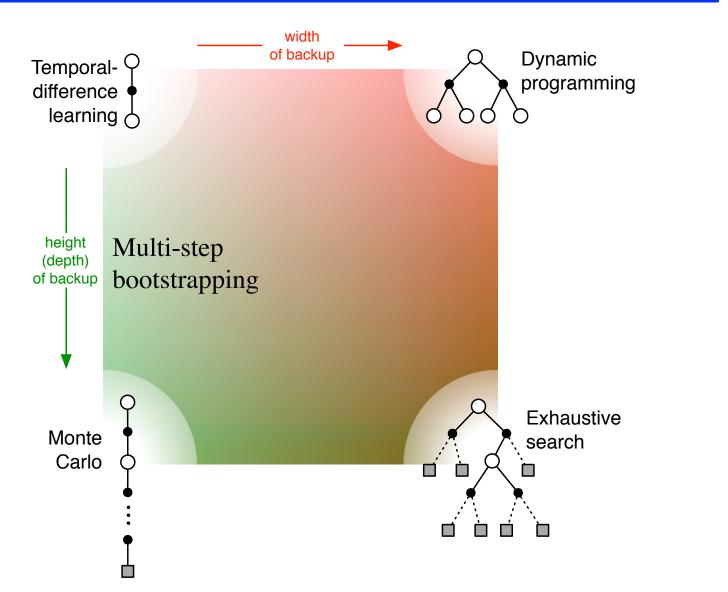
Eligibility Traces

Chapter 12

Eligibility traces are

- Another way of interpolating between MC and TD methods
- A way of implementing *compound* λ *-return* targets
- A basic mechanistic idea a short-term, fading memory
- A new style of algorithm development/analysis
 - the forward-view \Leftrightarrow backward-view transformation
 - Forward view:
 conceptually simple good for theory, intuition
 - Backward view:
 computationally congenial implementation of the f. view

Unified View



Recall *n*-step targets

- For example, in the episodic case, with linear function approximation:
 - 2-step target:

$$G_{t:t+2} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 \mathbf{w}_{t+1}^\top \mathbf{x}_{t+2}$$

n-step target:

 $G_{t:t+n} \doteq R_{t+1} + \dots + \gamma^{n-1}R_{t+n} + \gamma^n \mathbf{w}_{t+n-1}^\top \mathbf{x}_{t+n}$

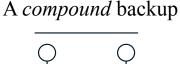
with $G_{t:t+n} \doteq G_t$ if $t+n \ge T$

Any set of update targets can be *averaged* to produce new *compound* update targets

• For example, half a 2-step plus half a 4-step

$$U_t = \frac{1}{2}G_{t:t+2} + \frac{1}{2}G_{t:t+4}$$

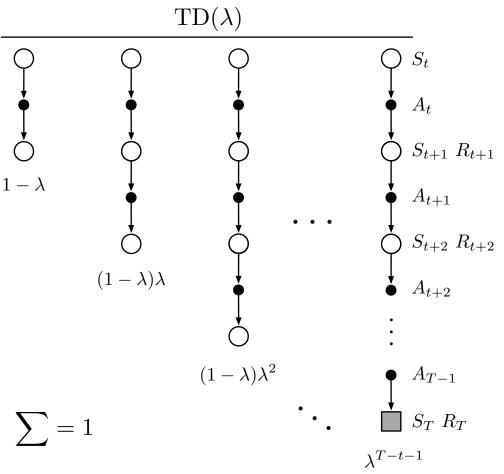
- Called a compound backup
 - Draw each component
 - Label with the weights for that component



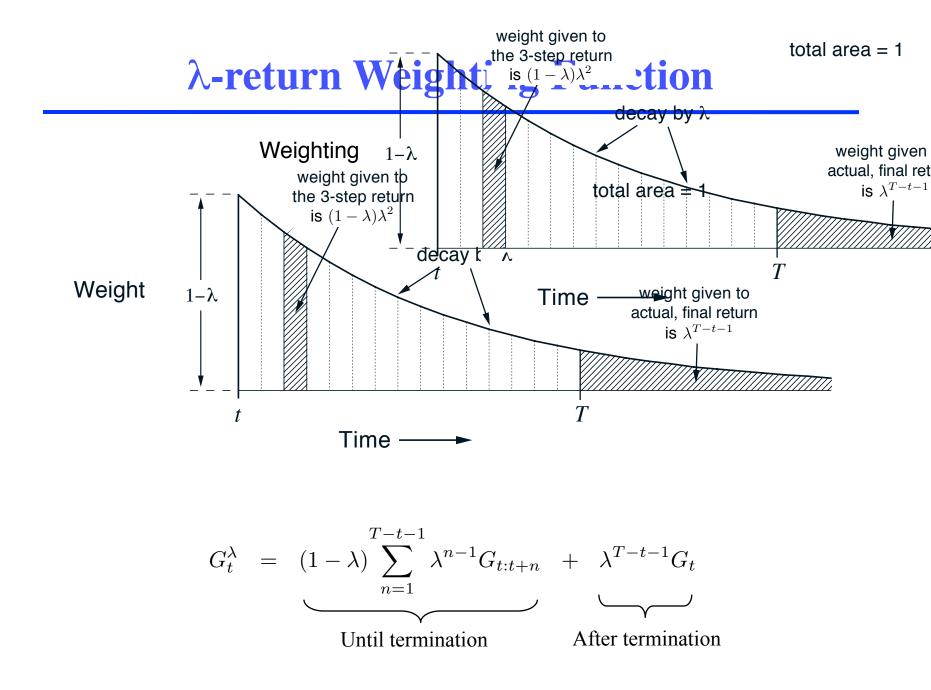
The λ -return is a compound update target

• The λ -return a target that averages all *n*-step targets

• each weighted by λ^{n-1}



 $G_t^{\lambda} \doteq (1-\lambda) \sum_{k=1}^{n-1} \lambda^{n-1} G_{t:t+n}$ n=1



Relation to TD(0) and MC

• The λ -return can be rewritten as:

$$G_{t}^{\lambda} = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t}$$
Until termination After termination

• If $\lambda = 1$, you get the MC target:

$$G_t^{\lambda} = (1-1) \sum_{n=1}^{T-t-1} 1^{n-1} G_{t:t+n} + 1^{T-t-1} G_t = G_t$$

• If $\lambda = 0$, you get the TD(0) target:

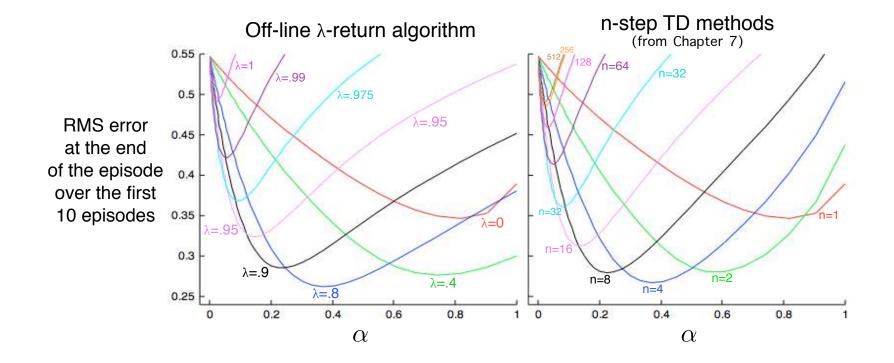
$$G_t^{\lambda} = (1-0) \sum_{n=1}^{T-t-1} 0^{n-1} G_{t:t+n} + 0^{T-t-1} G_t = G_{t:t+1}$$

The off-line λ -return "algorithm"

- Wait until the end of the episode (offline)
- Then go back over the time steps, updating

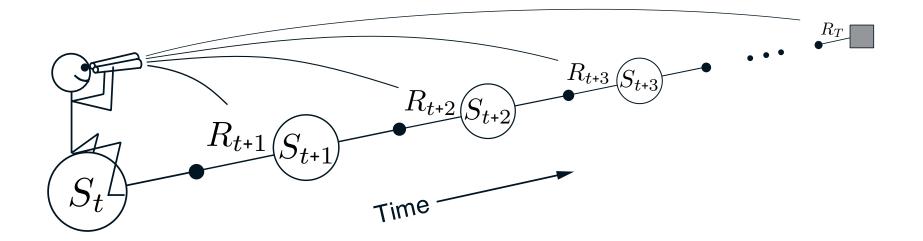
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \Big[G_t^{\lambda} - \hat{v}(S_t, \mathbf{w}_t) \Big] \nabla \hat{v}(S_t, \mathbf{w}_t), \quad t = 0, \dots, T-1$$

The λ -return alg performs similarly to *n*-step algs on the 19-state random walk (Tabular)

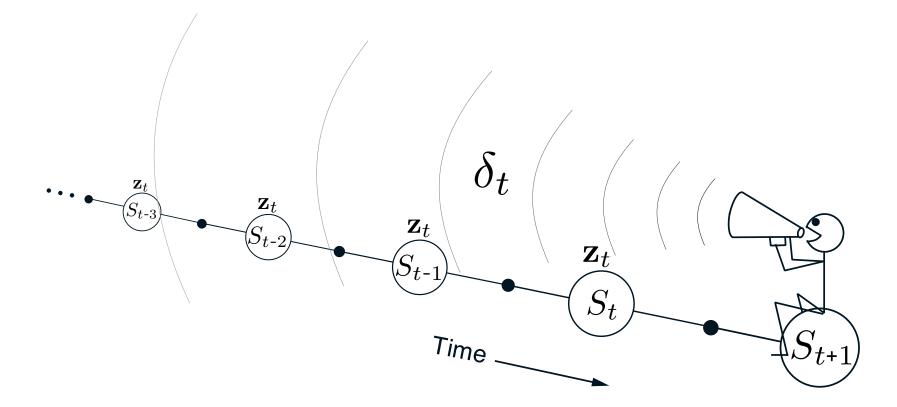


Intermediate λ is best (just like intermediate *n* is best) λ -return slightly better than *n*-step

The forward view looks forward from the state being updated to future states and rewards



The backward view looks back to the recently visited states (marked by eligibility traces)



- Shout the TD error backwards
- The traces fade with temporal distance by $\gamma\lambda$

The Semi-gradient $TD(\lambda)$ algorithm

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \delta_t \mathbf{z}_t$$
$$\delta_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t)$$

$$\begin{aligned} \mathbf{z}_{-1} &\doteq \mathbf{0}, \\ \mathbf{z}_{t} &\doteq \gamma \lambda \mathbf{z}_{t-1} + \nabla \hat{v}(S_{t}, \mathbf{w}_{t}) \end{aligned}$$

New error bound:

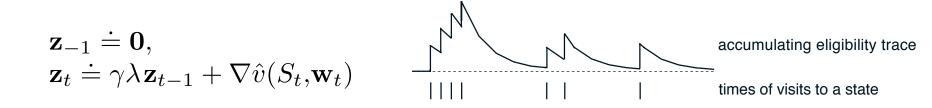
$$\overline{\mathrm{VE}}(\mathbf{w}_{\infty}) \leq \frac{1-\gamma\lambda}{1-\gamma} \min_{\mathbf{w}} \overline{\mathrm{VE}}(\mathbf{w})$$

Eligibility traces (mechanism)

- The forward view was for theory
- The backward view is for mechanism

same shape as w

New memory vector called *eligibility trace* z_t ∈ ℝ^d
 On each step, decay each component by γλ and increment the trace for the current state by 1
 Accumulating trace



Semi-gradient $TD(\lambda)$ for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: S^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal}, \cdot) = 0
Initialize value-function weights \mathbf{w} arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Repeat (for each episode):
    Initialize S
                                                                                      (a d-dimensional vector)
    \mathbf{z} \leftarrow \mathbf{0}
    Repeat (for each step of episode):
    . Choose A \sim \pi(\cdot | S)
    . Take action A, observe R, S'
    . \mathbf{z} \leftarrow \gamma \lambda \mathbf{z} + \nabla \hat{v}(S, \mathbf{w})
    \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})
    \mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \mathbf{z}
    . S \leftarrow S'
    until S' is terminal
```

TD(λ) performs similarly to offline λ -return alg. but slightly worse, particularly at high α

Tabular 19-state random walk task Off-line λ -return algorithm $TD(\lambda)$ (from the previous section) 0.55 99 .975 \=1 λ=.95 λ=.99 λ=.9 0.5 λ=.975 λ=.8 λ=.95 RMS error 0.45 at the end of the episode 0.4 over the first λ=0 0.35 10 episodes λ=0 λ=.95 0.3 $\lambda = .4$ λ=.9 $\lambda = .9$ λ=.4 $\lambda = .8$ λ=.8 0.25 0.2 0.4 0.6 0.8 0.6 1 0 0.2 0.4 0 0.8 α α

Can we do better? Can we update online?

The λ -return can also be truncated at some horizon *h*

$$G_{t:h}^{\lambda} \doteq (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \qquad 0 \le t < h \le T$$

n-step-truncated λ -return method:

$$\mathbf{w}_{t+n} \doteq \mathbf{w}_{t+n-1} + \alpha \left[G_{t:t+n}^{\lambda} - \hat{v}(S_t, \mathbf{w}_{t+n-1}) \right] \nabla \hat{v}(S_t, \mathbf{w}_{t+n-1}), \qquad 0 \le t < T$$

The λ -return can also be truncated at some horizon *h*

$$G_{t:h}^{\lambda} \doteq (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \qquad 0 \le t < h \le T$$

n-step-truncated λ -return method:

$$\mathbf{w}_{t+n} \doteq \mathbf{w}_{t+n-1} + \alpha \left[G_{t:t+n}^{\lambda} - \hat{v}(S_t, \mathbf{w}_{t+n-1}) \right] \nabla \hat{v}(S_t, \mathbf{w}_{t+n-1}), \qquad 0 \le t < T$$

For a reasonable *n*, this may do better than $TD(\lambda)$, at the cost of the *n*-step delay of updates

The λ -return can also be truncated at some horizon *h*

$$G_{t:h}^{\lambda} \doteq (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \qquad 0 \le t < h \le T$$

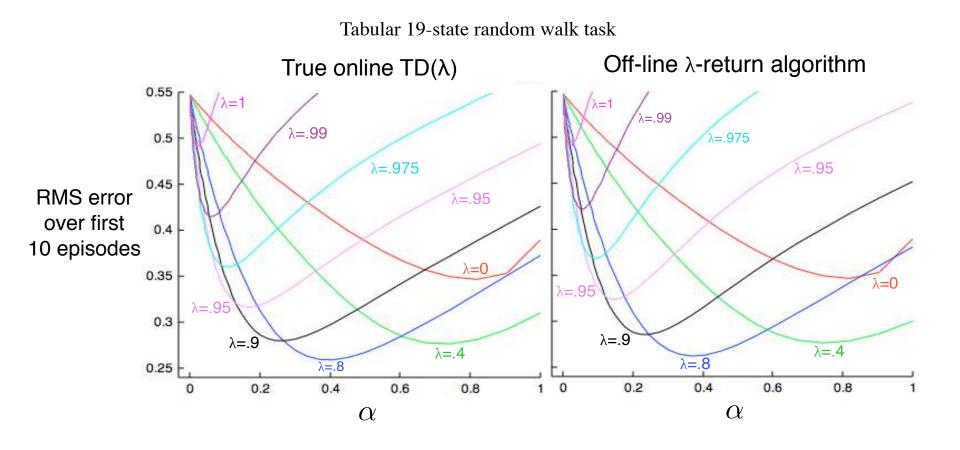
n-step-truncated λ -return method:

$$\mathbf{w}_{t+n} \doteq \mathbf{w}_{t+n-1} + \alpha \left[G_{t:t+n}^{\lambda} - \hat{v}(S_t, \mathbf{w}_{t+n-1}) \right] \nabla \hat{v}(S_t, \mathbf{w}_{t+n-1}), \qquad 0 \le t < T$$

For a reasonable *n*, this may do better than $TD(\lambda)$, at the cost of the *n*-step delay of updates

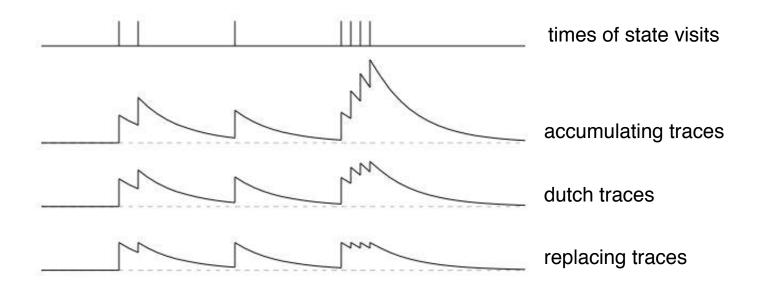
But even better is true online $TD(\lambda)$

True online TD(λ) performs best of all



Accumulating, Dutch, and Replacing Traces

- All traces fade the same:
- But increment differently!



$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{z}_t + \alpha \left(\mathbf{w}_t^\top \mathbf{x}_t - \mathbf{w}_{t-1}^\top \mathbf{x}_t \right) \left(\mathbf{z}_t - \mathbf{x}_t \right)$$

$$\mathbf{z}_{t} \doteq \gamma \lambda \mathbf{z}_{t-1} + \left(1 - \alpha \gamma \lambda \mathbf{z}_{t-1}^{\top} \mathbf{x}_{t}\right) \mathbf{x}_{t} \qquad dutch \ trace$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{z}_t + \alpha \left(\mathbf{w}_t^\top \mathbf{x}_t - \mathbf{w}_{t-1}^\top \mathbf{x}_t \right) \left(\mathbf{z}_t - \mathbf{x}_t \right)$$

$$\mathbf{z}_{t} \doteq \gamma \lambda \mathbf{z}_{t-1} + (1 - \alpha \gamma \lambda \mathbf{z}_{t-1}^{\top} \mathbf{x}_{t}) \mathbf{x}_{t} \qquad dutch \ trace$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{z}_t + \alpha \left(\mathbf{w}_t^\top \mathbf{x}_t - \mathbf{w}_{t-1}^\top \mathbf{x}_t \right) \left(\mathbf{z}_t - \mathbf{x}_t \right)$$

$$\mathbf{z}_t \doteq \gamma \lambda \mathbf{z}_{t-1} + \left(1 - \alpha \gamma \lambda \mathbf{z}_{t-1}^\top \mathbf{x}_t\right) \mathbf{x}_t$$

dutch trace

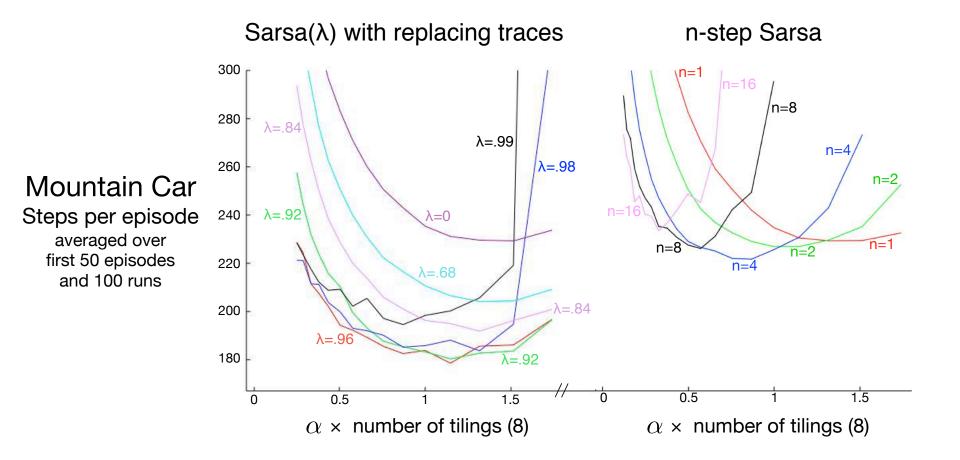
Traces for control – Sarsa(λ) (on-policy)

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \,\delta_t \,\mathbf{z}_t$$

$$\delta_t \doteq R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t) - \hat{q}(S_t, A_t, \mathbf{w}_t)$$

$$\mathbf{z}_{-1} \doteq \mathbf{0}, \\ \mathbf{z}_{t} \doteq \gamma \lambda \mathbf{z}_{t-1} + \nabla \hat{q}(S_{t}, A_{t}, \mathbf{w}_{t})$$

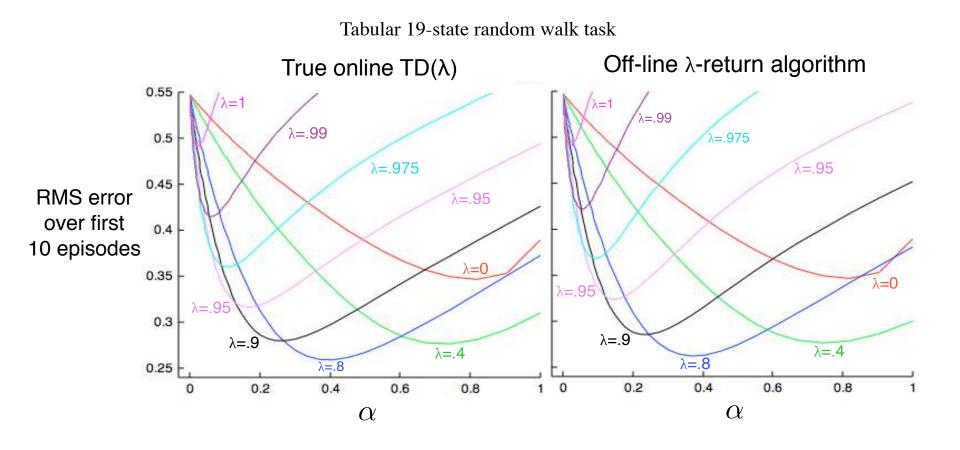
Sarsa(λ) is better than n-step Sarsa on Mountain Car with tile-coding linear function approximation



Conclusions regarding Eligibility Traces

- Provide an efficient, incremental way to combine MC and TD
 - Includes advantages of MC (better when non-Markov)
 - Includes advantages of TD (faster, comp. congenial)
- True online $TD(\lambda)$ is new and best
 - Is exactly equivalent to online λ -return algorithm
- Three varieties of traces: accumulating, dutch, (replacing)
- Traces for prediction and on-policy control
- Trace methods often perform better than *n*-step methods
- Traces do have a small cost in computation ($\approx x2$)

True online TD(λ) performs best of all



$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{z}_t + \alpha \left(\mathbf{w}_t^\top \mathbf{x}_t - \mathbf{w}_{t-1}^\top \mathbf{x}_t \right) \left(\mathbf{z}_t - \mathbf{x}_t \right)$$

$$\mathbf{z}_{t} \doteq \gamma \lambda \mathbf{z}_{t-1} + \left(1 - \alpha \gamma \lambda \mathbf{z}_{t-1}^{\top} \mathbf{x}_{t}\right) \mathbf{x}_{t} \qquad dutch \ trace$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{z}_t + \alpha \left(\mathbf{w}_t^\top \mathbf{x}_t - \mathbf{w}_{t-1}^\top \mathbf{x}_t \right) \left(\mathbf{z}_t - \mathbf{x}_t \right)$$

$$\mathbf{z}_{t} \doteq \gamma \lambda \mathbf{z}_{t-1} + (1 - \alpha \gamma \lambda \mathbf{z}_{t-1}^{\top} \mathbf{x}_{t}) \mathbf{x}_{t} \qquad dutch \ trace$$

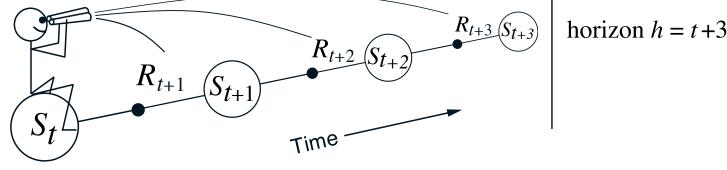
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{z}_t + \alpha \left(\mathbf{w}_t^\top \mathbf{x}_t - \mathbf{w}_{t-1}^\top \mathbf{x}_t \right) \left(\mathbf{z}_t - \mathbf{x}_t \right)$$

$$\mathbf{z}_t \doteq \gamma \lambda \mathbf{z}_{t-1} + \left(1 - \alpha \gamma \lambda \mathbf{z}_{t-1}^\top \mathbf{x}_t\right) \mathbf{x}_t$$

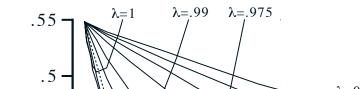
dutch trace

The online λ -return alg uses a *truncated* λ -*return* as its target

$$G_{t:h}^{\lambda} \doteq (1-\lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \qquad 0 \le t < h \le T$$



 $\mathbf{w}_{t+1}^{h} \doteq \mathbf{w}_{t}^{h} + \alpha \left[G_{t:h}^{\lambda} - \hat{v}(S_{t}, \mathbf{w}_{t}^{h}) \right] \nabla \hat{v}(S_{t}, \mathbf{w}_{t}^{h})$



There is a separate w sequence for each *h*!

OFF-LINE λ -RET URN

The online λ -return a

$$\mathbf{w}_{t+1}^h \doteq \mathbf{w}_t^h + \alpha \left[G_{t:h}^\lambda - \hat{v}(S_t) \right]$$

The online λ -return a

$$\mathbf{w}_{t+1}^h \doteq \mathbf{w}_t^h + \alpha \left[G_{t:h}^\lambda - \hat{v}(S_t) \right]$$

$$h = 1: \quad \mathbf{w}_1^1 \doteq \mathbf{w}_0^1 + \alpha \left[G_{0:1}^\lambda - \hat{v} \right]$$

$$h = 2: \quad \mathbf{w}_1^2 \doteq \mathbf{w}_0^2 + \alpha \left[G_{0:2}^{\lambda} - \hat{v} \right]$$
$$\mathbf{w}_2^2 \doteq \mathbf{w}_1^2 + \alpha \left[G_{1:2}^{\lambda} - \hat{v} \right]$$

$$h = 3: \quad \mathbf{w}_1^3 \doteq \mathbf{w}_0^3 + \alpha \left[G_{0:3}^{\lambda} - \hat{v} \right]$$
$$\mathbf{w}_2^3 \doteq \mathbf{w}_1^3 + \alpha \left[G_{1:3}^{\lambda} - \hat{v} \right]$$
$$\mathbf{w}_3^3 \doteq \mathbf{w}_2^3 + \alpha \left[G_{2:3}^{\lambda} - \hat{v} \right]$$

- ٠
- •
- •

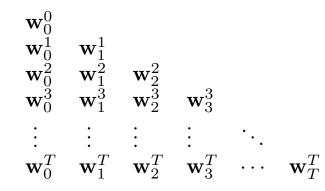
The online λ -return a

$$\mathbf{w}_{t+1}^h \doteq \mathbf{w}_t^h + \alpha \left[G_{t:h}^\lambda - \hat{v}(S_t) \right]$$

$$h = 1: \quad \mathbf{w}_1^1 \doteq \mathbf{w}_0^1 + \alpha \left[G_{0:1}^\lambda - \hat{v} \right]$$

$$h = 2: \quad \mathbf{w}_1^2 \doteq \mathbf{w}_0^2 + \alpha \left[G_{0:2}^{\lambda} - \hat{v} \right]$$
$$\mathbf{w}_2^2 \doteq \mathbf{w}_1^2 + \alpha \left[G_{1:2}^{\lambda} - \hat{v} \right]$$

$$h = 3: \quad \mathbf{w}_1^3 \doteq \mathbf{w}_0^3 + \alpha \left[G_{0:3}^{\lambda} - \hat{v} \right]$$
$$\mathbf{w}_2^3 \doteq \mathbf{w}_1^3 + \alpha \left[G_{1:3}^{\lambda} - \hat{v} \right]$$
$$\mathbf{w}_3^3 \doteq \mathbf{w}_2^3 + \alpha \left[G_{2:3}^{\lambda} - \hat{v} \right]$$



(for linear FA)

The simplest example of deriving a backward view from a forward view

- Monte Carlo learning of a final target
- Will derive dutch traces
- Showing the dutch traces really are not about TD
- They are about efficiently implementing online algs

The Problem:

Predict final target G with linear function approximation

	episode						next episode		
Time	0	1	2		T-1	Τ	0	1	2
Data	\mathbf{x}_0	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{T-1}	G			
Weights	\mathbf{w}_0	\mathbf{w}_0	\mathbf{w}_0		\mathbf{w}_0	\mathbf{w}_T	\mathbf{W}_T	\mathbf{W}_T	\mathbf{w}_T
$\frac{\text{Predictions}}{\approx G}$	$\mathbf{w}_0^{ op} \mathbf{x}_0$	$\mathbf{w}_0^ op \mathbf{x}_1$	$\mathbf{w}_0^\top \mathbf{x}_2$		$\mathbf{w}_0^ op \mathbf{x}_{T-1}$				

MC:
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t (G - \mathbf{w}_t^\top \mathbf{x}_t) \mathbf{x}_t$$

step size

all done at time T

- 1. *Constant*. (non-increasing with number of episodes)
- 2. *Proportionate*. (proportional to number of weights, or O(n))
- 3. *Independent of span*. (not increasing with episode length) In general, the *predictive span* is the number of steps between making a prediction and observing the outcome

MC:
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[G - \mathbf{w}_t^\top \mathbf{x}_t \right] \mathbf{x}_t, \qquad t = 0, \dots, T-1$$

all done at time T

- 1. *Constant*. (non-increasing with number of episodes)
- 2. *Proportionate*. (proportional to number of weights, or O(n))
- 3. *Independent of span*. (not increasing with episode length) In general, the *predictive span* is the number of steps between making a prediction and observing the outcome

MC:
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[G - \mathbf{w}_t^\top \mathbf{x}_t \right] \mathbf{x}_t, \qquad t = 0, \dots, T-1$$

step size all done at time T What is the span?

- 1. *Constant*. (non-increasing with number of episodes)
- 2. *Proportionate*. (proportional to number of weights, or O(n))
- 3. *Independent of span*. (not increasing with episode length) In general, the *predictive span* is the number of steps between making a prediction and observing the outcome

MC:
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[G - \mathbf{w}_t^\top \mathbf{x}_t \right] \mathbf{x}_t, \qquad t = 0, \dots, T-1$$

step size all done at time T What is the span? T

- 1. *Constant*. (non-increasing with number of episodes)
- 2. *Proportionate*. (proportional to number of weights, or O(n))
- 3. *Independent of span*. (not increasing with episode length) In general, the *predictive span* is the number of steps between making a prediction and observing the outcome

MC:
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[G - \mathbf{w}_t^\top \mathbf{x}_t \right] \mathbf{x}_t,$$

step size all done at time T
$$t = 0, \dots, T - 1$$
What is the span? T
Is MC indep of span?

- 1. *Constant*. (non-increasing with number of episodes)
- 2. *Proportionate*. (proportional to number of weights, or O(n))
- 3. *Independent of span*. (not increasing with episode length) In general, the *predictive span* is the number of steps between making a prediction and observing the outcome

MC:
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[G - \mathbf{w}_t^\top \mathbf{x}_t \right] \mathbf{x}_t,$$

step size all done at time T $t = 0, \dots, T - 1$
What is the span? T
Is MC indep of span? No

Computation per step (including memory) must be

- 1. *Constant*. (non-increasing with number of episodes)
- 2. *Proportionate*. (proportional to number of weights, or O(n))
- 3. *Independent of span*. (not increasing with episode length) In general, the *predictive span* is the number of steps between making a prediction and observing the outcome

MC:
$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[G - \mathbf{w}_t^\top \mathbf{x}_t \right] \mathbf{x}_t, \qquad t = 0, \dots, T-1$$

step size

all done at time T

Computation and memory needed at step *T* increases with $T \Rightarrow$ not IoS

Final Result

Given:

$$\mathbf{w}_0 \quad \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{T-1} \quad G$$

MC algorithm:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha (G - \mathbf{w}_t^\top \mathbf{x}_t) \mathbf{x}_t, \quad t = 0, \dots, T-1$$

Equivalent independent-of-span algorithm:

$$\mathbf{w}_{T} \doteq \mathbf{a}_{T-1} + G\mathbf{z}_{T-1}, \qquad \mathbf{a}_{t} \in \mathbb{R}^{d}, \ \mathbf{z}_{t} \in \mathbb{R}^{d} \\ \mathbf{a}_{0} \doteq \mathbf{w}_{0}, \text{ then } \mathbf{a}_{t} \doteq \mathbf{a}_{t-1} - \alpha_{t}\mathbf{x}_{t}\mathbf{x}_{t}^{\top}\mathbf{a}_{t-1}, \qquad t = 1, \dots, T-1 \\ \mathbf{z}_{0} \doteq \alpha_{0}\mathbf{x}_{0}, \text{ then } \mathbf{z}_{t} \doteq \mathbf{z}_{t-1} - \alpha_{t}\mathbf{x}_{t}\mathbf{x}_{t}^{\top}\mathbf{z}_{t-1} + \alpha_{t}\mathbf{x}_{t}, \quad t = 1, \dots, T-1 \end{cases}$$

Proved:

 $\mathbf{w}_T = \mathbf{w}_T$ (the final weights of both algorithms are the same)

MC: $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha (G - \mathbf{w}_t^\top \mathbf{x}_t) \mathbf{x}_t, \quad t = 0, \dots, T-1$

$$\mathbf{w}_{T} = \mathbf{w}_{T-1} + \alpha \left(G - \mathbf{w}_{T-1}^{\top} \mathbf{x}_{T-1} \right) \mathbf{x}_{T-1}$$

= $\mathbf{w}_{T-1} + \alpha \mathbf{x}_{T-1} \left(-\mathbf{x}_{T-1}^{\top} \mathbf{w}_{T-1} \right) + \alpha G \mathbf{x}_{T-1}$
= $\left(\mathbf{I} - \alpha \mathbf{x}_{T-1} \mathbf{x}_{T-1}^{\top} \right) \mathbf{w}_{T-1} + \alpha G \mathbf{x}_{T-1}$
= $\mathbf{F}_{T-1} \mathbf{w}_{T-1} + \alpha G \mathbf{x}_{T-1}$

where
$$\mathbf{F}_t \doteq \mathbf{I} - \alpha \mathbf{x}_t \mathbf{x}_t^{\top}$$
 is a forgetting, or fading, matrix. Now, recursing,

$$= \mathbf{F}_{T-1} \left(\mathbf{F}_{T-2} \mathbf{w}_{T-2} + \alpha G \mathbf{x}_{T-2} \right) + \alpha G \mathbf{x}_{T-1}$$

$$= \mathbf{F}_{T-1} \mathbf{F}_{T-2} \mathbf{w}_{T-2} + \alpha G \left(\mathbf{F}_{T-1} \mathbf{x}_{T-2} + \mathbf{x}_{T-1} \right)$$

$$= \mathbf{F}_{T-1} \mathbf{F}_{T-2} \left(\mathbf{F}_{T-3} \mathbf{w}_{T-3} + \alpha G \mathbf{x}_{T-3} \right) + \alpha G \left(\mathbf{F}_{T-1} \mathbf{x}_{T-2} + \mathbf{x}_{T-1} \right)$$

$$= \mathbf{F}_{T-1} \mathbf{F}_{T-2} \mathbf{F}_{T-3} \mathbf{w}_{T-3} + \alpha G \left(\mathbf{F}_{T-1} \mathbf{F}_{T-2} \mathbf{x}_{T-3} + \mathbf{F}_{T-1} \mathbf{x}_{T-2} + \mathbf{x}_{T-1} \right)$$

$$\vdots$$

$$=\underbrace{\mathbf{F}_{T-1}\mathbf{F}_{T-2}\cdots\mathbf{F}_{0}\mathbf{w}_{0}}_{\mathbf{a}_{T-1}} + \alpha G\underbrace{\sum_{k=0}^{T-1}\mathbf{F}_{T-1}\mathbf{F}_{T-2}\cdots\mathbf{F}_{k+1}\mathbf{x}_{k}}_{\mathbf{z}_{T-1}}$$

 $= \mathbf{a}_{T-1} + \alpha G \mathbf{z}_{T-1}, \qquad \text{auxiliary short-term-memory vectors } \mathbf{a}_t \in \mathbb{R}^d, \ \mathbf{z}_t \in \mathbb{R}^d$

$$=\underbrace{\mathbf{F}_{T-1}\mathbf{F}_{T-2}\cdots\mathbf{F}_{0}\mathbf{w}_{0}}_{\mathbf{a}_{T-1}} + \alpha G\underbrace{\sum_{k=0}^{T-1}\mathbf{F}_{T-1}\mathbf{F}_{T-2}\cdots\mathbf{F}_{k+1}\mathbf{x}_{k}}_{\mathbf{z}_{T-1}}$$

 $=\mathbf{a}_{T-1}+\alpha G\mathbf{z}_{T-1},$

$$=\underbrace{\mathbf{F}_{T-1}\mathbf{F}_{T-2}\cdots\mathbf{F}_{0}\mathbf{w}_{0}}_{\mathbf{a}_{T-1}} + \alpha G\underbrace{\sum_{k=0}^{T-1}\mathbf{F}_{T-1}\mathbf{F}_{T-2}\cdots\mathbf{F}_{k+1}\mathbf{x}_{k}}_{\mathbf{z}_{T-1}}$$

$$=\mathbf{a}_{T-1}+\alpha G\mathbf{z}_{T-1},$$

$$\mathbf{z}_{t} \doteq \sum_{k=0}^{t} \mathbf{F}_{t} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \mathbf{x}_{k}, \qquad 1 \leq t < T$$

$$= \sum_{k=0}^{t-1} \mathbf{F}_{t} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \mathbf{x}_{k} + \mathbf{x}_{t}$$

$$= \mathbf{F}_{t} \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \mathbf{F}_{t-2} \cdots \mathbf{F}_{k+1} \mathbf{x}_{k} + \mathbf{x}_{t}$$

$$= \mathbf{F}_{t} \mathbf{z}_{t-1} + \mathbf{x}_{t}$$

$$= (\mathbf{I} - \alpha \mathbf{x}_{t} \mathbf{x}_{t}^{\top}) \mathbf{z}_{t-1} + \mathbf{x}_{t}$$

$$= \mathbf{z}_{t-1} - \alpha (\mathbf{z}_{t-1}^{\top} \mathbf{x}_{t}) \mathbf{x}_{t} + \mathbf{x}_{t}$$

$$\mathbf{a}_t \doteq \mathbf{F}_t \mathbf{F}_{t-1} \cdots \mathbf{F}_0 \mathbf{w}_0 = \mathbf{F}_t \mathbf{a}_{t-1} = \mathbf{a}_{t-1} - \alpha \mathbf{x}_t \mathbf{x}_t^\top \mathbf{a}_{t-1}, \quad 1 \le t < T$$

Final Result

Given:

$$\mathbf{w}_0 \quad \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{T-1} \quad G$$

MC algorithm:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha (G - \mathbf{w}_t^\top \mathbf{x}_t) \mathbf{x}_t, \quad t = 0, \dots, T-1$$

Equivalent independent-of-span algorithm:

$$\mathbf{w}_{T} \doteq \mathbf{a}_{T-1} + G\mathbf{z}_{T-1}, \qquad \mathbf{a}_{t} \in \mathbb{R}^{d}, \ \mathbf{z}_{t} \in \mathbb{R}^{d} \\ \mathbf{a}_{0} \doteq \mathbf{w}_{0}, \text{ then } \mathbf{a}_{t} \doteq \mathbf{a}_{t-1} - \alpha_{t}\mathbf{x}_{t}\mathbf{x}_{t}^{\top}\mathbf{a}_{t-1}, \qquad t = 1, \dots, T-1 \\ \mathbf{z}_{0} \doteq \alpha_{0}\mathbf{x}_{0}, \text{ then } \mathbf{z}_{t} \doteq \mathbf{z}_{t-1} - \alpha_{t}\mathbf{x}_{t}\mathbf{x}_{t}^{\top}\mathbf{z}_{t-1} + \alpha_{t}\mathbf{x}_{t}, \quad t = 1, \dots, T-1 \end{cases}$$

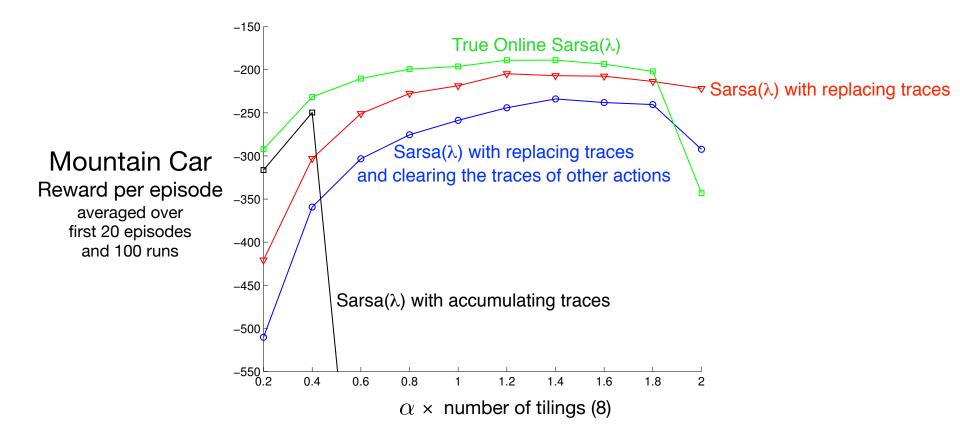
Proved:

 $\mathbf{w}_T = \mathbf{w}_T$ (the final weights of both algorithms are the same)

Conclusions from the forward-backward derivation

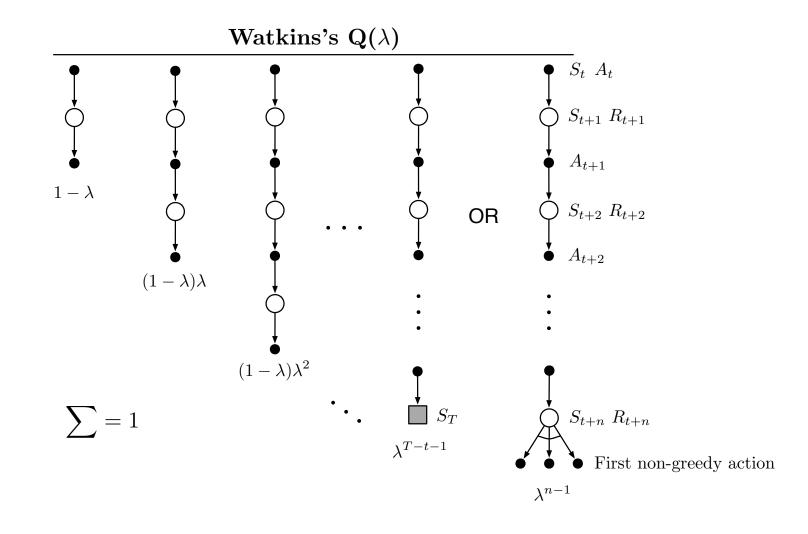
- We have derived dutch eligibility traces from an MC update, without any TD learning
- Dutch traces, and in fact all eligibility traces, are not about TD; they are about *efficient multi-step* learning
- We can derive new non-obvious algorithms that are equivalent to obvious algorithms but have better computational properties
- This is a different type of machine-learning result, an *algorithm equivalence*

True online Sarsa(λ) results on Mountain Car

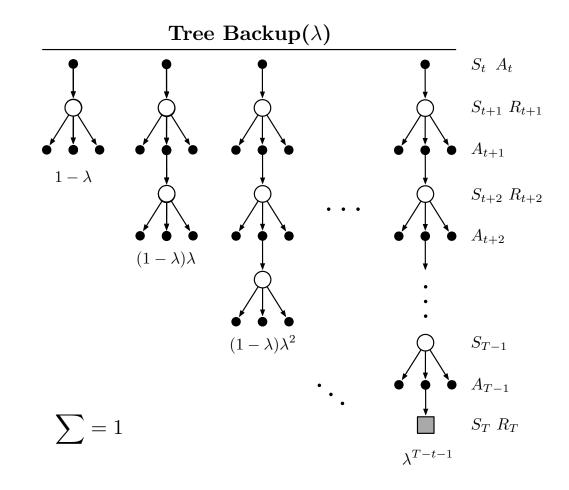


Adapted from van Seijen and Sutton (2014)

Other traces for Q: Original Watkins $Q(\lambda)$



Other traces for Q: Tree-Backup(λ)



Other traces for Q: Tree-Backup(λ)

Update Rules

$$\mathbf{z}_t \doteq \gamma_t \lambda_t \pi(A_t | S_t) \mathbf{z}_{t-1} + \nabla \hat{q}(S_t, A_t, \mathbf{w}_t)$$

 $\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{z}_t$

- No importance sampling
- No guarantees of stability when used off-policy with powerful function approximation

Off-policy Traces with importance sampling

- Learning about an arbitrary policy typically requires the use of importance sampling ratios between the behavior policy and the target policy. $\rho_t = \frac{\pi(A_t|S_t)}{b(A_t|S_t)}$
- We define state based returns, and a forward view update. $G_t^{\lambda s} \doteq \rho_t \Big(R_{t+1} + \gamma_{t+1} \big((1 - \lambda_{t+1}) \hat{v}(S_{t+1}, \mathbf{w}_t) + \lambda_{t+1} G_{t+1}^{\lambda s} \big) \Big) + (1 - \rho_t) \hat{v}(S_t, \mathbf{w}_t)$ $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left(G_t^{\lambda s} - \hat{v}(S_t, \mathbf{w}_t) \right) \nabla \hat{v}(S_t, \mathbf{w}_t)$
- After some work (Section 12.9), we get another trace. $\mathbf{z}_t \doteq \rho_t (\gamma_t \lambda_t \mathbf{z}_{t-1} + \nabla \hat{v}(S_t, \mathbf{w}_t))$ $\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \delta_t \mathbf{z}_t$
- This is not guaranteed to be stable with strong function approximation, and importance sampling can introduce substantial variance. Can still work in practice.

Conclusions regarding Eligibility Traces

- Provide an efficient, incremental way to combine MC and TD
 - Includes advantages of MC (better when non-Markov)
 - Includes advantages of TD (faster, comp. congenial)
- True online $TD(\lambda)$ is new and best
 - Is exactly equivalent to online λ -return algorithm
- There is a true online $Sarsa(\lambda)$
- Three varieties of traces: accumulating, dutch, (replacing)
- Traces for prediction and on-policy control
- Traces for off-policy control and prediction
- Trace methods often perform better than *n*-step methods
- Traces do have a small cost in computation ($\approx x2$)