The truncated �-return immediately gives rise to a family of n-step �-return algorithms similar to
the n-step methods of Chapter 7. In all these algorithms, updates are delayed by n steps and only take
into account the first n rewards, but now all the k-step returns are included for 1  k  n (whereas the
earlier n-step algorithms used only the n-step return), weighted geometrically as in Figure 12.2. In the
state-value case, this family of algorithms is known as truncated TD(�), or TTD(�). The compound
backup diagram, shown in Figure 12.7, is similar to that for TD(�) (Figure 12.1) except that the longest
component update is at most n steps rather than always going all the way to the end of the episode.
TTD(�) is defined by (cf. (9.15)):

wt+n
.
= wt+n�1 + ↵

⇥
G�

t:t+n � v̂(St,wt+n�1)
⇤
rv̂(St,wt+n�1), 0  t < T. (12.10)

This algorithm can be implemented e�ciently so that per-step computation does not scale with n
(though of course memory must). Much as in n-step TD methods, no updates are made on the first

n-step-truncated λ-return method:
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relationship for the �-return you obtained in Exercise 12.1. ⇤

⇤Exercise 12.4 Although online TD(�) is not equivalent to the �-return algorithm, perhaps there’s
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error instead as µ0
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even in the case of on-line updating with large ↵. In what ways might this modified TD(�) be better
or worse than the conventional one described in the text? Describe an experiment to assess the relative
merits of the two algorithms. ⇤

12.3 n-step Truncated �-return Methods

The o↵-line �-return algorithm is an important ideal, but it’s of limited utility because it uses the
�-return (12.2), which is not known until the end of the episode. In the continuing case, the �-return
is technically never known, as it depends on n-step returns for arbitrarily large n, and thus on rewards
arbitrarily far in the future. However, the dependence gets weaker for long-delayed rewards, falling by
�� for each step of delay. A natural approximation then would be to truncate the sequence after some
number of steps. Our existing notion of n-step returns provides a natural way to do this in which the
missing rewards are replaced with estimated values.

In general, we define the truncated �-return for time t, given data only up to some later horizon, h,
as
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If you compare this equation with the �-return (12.3), it is clear that the horizon h is playing the same
role as was previously played by T , the time of termination. Whereas in the �-return there is a residual
weighting given to the true return, here it is given to the longest available n-step return, the (h�t)-step
return (Figure 12.2).

The truncated �-return immediately gives rise to a family of n-step �-return algorithms similar to
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wt+n
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t:t+n � v̂(St,wt+n�1)
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This algorithm can be implemented e�ciently so that per-step computation does not scale with n
(though of course memory must). Much as in n-step TD methods, no updates are made on the first
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For a reasonable n, this may do better than TD(λ), 
at the cost of the n-step delay of updates
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state-value case, this family of algorithms is known as truncated TD(�), or TTD(�). The compound
backup diagram, shown in Figure 12.7, is similar to that for TD(�) (Figure 12.1) except that the longest
component update is at most n steps rather than always going all the way to the end of the episode.
TTD(�) is defined by (cf. (9.15)):

wt+n
.
= wt+n�1 + ↵

⇥
G�

t:t+n � v̂(St,wt+n�1)
⇤
rv̂(St,wt+n�1), 0  t < T. (12.10)

This algorithm can be implemented e�ciently so that per-step computation does not scale with n
(though of course memory must). Much as in n-step TD methods, no updates are made on the first

n-step-truncated λ-return method:

242 CHAPTER 12. ELIGIBILITY TRACES

That is, the asymptotic error is no more than 1���
1�� times the smallest possible error. As � approaches

1, the bound approaches the minimum error (and it is loosest at �=0). In practice, however, �=1 is
often the poorest choice, as will be illustrated later in Figure 12.14.

Exercise 12.3 Some insight into how TD(�) can closely approximate the o↵-line �-return algorithm
can be gained by seeing that the latter’s error term (from (12.4)) can be written as the sum of TD
errors (12.6) for a single fixed w. Show this, following the pattern of (6.6), and using the recursive
relationship for the �-return you obtained in Exercise 12.1. ⇤

⇤Exercise 12.4 Although online TD(�) is not equivalent to the �-return algorithm, perhaps there’s
a slightly di↵erent online TD method that would maintain equivalence. One idea is to define the TD
error instead as µ0

t
.
= Rt+1+�Vt(St+1)�Vt�1(St). Show that in this case the modified TD(�) algorithm

would then achieve exactly

�Vt(St) = ↵
h
G�

t � Vt�1(St)
i
,

even in the case of on-line updating with large ↵. In what ways might this modified TD(�) be better
or worse than the conventional one described in the text? Describe an experiment to assess the relative
merits of the two algorithms. ⇤

12.3 n-step Truncated �-return Methods

The o↵-line �-return algorithm is an important ideal, but it’s of limited utility because it uses the
�-return (12.2), which is not known until the end of the episode. In the continuing case, the �-return
is technically never known, as it depends on n-step returns for arbitrarily large n, and thus on rewards
arbitrarily far in the future. However, the dependence gets weaker for long-delayed rewards, falling by
�� for each step of delay. A natural approximation then would be to truncate the sequence after some
number of steps. Our existing notion of n-step returns provides a natural way to do this in which the
missing rewards are replaced with estimated values.

In general, we define the truncated �-return for time t, given data only up to some later horizon, h,
as

G�
t:h

.
= (1 � �)

h�t�1X

n=1

�n�1Gt:t+n + �h�t�1Gt:h, 0  t < h  T. (12.9)

If you compare this equation with the �-return (12.3), it is clear that the horizon h is playing the same
role as was previously played by T , the time of termination. Whereas in the �-return there is a residual
weighting given to the true return, here it is given to the longest available n-step return, the (h�t)-step
return (Figure 12.2).

The truncated �-return immediately gives rise to a family of n-step �-return algorithms similar to
the n-step methods of Chapter 7. In all these algorithms, updates are delayed by n steps and only take
into account the first n rewards, but now all the k-step returns are included for 1  k  n (whereas the
earlier n-step algorithms used only the n-step return), weighted geometrically as in Figure 12.2. In the
state-value case, this family of algorithms is known as truncated TD(�), or TTD(�). The compound
backup diagram, shown in Figure 12.7, is similar to that for TD(�) (Figure 12.1) except that the longest
component update is at most n steps rather than always going all the way to the end of the episode.
TTD(�) is defined by (cf. (9.15)):

wt+n
.
= wt+n�1 + ↵

⇥
G�

t:t+n � v̂(St,wt+n�1)
⇤

rv̂(St,wt+n�1), 0  t < T. (12.10)

This algorithm can be implemented e�ciently so that per-step computation does not scale with n
(though of course memory must). Much as in n-step TD methods, no updates are made on the first
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at the cost of the n-step delay of updates

But even better is true online TD(λ)
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Figure 12.7: 19-state Random walk results (Example 7.1): Performance of online and o↵-
line �-return algorithms. The performance measure here is the MSVE at the end of the
episode, which should be the best case for the o↵-line algorithm. Nevertheless, the on-line
algorithm performs subtlely better. For comparison, the � = 0 line is the same for both
methods.

algorithm because it is “truer” to the idea of the online TD(�) algorithm, truer even
than the TD(�) algorithm itself.

The derivation of true on-line TD(�) is a little too complex to present here (see
the next section and the appendix to the paper by van Seijen et al., in press) but its
strategy is simple. The sequence of weight vectors produce by the on-line �-return
algorithm can be arranged in a triangle:

✓0
0

✓1
0 ✓1

1

✓2
0 ✓2

1 ✓2
2

✓3
0 ✓3

1 ✓3
2 ✓3

3
...

...
...

...
. . .

✓T
0 ✓T

1 ✓T
2 ✓T

3 · · · ✓T
T

(12.10)

One row of this triangle is produced on each time step. Really only the weight vectors
on the diagonal, the ✓t

t, need to be produced by the algorithm. The first, ✓0
0, is the

input, the last, ✓T
T , is the output, and each weight vector along the way, ✓t

t, plays a
role in bootstrapping in the n-step returns of the updates. In the final algorithm the
diagonal weight vectors are renamed without a superscript, ✓t

.
= ✓t

t. The strategy
then is to find a compact, e�cient way of computing each ✓t

t from the one before. If
this is done, for the linear case in which v̂(s,✓) = ✓>�(s), then we arrive at the true
online TD(�) algorithm:

✓t+1
.
= ✓t + ↵�tet + ↵

⇣
✓>
t �t � ✓>

t�1�t

⌘
(et � �t), (12.11)

where we have used the shorthand �t
.
= �(St), �t is defined as in TD(�) (12.6), and

Tabular 19-state random walk task

True online TD(λ)
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Accumulating, Dutch, and Replacing Traces

All traces fade the same: 

But increment differently!
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and we see now for TD(�) (Figure 7.9).

In the on-line case, the performance of TD(�) with accumulating traces (Figure 7.9,
left) is indeed much better and closer to that of the on-line �-return algorithm (Fig-
ure 7.5, left). If � = 0, then in fact it is the identical algorithm at all ↵, and if ↵
is small, then for all � it is a close approximation to the �-return algorithm by the
end of each episode. However, if both parameters are larger, for example � > 0.9
and ↵ > 0.5, then the algorithms perform substantially di↵erently: the �-return
algorithm performs a little less well whereas TD(�) is likely to be unstable. This is
not a terrible problem, as these parameter values are higher than one would want to
use anyway, but it is a weakness of the method.

7.4 Replacing and Dutch Traces

Two alternative types of eligibility traces have been proposed to address the limita-
tions of accumulating traces. All three types decay the traces of non-visited states
in the same way, that is, according to (7.8), but they di↵er in how the visited state
is incremented. The first alternative type is the replacing trace. Suppose a state is
visited and then revisited before the trace due to the first visit has fully decayed to
zero. With accumulating traces the revisit causes a further increment in the trace
(7.9), driving it greater than 1, whereas, with replacing traces, the trace is simply
reset to 1:

Et(St)
.
= 1. (7.12)

In the special case of � = 1, TD(�) with replacing traces is closely related to first-visit
Monte Carlo methods.

The second alternative type of eligibility trace, called the dutch trace, can be
viewed as intermediate between accumulating and replacing traces, depending on

times of state visits

accumulating traces

dutch traces (α = 0.5)

replacing traces

Figure 7.10: The three di↵erent kinds of traces. Accumulating traces add up each time
a state is visited, whereas replacing traces are reset to one, and dutch traces do something
in-between, depending on ↵ (here we show them for ↵ = 0.5). In all cases the traces decay
at a rate of �� per step; here we show �� = 0.8 such that the traces have a time constant
of approximately 5 steps. For a sense of step length, note that the last four visits are on
successive steps.
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where we have used the shorthand xt
.
= x(St), �t is defined as in TD(�) (12.6), and zt is defined by

zt
.
= ��zt�1 +

�
1� ↵��z>t�1xt

�
xt. (12.16)

This algorithm has been proven to produce exactly the same sequence of weight vectors, wt, 0  t  T ,
as the on-line �-return algorithm (van Siejen et al. 2016). Thus the results on the random walk task
on the left of Figure 12.8 are also its results on that task. Now, however, the algorithm is much
less expensive. The memory requirements of true online TD(�) are identical to those of conventional
TD(�), while the per-step computation is increased by about 50% (there is one more inner product in
the eligibility-trace update). Overall, the per-step computational complexity remains of O(d), the same
as TD(�). Pseudocode for the complete algorithm is given in the box.

True Online TD(�) for estimating w>x ⇡ v⇡

Input: the policy ⇡ to be evaluated

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize state and obtain initial feature vector x
z 0 (an d-dimensional vector)
Vold  0 (a scalar temporary variable)
Repeat (for each step of episode):
| Choose A ⇠ ⇡
| Take action A, observe R, x0 (feature vector of the next state)
| V  w>x
| V 0  w>x0

| �  R+ �V 0 � V
| z ��z+

�
1� ↵��z>x

�
x

| w w + ↵(� + V � Vold)z� ↵(V � Vold)x
| Vold  V 0

| x x0

until x0 = 0 (signaling arrival at a terminal state)

The eligibility trace (12.16) used in true online TD(�) is called a dutch trace to distinguish it from
the trace (12.5) used in TD(�), which is called an accumulating trace. Earlier work often used a third
kind of trace called the replacing trace, defined only for the tabular case or for binary feature vectors
such as those produced by tile coding. The replacing trace is defined on a component-by-component
basis depending on whether the component of the feature vector was 1 or 0:

zi,t
.
=

⇢
1 if xi,t = 1
��zi,t�1 otherwise.

(12.17)

Nowadays, use of the replacing trace is deprecated; a dutch trace should almost always be used instead.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:

w0
0

w1
0 w1

1

w2
0 w2

1 w2
2

w3
0 w3

1 w3
2 w3

3
...

...
...

...
. . .

wT
0 wT

1 wT
2 wT

3 · · · wT
T

(12.14)

One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:

wt+1
.
= wt + ↵�tzt + ↵

�
w>

t xt � w>
t�1xt

�
(zt � xt), (12.15)
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where we have used the shorthand xt
.
= x(St), �t is defined as in TD(�) (12.6), and zt is defined by

zt
.
= ��zt�1 +

�
1� ↵��z>t�1xt

�
xt. (12.16)

This algorithm has been proven to produce exactly the same sequence of weight vectors, wt, 0  t  T ,
as the on-line �-return algorithm (van Siejen et al. 2016). Thus the results on the random walk task
on the left of Figure 12.8 are also its results on that task. Now, however, the algorithm is much
less expensive. The memory requirements of true online TD(�) are identical to those of conventional
TD(�), while the per-step computation is increased by about 50% (there is one more inner product in
the eligibility-trace update). Overall, the per-step computational complexity remains of O(d), the same
as TD(�). Pseudocode for the complete algorithm is given in the box.

True Online TD(�) for estimating w>x ⇡ v⇡

Input: the policy ⇡ to be evaluated

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize state and obtain initial feature vector x
z 0 (an d-dimensional vector)
Vold  0 (a scalar temporary variable)
Repeat (for each step of episode):
| Choose A ⇠ ⇡
| Take action A, observe R, x0 (feature vector of the next state)
| V  w>x
| V 0  w>x0

| �  R+ �V 0 � V
| z ��z+

�
1� ↵��z>x

�
x

| w w + ↵(� + V � Vold)z� ↵(V � Vold)x
| Vold  V 0

| x x0

until x0 = 0 (signaling arrival at a terminal state)

The eligibility trace (12.16) used in true online TD(�) is called a dutch trace to distinguish it from
the trace (12.5) used in TD(�), which is called an accumulating trace. Earlier work often used a third
kind of trace called the replacing trace, defined only for the tabular case or for binary feature vectors
such as those produced by tile coding. The replacing trace is defined on a component-by-component
basis depending on whether the component of the feature vector was 1 or 0:

zi,t
.
=

⇢
1 if xi,t = 1
��zi,t�1 otherwise.

(12.17)

Nowadays, use of the replacing trace is deprecated; a dutch trace should almost always be used instead.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:

wt+1
.
= wt + ↵�tzt + ↵

�
w>

t xt � w>
t�1xt

�
(zt � xt), (12.15)
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where we have used the shorthand xt
.
= x(St), �t is defined as in TD(�) (12.6), and zt is defined by

zt
.
= ��zt�1 +

�
1� ↵��z>t�1xt

�
xt. (12.16)

This algorithm has been proven to produce exactly the same sequence of weight vectors, wt, 0  t  T ,
as the on-line �-return algorithm (van Siejen et al. 2016). Thus the results on the random walk task
on the left of Figure 12.8 are also its results on that task. Now, however, the algorithm is much
less expensive. The memory requirements of true online TD(�) are identical to those of conventional
TD(�), while the per-step computation is increased by about 50% (there is one more inner product in
the eligibility-trace update). Overall, the per-step computational complexity remains of O(d), the same
as TD(�). Pseudocode for the complete algorithm is given in the box.

True Online TD(�) for estimating w>x ⇡ v⇡

Input: the policy ⇡ to be evaluated

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize state and obtain initial feature vector x
z 0 (an d-dimensional vector)
Vold  0 (a scalar temporary variable)
Repeat (for each step of episode):
| Choose A ⇠ ⇡
| Take action A, observe R, x0 (feature vector of the next state)
| V  w>x
| V 0  w>x0

| �  R+ �V 0 � V
| z ��z+

�
1� ↵��z>x

�
x

| w w + ↵(� + V � Vold)z� ↵(V � Vold)x
| Vold  V 0

| x x0

until x0 = 0 (signaling arrival at a terminal state)

The eligibility trace (12.16) used in true online TD(�) is called a dutch trace to distinguish it from
the trace (12.5) used in TD(�), which is called an accumulating trace. Earlier work often used a third
kind of trace called the replacing trace, defined only for the tabular case or for binary feature vectors
such as those produced by tile coding. The replacing trace is defined on a component-by-component
basis depending on whether the component of the feature vector was 1 or 0:

zi,t
.
=

⇢
1 if xi,t = 1
��zi,t�1 otherwise.

(12.17)

Nowadays, use of the replacing trace is deprecated; a dutch trace should almost always be used instead.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:

wt+1
.
= wt + ↵�tzt + ↵

�
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t xt � w>
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Figure 12.9: Sarsa(�)’s backup diagram. Compare with Figure 12.1.

pair, and so on. A final update is based on the complete return. The weighting of each n-step update
in the �-return is just as in TD(�) and the �-return algorithm (12.3).

The temporal-di↵erence method for action values, known as Sarsa(�), approximates this forward
view. It has the same update rule as given earlier for TD(�):

wt+1
.
= wt + ↵�tzt, (12.7)

except, naturally, using the action-value form of the TD error:

�t
.
= Rt+1 + �q̂(St+1, At+1,wt)� q̂(St, At,wt), (12.22)

and the action-value form of the eligibility trace:

z�1
.
= 0,

zt
.
= ��zt�1 +rq̂(St, At,wt), 0  t  T

(12.23)

(or, alternatively, the replacing trace given by (12.17)). Complete pseudocode for Sarsa(�) with linear
function approximation, binary features, and either accumulating or replacing traces is given in the box
on the next page. This pseudocode highlights a few optimizations possible in the special case of binary
features (features are either active (=1) or inactive (=0).
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pair, and so on. A final update is based on the complete return. The weighting of each n-step update
in the �-return is just as in TD(�) and the �-return algorithm (12.3).

The temporal-di↵erence method for action values, known as Sarsa(�), approximates this forward
view. It has the same update rule as given earlier for TD(�):

wt+1
.
= wt + ↵�tzt, (12.7)

except, naturally, using the action-value form of the TD error:

�t
.
= Rt+1 + �q̂(St+1, At+1,wt) � q̂(St, At,wt), (12.22)

and the action-value form of the eligibility trace:

z�1
.
= 0,

zt
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= ��zt�1 + rq̂(St, At,wt), 0  t  T

(12.23)

(or, alternatively, the replacing trace given by (12.17)). Complete pseudocode for Sarsa(�) with linear
function approximation, binary features, and either accumulating or replacing traces is given in the box
on the next page. This pseudocode highlights a few optimizations possible in the special case of binary
features (features are either active (=1) or inactive (=0).
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pair, and so on. A final update is based on the complete return. The weighting of each n-step update
in the �-return is just as in TD(�) and the �-return algorithm (12.3).

The temporal-di↵erence method for action values, known as Sarsa(�), approximates this forward
view. It has the same update rule as given earlier for TD(�):
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except, naturally, using the action-value form of the TD error:
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= Rt+1 + �q̂(St+1, At+1,wt) � q̂(St, At,wt), (12.22)

and the action-value form of the eligibility trace:

z�1
.
= 0,

zt
.
= ��zt�1 + rq̂(St, At,wt), 0  t  T
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(or, alternatively, the replacing trace given by (12.17)). Complete pseudocode for Sarsa(�) with linear
function approximation, binary features, and either accumulating or replacing traces is given in the box
on the next page. This pseudocode highlights a few optimizations possible in the special case of binary
features (features are either active (=1) or inactive (=0).
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with tile-coding linear function approximation
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Example 12.2: Sarsa(�) on Mountain Car Figure 12.10 (left) shows results with Sarsa(�) on
the Mountain Car task introduced in Example 10.1. The function approximation, action selection, and
environmental details were exactly as in Chapter 10, and thus it is appropriate to numerically compare
these results with the Chapter 10 results for n-step Sarsa (right side of the figure). The earlier results
varied the update length n whereas here for Sarsa(�) we vary the trace parameter �, which plays a
similar role. The fading-trace bootstrapping strategy of Sarsa(�) appears to result in more e�cient
learning on this problem.
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Figure 12.10: Early performance on the Mountain Car task of Sarsa(�) with replacing traces and n-step Sarsa
(copied from Figure 10.4) as a function of the step size, ↵.

There is also an action-value version of our ideal TD method, the online �-return algorithm presented
in Section 12.4. Everything in that section goes through without change other than to use the action-
value form of the n-step return given at the beginning of this section. In the case of linear function
approximation, the ideal algorithm again has an exact, e�cient O(d) implementation, called True Online
Sarsa(�). The analyses in Sections 12.5 and 12.6 carry through without change other than to use state–
action feature vectors xt = x(St, At) instead of state feature vectors xt = x(St). The pseudocode for
this algorithm is given in the box on the next page. Figure 12.11 compares the performance of various
versions of Sarsa(�) on the Mountain Car example.
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Conclusions regarding Eligibility Traces

Provide an efficient, incremental way to combine MC and TD
Includes advantages of MC (better when non-Markov)
Includes advantages of TD (faster, comp. congenial)

True online TD(λ) is new and best
Is exactly equivalent to online λ-return algorithm

Three varieties of traces: accumulating, dutch, (replacing)
Traces for prediction and on-policy control
Trace methods often perform better than n-step methods
Traces do have a small cost in computation (≈x2)



True online TD(λ) performs best of all
12.4. TRUE ONLINE TD(�) 267

RMS error
over first

10 episodes

Off-line λ-return algorithm

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

On-line λ-return algorithm
= true online TD(λ)

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975

λ=.99

λ=1

λ=.95

Figure 12.7: 19-state Random walk results (Example 7.1): Performance of online and o↵-
line �-return algorithms. The performance measure here is the MSVE at the end of the
episode, which should be the best case for the o↵-line algorithm. Nevertheless, the on-line
algorithm performs subtlely better. For comparison, the � = 0 line is the same for both
methods.

algorithm because it is “truer” to the idea of the online TD(�) algorithm, truer even
than the TD(�) algorithm itself.

The derivation of true on-line TD(�) is a little too complex to present here (see
the next section and the appendix to the paper by van Seijen et al., in press) but its
strategy is simple. The sequence of weight vectors produce by the on-line �-return
algorithm can be arranged in a triangle:
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0

✓1
0 ✓1

1

✓2
0 ✓2

1 ✓2
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✓3
0 ✓3

1 ✓3
2 ✓3

3
...
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...
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. . .

✓T
0 ✓T

1 ✓T
2 ✓T

3 · · · ✓T
T

(12.10)

One row of this triangle is produced on each time step. Really only the weight vectors
on the diagonal, the ✓t

t, need to be produced by the algorithm. The first, ✓0
0, is the

input, the last, ✓T
T , is the output, and each weight vector along the way, ✓t

t, plays a
role in bootstrapping in the n-step returns of the updates. In the final algorithm the
diagonal weight vectors are renamed without a superscript, ✓t

.
= ✓t

t. The strategy
then is to find a compact, e�cient way of computing each ✓t

t from the one before. If
this is done, for the linear case in which v̂(s,✓) = ✓>�(s), then we arrive at the true
online TD(�) algorithm:

✓t+1
.
= ✓t + ↵�tet + ↵

⇣
✓>
t �t � ✓>

t�1�t

⌘
(et � �t), (12.11)

where we have used the shorthand �t
.
= �(St), �t is defined as in TD(�) (12.6), and

Tabular 19-state random walk task

True online TD(λ)
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where we have used the shorthand xt
.
= x(St), �t is defined as in TD(�) (12.6), and zt is defined by

zt
.
= ��zt�1 +

�
1� ↵��z>t�1xt

�
xt. (12.16)

This algorithm has been proven to produce exactly the same sequence of weight vectors, wt, 0  t  T ,
as the on-line �-return algorithm (van Siejen et al. 2016). Thus the results on the random walk task
on the left of Figure 12.8 are also its results on that task. Now, however, the algorithm is much
less expensive. The memory requirements of true online TD(�) are identical to those of conventional
TD(�), while the per-step computation is increased by about 50% (there is one more inner product in
the eligibility-trace update). Overall, the per-step computational complexity remains of O(d), the same
as TD(�). Pseudocode for the complete algorithm is given in the box.

True Online TD(�) for estimating w>x ⇡ v⇡

Input: the policy ⇡ to be evaluated

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize state and obtain initial feature vector x
z 0 (an d-dimensional vector)
Vold  0 (a scalar temporary variable)
Repeat (for each step of episode):
| Choose A ⇠ ⇡
| Take action A, observe R, x0 (feature vector of the next state)
| V  w>x
| V 0  w>x0

| �  R+ �V 0 � V
| z ��z+

�
1� ↵��z>x

�
x

| w w + ↵(� + V � Vold)z� ↵(V � Vold)x
| Vold  V 0

| x x0

until x0 = 0 (signaling arrival at a terminal state)

The eligibility trace (12.16) used in true online TD(�) is called a dutch trace to distinguish it from
the trace (12.5) used in TD(�), which is called an accumulating trace. Earlier work often used a third
kind of trace called the replacing trace, defined only for the tabular case or for binary feature vectors
such as those produced by tile coding. The replacing trace is defined on a component-by-component
basis depending on whether the component of the feature vector was 1 or 0:

zi,t
.
=

⇢
1 if xi,t = 1
��zi,t�1 otherwise.

(12.17)

Nowadays, use of the replacing trace is deprecated; a dutch trace should almost always be used instead.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:

wt+1
.
= wt + ↵�tzt + ↵

�
w>

t xt � w>
t�1xt

�
(zt � xt), (12.15)
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where we have used the shorthand xt
.
= x(St), �t is defined as in TD(�) (12.6), and zt is defined by

zt
.
= ��zt�1 +

�
1� ↵��z>t�1xt

�
xt. (12.16)

This algorithm has been proven to produce exactly the same sequence of weight vectors, wt, 0  t  T ,
as the on-line �-return algorithm (van Siejen et al. 2016). Thus the results on the random walk task
on the left of Figure 12.8 are also its results on that task. Now, however, the algorithm is much
less expensive. The memory requirements of true online TD(�) are identical to those of conventional
TD(�), while the per-step computation is increased by about 50% (there is one more inner product in
the eligibility-trace update). Overall, the per-step computational complexity remains of O(d), the same
as TD(�). Pseudocode for the complete algorithm is given in the box.

True Online TD(�) for estimating w>x ⇡ v⇡

Input: the policy ⇡ to be evaluated

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize state and obtain initial feature vector x
z 0 (an d-dimensional vector)
Vold  0 (a scalar temporary variable)
Repeat (for each step of episode):
| Choose A ⇠ ⇡
| Take action A, observe R, x0 (feature vector of the next state)
| V  w>x
| V 0  w>x0

| �  R+ �V 0 � V
| z ��z+

�
1� ↵��z>x

�
x

| w w + ↵(� + V � Vold)z� ↵(V � Vold)x
| Vold  V 0

| x x0

until x0 = 0 (signaling arrival at a terminal state)

The eligibility trace (12.16) used in true online TD(�) is called a dutch trace to distinguish it from
the trace (12.5) used in TD(�), which is called an accumulating trace. Earlier work often used a third
kind of trace called the replacing trace, defined only for the tabular case or for binary feature vectors
such as those produced by tile coding. The replacing trace is defined on a component-by-component
basis depending on whether the component of the feature vector was 1 or 0:

zi,t
.
=

⇢
1 if xi,t = 1
��zi,t�1 otherwise.

(12.17)

Nowadays, use of the replacing trace is deprecated; a dutch trace should almost always be used instead.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:

w0
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w1
0 w1
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0 w2

1 w2
2

w3
0 w3

1 w3
2 w3

3
...

...
...

...
. . .

wT
0 wT

1 wT
2 wT

3 · · · wT
T

(12.14)

One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:

wt+1
.
= wt + ↵�tzt + ↵

�
w>

t xt � w>
t�1xt

�
(zt � xt), (12.15)
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where we have used the shorthand xt
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= x(St), �t is defined as in TD(�) (12.6), and zt is defined by
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This algorithm has been proven to produce exactly the same sequence of weight vectors, wt, 0  t  T ,
as the on-line �-return algorithm (van Siejen et al. 2016). Thus the results on the random walk task
on the left of Figure 12.8 are also its results on that task. Now, however, the algorithm is much
less expensive. The memory requirements of true online TD(�) are identical to those of conventional
TD(�), while the per-step computation is increased by about 50% (there is one more inner product in
the eligibility-trace update). Overall, the per-step computational complexity remains of O(d), the same
as TD(�). Pseudocode for the complete algorithm is given in the box.

True Online TD(�) for estimating w>x ⇡ v⇡

Input: the policy ⇡ to be evaluated

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):

Initialize state and obtain initial feature vector x
z 0 (an d-dimensional vector)
Vold  0 (a scalar temporary variable)
Repeat (for each step of episode):
| Choose A ⇠ ⇡
| Take action A, observe R, x0 (feature vector of the next state)
| V  w>x
| V 0  w>x0

| �  R+ �V 0 � V
| z ��z+
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| w w + ↵(� + V � Vold)z� ↵(V � Vold)x
| Vold  V 0

| x x0

until x0 = 0 (signaling arrival at a terminal state)

The eligibility trace (12.16) used in true online TD(�) is called a dutch trace to distinguish it from
the trace (12.5) used in TD(�), which is called an accumulating trace. Earlier work often used a third
kind of trace called the replacing trace, defined only for the tabular case or for binary feature vectors
such as those produced by tile coding. The replacing trace is defined on a component-by-component
basis depending on whether the component of the feature vector was 1 or 0:

zi,t
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=

⇢
1 if xi,t = 1
��zi,t�1 otherwise.

(12.17)

Nowadays, use of the replacing trace is deprecated; a dutch trace should almost always be used instead.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:
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That is, the asymptotic error is no more than 1���
1�� times the smallest possible error. As � approaches

1, the bound approaches the minimum error (and it is loosest at �=0). In practice, however, �=1 is
often the poorest choice, as will be illustrated later in Figure 12.14.

Exercise 12.3 Some insight into how TD(�) can closely approximate the o↵-line �-return algorithm
can be gained by seeing that the latter’s error term (from (12.4)) can be written as the sum of TD
errors (12.6) for a single fixed w. Show this, following the pattern of (6.6), and using the recursive
relationship for the �-return you obtained in Exercise 12.1. ⇤
⇤Exercise 12.4 Although online TD(�) is not equivalent to the �-return algorithm, perhaps there’s
a slightly di↵erent online TD method that would maintain equivalence. One idea is to define the TD
error instead as µ0

t
.
= Rt+1+�Vt(St+1)�Vt�1(St). Show that in this case the modified TD(�) algorithm

would then achieve exactly

�Vt(St) = ↵
h
G�

t � Vt�1(St)
i
,

even in the case of on-line updating with large ↵. In what ways might this modified TD(�) be better
or worse than the conventional one described in the text? Describe an experiment to assess the relative
merits of the two algorithms. ⇤

12.3 n-step Truncated �-return Methods

The o↵-line �-return algorithm is an important ideal, but it’s of limited utility because it uses the
�-return (12.2), which is not known until the end of the episode. In the continuing case, the �-return
is technically never known, as it depends on n-step returns for arbitrarily large n, and thus on rewards
arbitrarily far in the future. However, the dependence gets weaker for long-delayed rewards, falling by
�� for each step of delay. A natural approximation then would be to truncate the sequence after some
number of steps. Our existing notion of n-step returns provides a natural way to do this in which the
missing rewards are replaced with estimated values.

In general, we define the truncated �-return for time t, given data only up to some later horizon, h,
as

G�
t:h

.
= (1� �)

h�t�1X

n=1

�n�1Gt:t+n + �h�t�1Gt:h, 0  t < h  T. (12.9)

If you compare this equation with the �-return (12.3), it is clear that the horizon h is playing the same
role as was previously played by T , the time of termination. Whereas in the �-return there is a residual
weighting given to the true return, here it is given to the longest available n-step return, the (h�t)-step
return (Figure 12.2).

The truncated �-return immediately gives rise to a family of n-step �-return algorithms similar to
the n-step methods of Chapter 7. In all these algorithms, updates are delayed by n steps and only take
into account the first n rewards, but now all the k-step returns are included for 1  k  n (whereas the
earlier n-step algorithms used only the n-step return), weighted geometrically as in Figure 12.2. In the
state-value case, this family of algorithms is known as truncated TD(�), or TTD(�). The compound
backup diagram, shown in Figure 12.7, is similar to that for TD(�) (Figure 12.1) except that the longest
component update is at most n steps rather than always going all the way to the end of the episode.
TTD(�) is defined by (cf. (9.15)):

wt+n
.
= wt+n�1 + ↵

⇥
G�

t:t+n � v̂(St,wt+n�1)
⇤
rv̂(St,wt+n�1), 0  t < T. (12.10)

This algorithm can be implemented e�ciently so that per-step computation does not scale with n
(though of course memory must). Much as in n-step TD methods, no updates are made on the first

The online λ-return alg uses a truncated λ-return  
as its target
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Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it

horizon h = t +3

There is a separate
w sequence for each h!
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Let us step through how this target could ideally be used if computational complexity was not an
issue. The episode begins with an estimate at time 0 using the weights w0 from the end of the previous
episode. Learning begins when the data horizon is extended to time step 1. The target for the estimate
at step 0, given the data up to horizon 1, could only be the one-step return G0:1, which includes R1

and bootstraps from the estimate v̂(S1,w0). Note that this is exactly what G�
0:1 is, with the sum in

the first term of (12.9) degenerating to zero. Using this update target, we construct w1. Then, after
advancing the data horizon to step 2, what do we do? We have new data in the form of R2 and S2, as
well as the new w1, so now we can construct a better update target G�

0:2 for the first update from S0 as
well as a better update target G�

0:2 for the second update from S1. We perform both of these updates
in sequence to produce w2. Now we advance the horizon to step 3 and repeat, going all the way back
to produce three new updates and finally w3, and so on.

This conceptual algorithm involves multiple passes over the episode, one at each horizon, each gen-
erating a di↵erent sequence of weight vectors. To describe it clearly we have to distinguish between the
weight vectors computed at the di↵erent horizons. Let us use wh

t to denote the weights used to generate
the value at time t in the sequence at horizon h. The first weight vector wh

0 in each sequence is that
inherited from the previous episode, and the last weight vector wh

h in each sequence defines the ultimate
weight-vector sequence of the algorithm. At the final horizon h = T we obtain the final weights wT

T

which will be passed on to form the initial weights of the next episode. With these conventions, the
three first sequences described in the previous paragraph can be given explicitly:

h = 1 : w1
1
.
= w1

0 + ↵
⇥
G�

0:1 � v̂(S0,w
1
0)
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1
0),
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.
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⇥
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rv̂(S2,w
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2).

The general form for the update is

wh
t+1

.
= wh

t + ↵
⇥
G�

t:h � v̂(St,w
h
t )
⇤

rv̂(St,w
h
t ), 0  t < h  T. (12.13)

This update, together with wt
.
= wt

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vectorwt at each step t during
an episode, using only information available at time t. It’s main drawback is that it is computationally
complex, passing over the entire episode so far on every step. Note that it is strictly more complex
than the o↵-line �-return algorithm, which passes through all the steps at the time of termination but
does not make any updates during the episode. In return, the online algorithm can be expected to
perform better than the o↵-line one, not only during the episode when it makes an update while the
o↵-line algorithm makes none, but also at the end of the episode because the weight vector used in
bootstrapping (in G�

t:h) has had a greater number of informative updates. This e↵ect can be seen if one
looks carefully at Figure 12.8, which compares the two algorithms on the 19-state random walk task.
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Let us step through how this target could ideally be used if computational complexity was not an
issue. The episode begins with an estimate at time 0 using the weights w0 from the end of the previous
episode. Learning begins when the data horizon is extended to time step 1. The target for the estimate
at step 0, given the data up to horizon 1, could only be the one-step return G0:1, which includes R1

and bootstraps from the estimate v̂(S1,w0). Note that this is exactly what G�
0:1 is, with the sum in

the first term of (12.9) degenerating to zero. Using this update target, we construct w1. Then, after
advancing the data horizon to step 2, what do we do? We have new data in the form of R2 and S2, as
well as the new w1, so now we can construct a better update target G�

0:2 for the first update from S0 as
well as a better update target G�

0:2 for the second update from S1. We perform both of these updates
in sequence to produce w2. Now we advance the horizon to step 3 and repeat, going all the way back
to produce three new updates and finally w3, and so on.

This conceptual algorithm involves multiple passes over the episode, one at each horizon, each gen-
erating a di↵erent sequence of weight vectors. To describe it clearly we have to distinguish between the
weight vectors computed at the di↵erent horizons. Let us use wh
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inherited from the previous episode, and the last weight vector wh

h in each sequence defines the ultimate
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three first sequences described in the previous paragraph can be given explicitly:

h = 1 : w1
1
.
= w1

0 + ↵
⇥
G�

0:1 � v̂(S0,w
1
0)
⇤

rv̂(S0,w
1
0),

h = 2 : w2
1
.
= w2

0 + ↵
⇥
G�

0:2 � v̂(S0,w
2
0)
⇤

rv̂(S0,w
2
0),

w2
2
.
= w2

1 + ↵
⇥
G�

1:2 � v̂(S1,w
2
1)
⇤

rv̂(S1,w
2
1),

h = 3 : w3
1
.
= w3

0 + ↵
⇥
G�

0:3 � v̂(S0,w
3
0)
⇤

rv̂(S0,w
3
0),

w3
2
.
= w3

1 + ↵
⇥
G�

1:3 � v̂(S1,w
3
1)
⇤

rv̂(S1,w
3
1),

w3
3
.
= w3

2 + ↵
⇥
G�

2:3 � v̂(S2,w
3
2)
⇤

rv̂(S2,w
3
2).

The general form for the update is

wh
t+1

.
= wh

t + ↵
⇥
G�

t:h � v̂(St,w
h
t )
⇤

rv̂(St,w
h
t ), 0  t < h  T. (12.13)

This update, together with wt
.
= wt

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vectorwt at each step t during
an episode, using only information available at time t. It’s main drawback is that it is computationally
complex, passing over the entire episode so far on every step. Note that it is strictly more complex
than the o↵-line �-return algorithm, which passes through all the steps at the time of termination but
does not make any updates during the episode. In return, the online algorithm can be expected to
perform better than the o↵-line one, not only during the episode when it makes an update while the
o↵-line algorithm makes none, but also at the end of the episode because the weight vector used in
bootstrapping (in G�

t:h) has had a greater number of informative updates. This e↵ect can be seen if one
looks carefully at Figure 12.8, which compares the two algorithms on the 19-state random walk task.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:
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Let us step through how this target could ideally be used if computational complexity was not an
issue. The episode begins with an estimate at time 0 using the weights w0 from the end of the previous
episode. Learning begins when the data horizon is extended to time step 1. The target for the estimate
at step 0, given the data up to horizon 1, could only be the one-step return G0:1, which includes R1

and bootstraps from the estimate v̂(S1,w0). Note that this is exactly what G�
0:1 is, with the sum in

the first term of (12.9) degenerating to zero. Using this update target, we construct w1. Then, after
advancing the data horizon to step 2, what do we do? We have new data in the form of R2 and S2, as
well as the new w1, so now we can construct a better update target G�

0:2 for the first update from S0 as
well as a better update target G�

0:2 for the second update from S1. We perform both of these updates
in sequence to produce w2. Now we advance the horizon to step 3 and repeat, going all the way back
to produce three new updates and finally w3, and so on.

This conceptual algorithm involves multiple passes over the episode, one at each horizon, each gen-
erating a di↵erent sequence of weight vectors. To describe it clearly we have to distinguish between the
weight vectors computed at the di↵erent horizons. Let us use wh

t to denote the weights used to generate
the value at time t in the sequence at horizon h. The first weight vector wh

0 in each sequence is that
inherited from the previous episode, and the last weight vector wh

h in each sequence defines the ultimate
weight-vector sequence of the algorithm. At the final horizon h = T we obtain the final weights wT

T

which will be passed on to form the initial weights of the next episode. With these conventions, the
three first sequences described in the previous paragraph can be given explicitly:

h = 1 : w1
1
.
= w1

0 + ↵
⇥
G�

0:1 � v̂(S0,w
1
0)
⇤

rv̂(S0,w
1
0),

h = 2 : w2
1
.
= w2

0 + ↵
⇥
G�

0:2 � v̂(S0,w
2
0)
⇤

rv̂(S0,w
2
0),

w2
2
.
= w2

1 + ↵
⇥
G�

1:2 � v̂(S1,w
2
1)
⇤

rv̂(S1,w
2
1),

h = 3 : w3
1
.
= w3

0 + ↵
⇥
G�

0:3 � v̂(S0,w
3
0)
⇤

rv̂(S0,w
3
0),

w3
2
.
= w3

1 + ↵
⇥
G�

1:3 � v̂(S1,w
3
1)
⇤

rv̂(S1,w
3
1),

w3
3
.
= w3

2 + ↵
⇥
G�

2:3 � v̂(S2,w
3
2)
⇤

rv̂(S2,w
3
2).

The general form for the update is

wh
t+1

.
= wh

t + ↵
⇥
G�

t:h � v̂(St,w
h
t )
⇤

rv̂(St,w
h
t ), 0  t < h  T. (12.13)

This update, together with wt
.
= wt

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vectorwt at each step t during
an episode, using only information available at time t. It’s main drawback is that it is computationally
complex, passing over the entire episode so far on every step. Note that it is strictly more complex
than the o↵-line �-return algorithm, which passes through all the steps at the time of termination but
does not make any updates during the episode. In return, the online algorithm can be expected to
perform better than the o↵-line one, not only during the episode when it makes an update while the
o↵-line algorithm makes none, but also at the end of the episode because the weight vector used in
bootstrapping (in G�

t:h) has had a greater number of informative updates. This e↵ect can be seen if one
looks carefully at Figure 12.8, which compares the two algorithms on the 19-state random walk task.
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Let us step through how this target could ideally be used if computational complexity was not an
issue. The episode begins with an estimate at time 0 using the weights w0 from the end of the previous
episode. Learning begins when the data horizon is extended to time step 1. The target for the estimate
at step 0, given the data up to horizon 1, could only be the one-step return G0:1, which includes R1

and bootstraps from the estimate v̂(S1,w0). Note that this is exactly what G�
0:1 is, with the sum in

the first term of (12.9) degenerating to zero. Using this update target, we construct w1. Then, after
advancing the data horizon to step 2, what do we do? We have new data in the form of R2 and S2, as
well as the new w1, so now we can construct a better update target G�

0:2 for the first update from S0 as
well as a better update target G�

0:2 for the second update from S1. We perform both of these updates
in sequence to produce w2. Now we advance the horizon to step 3 and repeat, going all the way back
to produce three new updates and finally w3, and so on.

This conceptual algorithm involves multiple passes over the episode, one at each horizon, each gen-
erating a di↵erent sequence of weight vectors. To describe it clearly we have to distinguish between the
weight vectors computed at the di↵erent horizons. Let us use wh

t to denote the weights used to generate
the value at time t in the sequence at horizon h. The first weight vector wh

0 in each sequence is that
inherited from the previous episode, and the last weight vector wh

h in each sequence defines the ultimate
weight-vector sequence of the algorithm. At the final horizon h = T we obtain the final weights wT

T

which will be passed on to form the initial weights of the next episode. With these conventions, the
three first sequences described in the previous paragraph can be given explicitly:
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The general form for the update is

wh
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t ), 0  t < h  T. (12.13)

This update, together with wt
.
= wt

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vectorwt at each step t during
an episode, using only information available at time t. It’s main drawback is that it is computationally
complex, passing over the entire episode so far on every step. Note that it is strictly more complex
than the o↵-line �-return algorithm, which passes through all the steps at the time of termination but
does not make any updates during the episode. In return, the online algorithm can be expected to
perform better than the o↵-line one, not only during the episode when it makes an update while the
o↵-line algorithm makes none, but also at the end of the episode because the weight vector used in
bootstrapping (in G�

t:h) has had a greater number of informative updates. This e↵ect can be seen if one
looks carefully at Figure 12.8, which compares the two algorithms on the 19-state random walk task.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:
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The online λ-return algorithm
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computes just the 
diagonal, cheaply
(for linear FA)

There is a separate
w sequence for each h!

244 CHAPTER 12. ELIGIBILITY TRACES

Let us step through how this target could ideally be used if computational complexity was not an
issue. The episode begins with an estimate at time 0 using the weights w0 from the end of the previous
episode. Learning begins when the data horizon is extended to time step 1. The target for the estimate
at step 0, given the data up to horizon 1, could only be the one-step return G0:1, which includes R1

and bootstraps from the estimate v̂(S1,w0). Note that this is exactly what G�
0:1 is, with the sum in

the first term of (12.9) degenerating to zero. Using this update target, we construct w1. Then, after
advancing the data horizon to step 2, what do we do? We have new data in the form of R2 and S2, as
well as the new w1, so now we can construct a better update target G�

0:2 for the first update from S0 as
well as a better update target G�

0:2 for the second update from S1. We perform both of these updates
in sequence to produce w2. Now we advance the horizon to step 3 and repeat, going all the way back
to produce three new updates and finally w3, and so on.

This conceptual algorithm involves multiple passes over the episode, one at each horizon, each gen-
erating a di↵erent sequence of weight vectors. To describe it clearly we have to distinguish between the
weight vectors computed at the di↵erent horizons. Let us use wh

t to denote the weights used to generate
the value at time t in the sequence at horizon h. The first weight vector wh

0 in each sequence is that
inherited from the previous episode, and the last weight vector wh

h in each sequence defines the ultimate
weight-vector sequence of the algorithm. At the final horizon h = T we obtain the final weights wT

T

which will be passed on to form the initial weights of the next episode. With these conventions, the
three first sequences described in the previous paragraph can be given explicitly:
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The general form for the update is

wh
t+1

.
= wh

t + ↵
⇥
G�

t:h � v̂(St,w
h
t )
⇤

rv̂(St,w
h
t ), 0  t < h  T. (12.13)

This update, together with wt
.
= wt

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vectorwt at each step t during
an episode, using only information available at time t. It’s main drawback is that it is computationally
complex, passing over the entire episode so far on every step. Note that it is strictly more complex
than the o↵-line �-return algorithm, which passes through all the steps at the time of termination but
does not make any updates during the episode. In return, the online algorithm can be expected to
perform better than the o↵-line one, not only during the episode when it makes an update while the
o↵-line algorithm makes none, but also at the end of the episode because the weight vector used in
bootstrapping (in G�

t:h) has had a greater number of informative updates. This e↵ect can be seen if one
looks carefully at Figure 12.8, which compares the two algorithms on the 19-state random walk task.
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Let us step through how this target could ideally be used if computational complexity was not an
issue. The episode begins with an estimate at time 0 using the weights w0 from the end of the previous
episode. Learning begins when the data horizon is extended to time step 1. The target for the estimate
at step 0, given the data up to horizon 1, could only be the one-step return G0:1, which includes R1

and bootstraps from the estimate v̂(S1,w0). Note that this is exactly what G�
0:1 is, with the sum in

the first term of (12.9) degenerating to zero. Using this update target, we construct w1. Then, after
advancing the data horizon to step 2, what do we do? We have new data in the form of R2 and S2, as
well as the new w1, so now we can construct a better update target G�

0:2 for the first update from S0 as
well as a better update target G�

0:2 for the second update from S1. We perform both of these updates
in sequence to produce w2. Now we advance the horizon to step 3 and repeat, going all the way back
to produce three new updates and finally w3, and so on.

This conceptual algorithm involves multiple passes over the episode, one at each horizon, each gen-
erating a di↵erent sequence of weight vectors. To describe it clearly we have to distinguish between the
weight vectors computed at the di↵erent horizons. Let us use wh

t to denote the weights used to generate
the value at time t in the sequence at horizon h. The first weight vector wh

0 in each sequence is that
inherited from the previous episode, and the last weight vector wh

h in each sequence defines the ultimate
weight-vector sequence of the algorithm. At the final horizon h = T we obtain the final weights wT

T

which will be passed on to form the initial weights of the next episode. With these conventions, the
three first sequences described in the previous paragraph can be given explicitly:
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The general form for the update is
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This update, together with wt
.
= wt

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vectorwt at each step t during
an episode, using only information available at time t. It’s main drawback is that it is computationally
complex, passing over the entire episode so far on every step. Note that it is strictly more complex
than the o↵-line �-return algorithm, which passes through all the steps at the time of termination but
does not make any updates during the episode. In return, the online algorithm can be expected to
perform better than the o↵-line one, not only during the episode when it makes an update while the
o↵-line algorithm makes none, but also at the end of the episode because the weight vector used in
bootstrapping (in G�

t:h) has had a greater number of informative updates. This e↵ect can be seen if one
looks carefully at Figure 12.8, which compares the two algorithms on the 19-state random walk task.
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Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and o↵-line �-return algo-
rithms. The performance measure here is the VE at the end of the episode, which should be the best case for
the o↵-line algorithm. Nevertheless, the on-line algorithm performs subtlely better. For comparison, the �=0
line is the same for both methods.

12.5 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-di↵erence
algorithm. It is an ideal which online TD(�) only approximates. As presented, however, the on-line
�-return algorithm is very complex. Is there a way to invert this forward-view algorithm to produce
an e�cient backward-view algorithm using eligibility traces? It turns out that there is indeed an
exact computationally congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�) algorithm because it
is “truer” to the ideal of the online �-return algorithm than the TD(�) algorithm is.

The derivation of true on-line TD(�) is a little too complex to present here (see the next section and
the appendix to the paper by van Seijen et al., 2016) but its strategy is simple. The sequence of weight
vectors produced by the on-line �-return algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. It turns out that only the weight vectors on the
diagonal, the wt

t, are really needed. The first, w0
0, is the input, the last, wT

T , is the output, and each
weight vector along the way, wt

t, plays a role in bootstrapping in the n-step returns of the updates.
In the final algorithm the diagonal weight vectors are renamed without a superscript, wt

.
= wt

t. The
strategy then is to find a compact, e�cient way of computing each wt

t from the one before. If this is
done, for the linear case in which v̂(s,w) = w>x(s), then we arrive at the true online TD(�) algorithm:
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all done at time Tstep size
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12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:

wt+1
.
= wt + ↵

⇥
G�w>

t xt

⇤
xt, 0  t < T. (12.18)

To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
weight vector only at the end of the episode, but we will do some computation during each step of
the episode and less at its end. This will give a more equal distribution of computation—O(d) per
step—and also remove the need to store the feature vectors at each step for use later at the end of each
episode. Instead, we will introduce an additional vector memory, the eligibility trace, keeping in it a
summary of all the feature vectors seen so far. This will be su�cient to e�ciently recreate exactly the
same overall update as the sequence of MC updates (12.18), by the end of the episode:
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where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact
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12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:
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.
= wt + ↵

⇥
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t xt

⇤
xt, 0  t < T. (12.18)

To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
weight vector only at the end of the episode, but we will do some computation during each step of
the episode and less at its end. This will give a more equal distribution of computation—O(d) per
step—and also remove the need to store the feature vectors at each step for use later at the end of each
episode. Instead, we will introduce an additional vector memory, the eligibility trace, keeping in it a
summary of all the feature vectors seen so far. This will be su�cient to e�ciently recreate exactly the
same overall update as the sequence of MC updates (12.18), by the end of the episode:
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where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact
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12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:

wt+1
.
= wt + ↵

⇥
G�w>

t xt

⇤
xt, 0  t < T. (12.18)

To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
weight vector only at the end of the episode, but we will do some computation during each step of
the episode and less at its end. This will give a more equal distribution of computation—O(d) per
step—and also remove the need to store the feature vectors at each step for use later at the end of each
episode. Instead, we will introduce an additional vector memory, the eligibility trace, keeping in it a
summary of all the feature vectors seen so far. This will be su�cient to e�ciently recreate exactly the
same overall update as the sequence of MC updates (12.18), by the end of the episode:
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where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact
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12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:
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t xt

⇤
xt, 0  t < T. (12.18)

To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
weight vector only at the end of the episode, but we will do some computation during each step of
the episode and less at its end. This will give a more equal distribution of computation—O(d) per
step—and also remove the need to store the feature vectors at each step for use later at the end of each
episode. Instead, we will introduce an additional vector memory, the eligibility trace, keeping in it a
summary of all the feature vectors seen so far. This will be su�cient to e�ciently recreate exactly the
same overall update as the sequence of MC updates (12.18), by the end of the episode:
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where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact
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12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:

wt+1
.
= wt + ↵

⇥
G�w>

t xt

⇤
xt, 0  t < T. (12.18)

To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
weight vector only at the end of the episode, but we will do some computation during each step of
the episode and less at its end. This will give a more equal distribution of computation—O(d) per
step—and also remove the need to store the feature vectors at each step for use later at the end of each
episode. Instead, we will introduce an additional vector memory, the eligibility trace, keeping in it a
summary of all the feature vectors seen so far. This will be su�cient to e�ciently recreate exactly the
same overall update as the sequence of MC updates (12.18), by the end of the episode:
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= FT�1 (FT�2wT�2 + ↵GxT�2) + ↵GxT�1

= FT�1FT�2wT�2 + ↵G (FT�1xT�2 + xT�1)

= FT�1FT�2 (FT�3wT�3 + ↵GxT�3) + ↵G (FT�1xT�2 + xT�1)

= FT�1FT�2FT�3wT�3 + ↵G (FT�1FT�2xT�3 + FT�1xT�2 + xT�1)

...

= FT�1FT�2 · · ·F0w0| {z }
aT�1

+ ↵G
T�1X

k=0

FT�1FT�2 · · ·Fk+1xk

| {z }
zT�1

= aT�1 + ↵GzT�1 , (12.19)

where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact
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12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:
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= wt + ↵

⇥
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t xt

⇤
xt, 0  t < T. (12.18)

To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
weight vector only at the end of the episode, but we will do some computation during each step of
the episode and less at its end. This will give a more equal distribution of computation—O(d) per
step—and also remove the need to store the feature vectors at each step for use later at the end of each
episode. Instead, we will introduce an additional vector memory, the eligibility trace, keeping in it a
summary of all the feature vectors seen so far. This will be su�cient to e�ciently recreate exactly the
same overall update as the sequence of MC updates (12.18), by the end of the episode:
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where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact



Final Result
Given: 

MC algorithm: 

Equivalent independent-of-span algorithm: 

Proved: 

✓t+1
.
= ✓t + ↵t

�
Z � �>

t ✓t

�
�t, t = 0, . . . , T � 1, (1)

✓T = ✓T�1 + ↵T�1

�
Z � �>

T�1✓T�1

�
�T�1

= ✓T�1 + ↵T�1�T�1

�
��>

T�1✓T�1

�
+ ↵T�1Z�T�1

=
�
I � ↵T�1�T�1�

>
T�1

�
✓T�1 + Z↵T�1�T�1

= FT�1✓T�1 + Z↵T�1�T�1 (where Ft
.
= I � ↵t�t�>

t )

= FT�1 (FT�2✓T�2 + Z↵T�2�T�2) + Z↵T�1�T�1

= FT�1FT�2✓T�2 + Z (FT�1↵T�2�T�2 + ↵T�1�T�1)

= FT�1FT�2 (FT�3✓T�3 + Z↵T�3�T�3) + Z (FT�1↵T�2�T�2 + ↵T�1�T�1)

= FT�1FT�2FT�3✓T�3 + Z (FT�1FT�2↵T�3�T�3 + FT�1↵T�2�T�2 + ↵T�1�T�1)
...

= FT�1FT�2 · · ·F0✓0| {z }
aT�1

+ Z
T�1X

k=0

FT�1FT�2 · · ·Fk+1↵k�k

| {z }
eT�1

= aT�1 + ZeT�1 , (2)

et
.
=

tX

k=0

FtFt�1 · · ·Fk+1↵k�k, t = 0, . . . , T � 1

=
t�1X

k=0

FtFt�1 · · ·Fk+1↵k�k + ↵t�t

= Ft

t�1X

k=0

Ft�1Ft�2 · · ·Fk+1↵k�k + ↵t�t

= Ftet�1 + ↵t�t, t = 1, . . . , T � 1

= et�1 � ↵t�t�
>
t et�1 + ↵t�t, t = 1, . . . , T � 1. (3)

at
.
= FtFt�1 · · ·F0✓0 = Ftat�1 = at�1 � ↵t�t�

>
t at�1, t = 1, . . . , T � 1.

(4)

✓T
.
= aT�1 + ZeT�1,

a0
.
= ✓0, then at

.
= at�1 � ↵t�t�>

t at�1, t = 1, . . . , T � 1,
e0

.
= ↵0�0, then et

.
= et�1 � ↵t�t�>

t et�1 + ↵t�t, t = 1, . . . , T � 1.
(5)

1

w0 x0,x1,x2, . . . ,xT �1 Z

wt+1 = wt + ↵(G�w

>
t xt)xt,

✓t+1
.
= ✓t + ↵t

�
Z � �>

t ✓t

�
�t, t = 0, . . . , T � 1, (1)

✓T = ✓T�1 + ↵T�1

�
Z � �>

T�1✓T�1

�
�T�1

= ✓T�1 + ↵T�1�T�1

�
��>

T�1✓T�1

�
+ ↵T�1Z�T�1

=
�
I� ↵T�1�T�1�

>
T�1

�
✓T�1 + Z↵T�1�T�1

= FT�1✓T�1 + Z↵T�1�T�1 (where Ft
.
= I� ↵t�t�>

t )

= FT�1 (FT�2✓T�2 + Z↵T�2�T�2) + Z↵T�1�T�1

= FT�1FT�2✓T�2 + Z (FT�1↵T�2�T�2 + ↵T�1�T�1)

= FT�1FT�2 (FT�3✓T�3 + Z↵T�3�T�3) + Z (FT�1↵T�2�T�2 + ↵T�1�T�1)

= FT�1FT�2FT�3✓T�3 + Z (FT�1FT�2↵T�3�T�3 + FT�1↵T�2�T�2 + ↵T�1�T�1)
...

= FT�1FT�2 · · ·F0✓0| {z }
aT�1

+ Z
T�1X

k=0

FT�1FT�2 · · ·Fk+1↵k�k

| {z }
eT�1

= aT�1 + ZeT�1 , (2)

et
.
=

tX

k=0

FtFt�1 · · ·Fk+1↵k�k, t = 0, . . . , T � 1

=
t�1X

k=0

FtFt�1 · · ·Fk+1↵k�k + ↵t�t

= Ft

t�1X

k=0

Ft�1Ft�2 · · ·Fk+1↵k�k + ↵t�t

= Ftet�1 + ↵t�t, t = 1, . . . , T � 1

= et�1 � ↵t�t�
>
t et�1 + ↵t�t, t = 1, . . . , T � 1. (3)

at
.
= FtFt�1 · · ·F0✓0 = Ftat�1 = at�1 � ↵t�t�

>
t at�1, t = 1, . . . , T � 1.

(4)

wT
.
= aT�1 +GzT�1,

a0
.
= w0, then at

.
= at�1 � ↵txtx

>
t at�1, t = 1, . . . , T � 1,

z0
.
= ↵0x0, then zt

.
= zt�1 � ↵txtx

>
t zt�1 + ↵txt, t = 1, . . . , T � 1.

(5)

w0 x0,x1,x2, . . . ,xT�1 Z wT = wT at 2 <n, zt 2 <n (6)

1

at 2 Rd, zt 2 Rd

✓t+1
.
= ✓t + ↵t

�
Z � �>

t ✓t

�
�t, t = 0, . . . , T � 1, (1)

✓T = ✓T �1 + ↵T �1

�
Z � �>

T �1✓T �1

�
�T �1

= ✓T �1 + ↵T �1�T �1

�
��>

T �1✓T �1

�
+ ↵T �1Z�T �1

=
�
I � ↵T �1�T �1�>

T �1

�
✓T �1 + Z↵T �1�T �1

= FT �1✓T �1 + Z↵T �1�T �1 (where Ft
.
= I � ↵t�t�>

t )

= FT �1 (FT �2✓T �2 + Z↵T �2�T �2) + Z↵T �1�T �1

= FT �1FT �2✓T �2 + Z (FT �1↵T �2�T �2 + ↵T �1�T �1)

= FT �1FT �2 (FT �3✓T �3 + Z↵T �3�T �3) + Z (FT �1↵T �2�T �2 + ↵T �1�T �1)

= FT �1FT �2FT �3✓T �3 + Z (FT �1FT �2↵T �3�T �3 + FT �1↵T �2�T �2 + ↵T �1�T �1)
...

= FT �1FT �2 · · · F0✓0| {z }
aT �1

+ Z
T �1X

k=0

FT �1FT �2 · · · Fk+1↵k�k

| {z }
eT �1

= aT �1 + ZeT �1 , (2)

et
.
=

tX

k=0

FtFt�1 · · · Fk+1↵k�k, t = 0, . . . , T � 1

=
t�1X

k=0

FtFt�1 · · · Fk+1↵k�k + ↵t�t

= Ft

t�1X

k=0

Ft�1Ft�2 · · · Fk+1↵k�k + ↵t�t

= Ftet�1 + ↵t�t, t = 1, . . . , T � 1

= et�1 � ↵t�t�
>
t et�1 + ↵t�t, t = 1, . . . , T � 1. (3)

at
.
= FtFt�1 · · · F0✓0 = Ftat�1 = at�1 � ↵t�t�

>
t at�1, t = 1, . . . , T � 1.

(4)

wT
.
= aT �1 + GzT �1,

a0
.
= w0, then at

.
= at�1 � ↵txtx

>
t at�1, t = 1, . . . , T � 1,

z0
.
= ↵0x0, then zt

.
= zt�1 � ↵txtx

>
t zt�1 + ↵txt, t = 1, . . . , T � 1.

(5)

w0 x0, x1, x2, . . . , xT �1 Z wT = wT at 2 <n, zt 2 <n (6)

1

(the final weights of both algorithms are the same)

G



✓t+1
.
= ✓t + ↵t

�
Z � �>

t ✓t

�
�t, t = 0, . . . , T � 1, (1)

✓T = ✓T�1 + ↵T�1

�
Z � �>

T�1✓T�1

�
�T�1

= ✓T�1 + ↵T�1�T�1

�
��>

T�1✓T�1

�
+ ↵T�1Z�T�1

=
�
I � ↵T�1�T�1�

>
T�1

�
✓T�1 + Z↵T�1�T�1

= FT�1✓T�1 + Z↵T�1�T�1 (where Ft
.
= I � ↵t�t�>

t )

= FT�1 (FT�2✓T�2 + Z↵T�2�T�2) + Z↵T�1�T�1

= FT�1FT�2✓T�2 + Z (FT�1↵T�2�T�2 + ↵T�1�T�1)

= FT�1FT�2 (FT�3✓T�3 + Z↵T�3�T�3) + Z (FT�1↵T�2�T�2 + ↵T�1�T�1)

= FT�1FT�2FT�3✓T�3 + Z (FT�1FT�2↵T�3�T�3 + FT�1↵T�2�T�2 + ↵T�1�T�1)
...

= FT�1FT�2 · · ·F0✓0| {z }
aT�1

+ Z
T�1X

k=0

FT�1FT�2 · · ·Fk+1↵k�k

| {z }
eT�1

= aT�1 + ZeT�1 , (2)

et
.
=

tX

k=0

FtFt�1 · · ·Fk+1↵k�k, t = 0, . . . , T � 1

=
t�1X

k=0

FtFt�1 · · ·Fk+1↵k�k + ↵t�t

= Ft

t�1X

k=0

Ft�1Ft�2 · · ·Fk+1↵k�k + ↵t�t

= Ftet�1 + ↵t�t, t = 1, . . . , T � 1

= et�1 � ↵t�t�
>
t et�1 + ↵t�t, t = 1, . . . , T � 1. (3)

at
.
= FtFt�1 · · ·F0✓0 = Ftat�1 = at�1 � ↵t�t�

>
t at�1, t = 1, . . . , T � 1.

(4)

✓T
.
= aT�1 + ZeT�1,

a0
.
= ✓0, then at

.
= at�1 � ↵t�t�>

t at�1, t = 1, . . . , T � 1,
e0

.
= ↵0�0, then et

.
= et�1 � ↵t�t�>

t et�1 + ↵t�t, t = 1, . . . , T � 1.
(5)

1

wt+1 = wt + ↵(G�w

>
t xt)xt,MC:

12.6. DUTCH TRACES IN MONTE CARLO LEARNING 247

12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:
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To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
weight vector only at the end of the episode, but we will do some computation during each step of
the episode and less at its end. This will give a more equal distribution of computation—O(d) per
step—and also remove the need to store the feature vectors at each step for use later at the end of each
episode. Instead, we will introduce an additional vector memory, the eligibility trace, keeping in it a
summary of all the feature vectors seen so far. This will be su�cient to e�ciently recreate exactly the
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where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact

auxiliary short-term-memory vectors at 2 Rd, zt 2 Rd
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12.6 Dutch Traces in Monte Carlo Learning

Although eligibility traces are closely associated historically with TD learning, in fact they have nothing
to do with it. In fact, eligibility traces arise even in Monte Carlo learning, as we show in this section.
We show that the linear MC algorithm (Chapter 9), taken as a forward view, can be used to derive an
equivalent yet computationally cheaper backward-view algorithm using dutch traces. This is the only
equivalence of forward- and backward-views that we explicitly demonstrate in this book. It gives some
of the flavor of the proof of equivalence of true online TD(�) and the on-line �-return algorithm, but is
much simpler.

The linear version of the gradient Monte Carlo prediction algorithm (page 165) makes the following
sequence of updates, one for each time step of the episode:
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To make the example simpler, we assume here that the return G is a single reward received at the end
of the episode (this is why G is not subscripted by time) and that there is no discounting. In this case
the update is also known as the least mean square (LMS) rule. As a Monte Carlo algorithm, all the
updates depend on the final reward/return, so none can be made until the end of the episode. The
MC algorithm is an o✏ine algorithm and we do not seek to improve this aspect of it. Rather we seek
merely an implementation of this algorithm with computational advantages. We will still update the
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where aT�1 and zT�1 are the values at time T �1 of two auxilary memory vectors that can be updated
incrementally without knowledge of G and with O(d) complexity per time step. The zt vector is in fact
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a dutch-style eligibility trace. It is initialized to z0 = x0 and then updated according to
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which is the dutch trace for the case of ��=1 (cf. Eq. 12.16). The at auxilary vector is initialized to
a0 = w0 and then updated according to

at
.
= FtFt�1 · · ·F0w0 = Ftat�1 = at�1 � ↵xtx

>
t at�1, 1  t < T. (12.20)

The auxiliary vectors, at and zt, are updated on each time step t < T and then, at time T when G
is observed, they are used in (12.19) to compute wT . In this way we achieve exactly the same final
result as the MC/LMS algorithm with poor computational properties (12.18), but with an incremental
algorithm whose time and memory complexity per step is O(d). This is surprising and intriguing
because the notion of an eligibility trace (and the dutch trace in particular) has arisen in a setting
without temporal-di↵erence (TD) learning (in contrast to Van Seijen and Sutton, 2014). It seems
eligibility traces are not specific to TD learning at all; they are more fundamental than that. The
need for eligibility traces seems to arise whenever one tries to learn long-term predictions in an e�cient
manner.

12.7 Sarsa(�)

Very few changes in the ideas already presented in this chapter are required in order to extend eligibility-
traces to action-value methods. To learn approximate action values, q̂(s, a,w), rather than approximate
state values, v̂(s,w), we need to use the action-value form of the n-step return, from Chapter 10:

Gt:t+n
.
= Rt+1 + · · ·+ �n�1Rt+n + �nq̂(St+n, At+n,wt+n�1), (10.4)

for all n and t such that n � 1 and 0  t < T �n. Using this, we can form the action-value form of the
truncated �-return, which is otherwise identical to the state-value form (12.9). The action-value form
of the o↵-line �-return algorithm (12.4) simply uses q̂ rather than v̂:

wt+1
.
= wt + ↵

h
G�

t � q̂(St, Atwt)
i
rq̂(St, At,wt), t = 0, . . . , T � 1, (12.21)

where G�
t

.
= G�

t:1. The compound backup diagram for this forward view is shown in Figure 12.9. Notice
the similarity to the diagram of the TD(�) algorithm (Figure 12.1). The first update looks ahead one
full step, to the next state–action pair, the second looks ahead two steps, to the second state–action
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(the final weights of both algorithms are the same)
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Conclusions from the forward-backward derivation

We have derived dutch eligibility traces from an MC update, 
without any TD learning

Dutch traces, and in fact all eligibility traces, are not about TD; 
they are about efficient multi-step learning

We can derive new non-obvious algorithms that are equivalent 
to obvious algorithms but have better computational properties

This is a different type of machine-learning result,  
an algorithm equivalence



True online Sarsa(λ) results on Mountain Car
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True Online Sarsa(�) for estimating w>x ⇡ q⇡ or q⇤

Input: a feature function x : S+ ⇥A! Rd s.t. x(terminal, ·) = 0
Input: the policy ⇡ to be evaluated, if any

Initialize parameter w arbitrarily (e.g., w = 0)
Loop for each episode:

Initialize S
Choose A ⇠ ⇡(·|S) or near greedily from S using w
x x(S,A)
z 0
Qold  0 (a scalar temporary variable)
Loop for each step of episode:
| Take action A, observe R, S0

| Choose A0 ⇠ ⇡(·|S0) or near greedily from S0 using w
| x0  x(S0, A0)
| Q w>x
| Q0  w>x0

| �  R+ �Q0 �Q
| z ��z+

�
1� ↵��z>x

�
x

| w w + ↵(� +Q�Qold)z� ↵(Q�Qold)x
| Qold  Q0

| x x0

| A A0

until S0 is terminal
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Figure 2. RMS error of state values at the end of each episode, averaged over the first 10 episodes, as well as 100 independent runs, for
different values of ↵ and �.

Figure 4 compares true online Sarsa(�) with the traditional
Sarsa(�) implementation on the standard mountain car task
(Sutton & Barto, 1998) using 10 tilings of each 10⇥10 tiles.
Results are plotted for � = 0.9 and ↵ = ↵0/10, for ↵0 from
0.2 to 2.0 with steps of 0.2. Clearing/no clearing refers
to whether the trace values of non-selected actions are set
to 0 (clearing) or not (no clearing), in case of replacing
traces. The results suggest that the true online principle is
also effective in a control setting.

6. Conclusion
We presented for the first time an online version of the for-
ward view which forms the theoretical and intuitive foun-
dation for the TD(�) algorithm. In addition, we have pre-
sented a new variant of TD(�), with the same compu-
tational complexity as the classical algorithm, which we
call true online TD(�). We proved that true online TD(�)
matches the new online forward view exactly, in contrast
to classical online TD(�), which only approximates its
forward view. In addition, we demonstrated empirically
that true online TD(�) outperforms conventional TD(�) on
three benchmark problems. It seems, by adhering more
truly to the original goal of TD(�)—matching an intuitively
clear forward view even in the online case—that we have
found a new algorithm that simply improves on TD(�).
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Figure 4. Average return over first 20 episodes on mountain car
task for � = 0.9 and different ↵0. Results are averaged over 100
independent runs.
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Figure 12.11: Summary comparison of Sarsa(�) algorithms on the Mountain Car task. True Online Sarsa(�)
performed better than regular Sarsa(�) with both accumulating and replacing traces. Also included is a version
of Sarsa(�) with replacing traces in which, on each time step, the traces for the state and the actions not selected
were set to zero.

Adapted from van Seijen and Sutton (2014) 
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12.10 Watkins’s Q(�) to Tree-Backup(�)

Several methods have been proposed over the years to extend Q-learning to eligibility traces. The
original is Watkins’s Q(�), which decays its eligibility traces in the usual way as long as a greedy
action was taken, then cuts the traces to zero after the first non-greedy action. The backup diagram
for Watkins’s Q(�) is shown in Figure 12.12. In Chapter 6, we unified Q-learning and Expected Sarsa
in the o↵-policy version of the latter, which includes Q-learning as a special case, and generalizes it
to arbitrary target policies, and in the previous section of this chapter we completed our treatment of
Expected Sarsa by generalizing it to o↵-policy eligibility traces. In Chapter 7, however, we distinguished
multi-step Expected Sarsa from multi-step Tree Backup, where the latter retained the property of not
using importance sampling. It remains then to present the eligibility trace version of Tree Backup,
which we well call Tree-Backup(�), or TB(�) for short. This is arguably the true successor to Q-
learning because it retains its appealing absence of importance sampling even though it can be applied
to o↵-policy data.

The concept of TB(�) is straightforward. As shown in its backup diagram in Figure 12.13, the
tree-backup updates of each length (from Section 7.5) are weighted in the usual way dependent on
the bootstrapping parameter �. To get the detailed equations, with the right indexes on the general
bootstrapping and discounting parameters, it is best to start with a recursive form (12.27) for the
�-return using action values, and then expand the bootstrapping case of the target after the model of
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Figure 12.12: The backup diagram for Watkins’s Q(�). The series of component updates ends either with the
end of the episode or with the first nongreedy action, whichever comes first.
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Figure 12.13: The backup diagram for the � version of the Tree Backup algorithm.

(7.13):

G�a
t

.
= Rt+1 + �t+1

✓
(1� �t+1)Q̄t+1 + �t+1

⇣

X

a 6=At+1

⇡(a|St+1)q̂(St+1, a,wt) + ⇡(At+1|St+1)G
�a
t+1

⌘◆

= Rt+1 + �t+1

✓
Q̄t+1 + �t+1⇡(At+1|St+1)

⇣
G�a

t+1 � q̂(St+1, At+1,wt)
⌘◆

As per the usual pattern, it can also be written approximately (ignoring changes in the approximate
value function) as a sum of TD errors,

G�a
t ⇡ q̂(St, At,wt) +

1X

k=t

�ak

kY

i=t+1

�i�i⇡(Ai|Si), (12.37)

using the expectation form of the action-based TD error:

�at = Rt+1 + �t+1Q̄t+1 � q̂(St, At,wt). (12.38)

Following the same steps as in the previous section, we arrive at a special eligibility trace update
involving the target-policy probabilities of the selected actions,

zt
.
= �t�t⇡(At|St)zt�1 +rq̂(St, At,wt). (12.39)

This, together with the usual parameter-update rule (12.7), defines the TB(�) algorithm. Like all semi-
gradient algorithms, TB(�) is not guaranteed to be stable when used with o↵-policy data and with
a powerful function approximator. For that it would have to be combined with one of the methods
presented in the next section.
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using the expectation form of the action-based TD error:

�at = Rt+1 + �t+1Q̄t+1 � q̂(St, At,wt). (12.38)

Following the same steps as in the previous section, we arrive at a special eligibility trace update
involving the target-policy probabilities of the selected actions,
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= �t�t⇡(At|St)zt�1 + rq̂(St, At,wt). (12.39)

This, together with the usual parameter-update rule (12.7), defines the TB(�) algorithm. Like all semi-
gradient algorithms, TB(�) is not guaranteed to be stable when used with o↵-policy data and with
a powerful function approximator. For that it would have to be combined with one of the methods
presented in the next section.
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Figure 12.4: The forward view. We decide how to update each state by looking forward to future rewards and
states.

Future states, on the other hand, are viewed and processed repeatedly, once from each vantage point
preceding them.

12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning. It was the first
algorithm for which a formal relationship was shown between a more theoretical forward view and a
more computationally congenial backward view using eligibility traces. Here we will show empirically
that it approximates the o↵-line �-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates the weight vector
on every step of an episode rather than only at the end, and thus its estimates may be better sooner.
Second, its computations are equally distributed in time rather that all at the end of the episode. And
third, it can be applied to continuing problems rather than just episodic problems. In this section we
present the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector zt 2 Rd with the same number of
components as the weight vector wt. Whereas the weight vector is a long-term memory, accumulating
over the lifetime of the system, the eligibility trace is a short-term memory, typically lasting less time
than the length of an episode. Eligibility traces assist in the learning process; their only consequence is
that they a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the episode, is incre-
mented on each time step by the value gradient, and then fades away by ��:

z�1
.
= 0,

zt
.
= ��zt�1 + rv̂(St,wt), 0  t  T,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous section. The eligibility
trace keeps track of which components of the weight vector have contributed, positively or negatively,
to recent state valuations, where “recent” is defined in terms ��. The trace is said to indicate the
eligibility of each component of the weight vector for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-moment one-step TD
errors. The TD error for state-value prediction is

�t
.
= Rt+1 + �v̂(St+1,wt) � v̂(St,wt). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD error and the vector
eligibility trace:

wt+1
.
= wt + ↵�tzt, (12.7)

No importance sampling
No guarantees of stability when used off-policy with  
powerful function approximation



Off-policy Traces with importance sampling
Learning about an arbitrary policy typically requires the 
use of importance sampling ratios between the behavior 
policy and the target policy.

We define state based returns, and a forward view update.

After some work (Section 12.9), we get another trace.

This is not guaranteed to be stable with strong function 
approximation, and importance sampling can introduce 
substantial variance.  Can still work in practice.
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Exercise 12.7 Generalize the three recursive equations above to their truncated versions, defining
G�s

t:h and G�a
t:h. ⇤

12.9 O↵-policy Eligibility Traces

The final step is to incorporate importance sampling. Unlike in the case of n-step methods, for full
non-truncated �-returns one does not have a practical option in which the importance sampling is done
outside the target return. Instead, we move directly to the bootstrapping generalization of per-reward
importance sampling (Section 7.4). In the state case, our final definition of the �-return generalizes
(12.25), after the model of (7.10), to

G�s
t

.
= ⇢t

⇣
Rt+1 + �t+1

�
(1 � �t+1)v̂(St+1,wt) + �t+1G

�s
t+1

�⌘
+ (1 � ⇢t)v̂(St,wt) (12.29)

where ⇢t =
⇡(At|St)
b(At|St)

is the usual single-step importance sampling ratio. Much like the other returns we
have seen in this book, the truncated version of this return can be approximated simply in terms of
sums of the state-based TD error,

�st = Rt+1 + �t+1v̂(St+1,wt) � v̂(St,wt), (12.30)

as

G�s
t ⇡ v̂(St,wt) + ⇢t

1X

k=t

�sk

kY

i=t+1

�i�i⇢i (12.31)

with the approximation becoming exact if the approximate value function does not change.

Exercise 12.8 Prove that (12.31) becomes exact if the value function does not change. To save writing,
consider the case of t = 0, and use the notation Vk

.
= v̂(Sk,w). ⇤

Exercise 12.9 The truncated version of the general o↵-policy return is denoted G�s
t:h. Guess the correct

equation, based on (12.31). ⇤
The above form of the �-return (12.31) is convenient to use in a forward-view update,

wt+1 = wt + ↵
�
G�s

t � v̂(St,wt)
�

rv̂(St,wt)

⇡ wt + ↵⇢t

 1X

k=t

�sk

kY

i=t+1

�i�i⇢i

!
rv̂(St,wt),

which to the experienced eye looks like an eligibility-based TD update—the product is like an eligibility
trace and it is multiplied by TD errors. But this is just one time step of a forward view. The relationship
that we are looking for is that the forward-view update, summed over time, is approximately equal to
a backward-view update, summed over time (this relationship is only approximate because again we
ignore changes in the value function). The sum of the forward-view update over time is
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which would be in the form of the sum of a backward-view TD update if the entire expression from the
second sum left could be written and updated incrementally as an eligibility trace, which we now show
can be done. That is, we show that if this expression was the trace at time k, then we could update it
from its value at time k � 1 by:
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�
�k�kzk�1 +rv̂(Sk,wk)

�
,

which, changing the index from k to t, is the general accumulating trace update for state values:

zt
.
= ⇢t

�
�t�tzt�1 +rv̂(St,wt)

�
, (12.32)

This eligibility trace, together with the usual semi-gradient parameter-update rule for TD(�) (12.7),
forms a general TD(�) algorithm that can be applied to either on-policy or o↵-policy data. In the
on-policy case, the algorithm is exactly TD(�) because ⇢t is alway 1 and (12.32) becomes the usual
accumulating trace (12.5) (extended to variable � and �). In the o↵-policy case, the algorithm often
works well but, as an semi-gradient method, is not guaranteed to be stable. In the next few sections
we will consider extensions of it that do guarantee stability.

A very similar series of steps can be followed to derive the o↵-policy eligibility traces for action-value
methods and corresponding general Sarsa(�) algorithms. One could start with either recursive form
for the general action-based �-return, (12.26) or (12.27), but the former works out to be simpler. We
extend (12.26) to the o↵-policy case after the model of (7.11) to produce
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⇣
(1� �t+1)

�
⇢t+1q̂(St+1, At+1,wt) + (1� ⇢t+1)Q̄t+1

�

+ �t+1

�
⇢t+1G

�a
t+1 + (1� ⇢t+1)Q̄t+1

�⌘

= Rt+1 + �t+1

⇣
(1� �t+1)⇢t+1q̂(St+1, At+1,wt) + �t+1⇢t+1G

�a
t+1 + (1� ⇢t+1)Q̄t+1)

⌘
(12.33)

where Q̄t+1 is as given by (12.28). Again the �-return can be written approximately as the sum of TD
errors,

G�a
t ⇡ q̂(St, At,wt) +

1X

k=t

�ak

kY

i=t+1

�i�i⇢i, (12.34)

using a novel form of the TD error:

�at = Rt+1 + �t+1

⇣
⇢t+1q̂(St+1, At+1,wt) + (1� ⇢t+1)Q̄t+1

⌘
� q̂(St, At,wt). (12.35)

As before, the approximation becomes exact if the approximate value function does not change.

Exercise 12.10 Prove that (12.34) becomes exact if the value function does not change. To save
writing, consider the case of t = 0, and use the notation Qk = q̂(Sk, Ak,w). Hint: Start by writing out
�a0 and G�a

0 , then G�a
0 �Q0. ⇤
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Figure 12.4: The forward view. We decide how to update each state by looking forward to future rewards and
states.

Future states, on the other hand, are viewed and processed repeatedly, once from each vantage point
preceding them.

12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning. It was the first
algorithm for which a formal relationship was shown between a more theoretical forward view and a
more computationally congenial backward view using eligibility traces. Here we will show empirically
that it approximates the o↵-line �-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates the weight vector
on every step of an episode rather than only at the end, and thus its estimates may be better sooner.
Second, its computations are equally distributed in time rather that all at the end of the episode. And
third, it can be applied to continuing problems rather than just episodic problems. In this section we
present the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector zt 2 Rd with the same number of
components as the weight vector wt. Whereas the weight vector is a long-term memory, accumulating
over the lifetime of the system, the eligibility trace is a short-term memory, typically lasting less time
than the length of an episode. Eligibility traces assist in the learning process; their only consequence is
that they a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the episode, is incre-
mented on each time step by the value gradient, and then fades away by ��:

z�1
.
= 0,

zt
.
= ��zt�1 + rv̂(St,wt), 0  t  T,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous section. The eligibility
trace keeps track of which components of the weight vector have contributed, positively or negatively,
to recent state valuations, where “recent” is defined in terms ��. The trace is said to indicate the
eligibility of each component of the weight vector for undergoing learning changes should a reinforcing
event occur. The reinforcing events we are concerned with are the moment-by-moment one-step TD
errors. The TD error for state-value prediction is

�t
.
= Rt+1 + �v̂(St+1,wt) � v̂(St,wt). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD error and the vector
eligibility trace:

wt+1
.
= wt + ↵�tzt, (12.7)
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Conclusions regarding Eligibility Traces

Provide an efficient, incremental way to combine MC and TD
Includes advantages of MC (better when non-Markov)
Includes advantages of TD (faster, comp. congenial)

True online TD(λ) is new and best
Is exactly equivalent to online λ-return algorithm

There is a true online Sarsa(λ)
Three varieties of traces: accumulating, dutch, (replacing)
Traces for prediction and on-policy control
Traces for off-policy control and prediction
Trace methods often perform better than n-step methods
Traces do have a small cost in computation (≈x2)


