Eligibility Traces

Chapter 12



Eligibility traces are

@ Another way of interpolating between MC and TD methods
¢ A way of implementing compound A-return targets
@ A basic mechanistic idea — a short-term, fading memory
@ A new style of algorithm development/analysis
¢ the forward-view < backward-view transformation

@ Forward view:
conceptually simple — good for theory, intuition

@ Backward view:
computationally congenial implementation of the f. view
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Recall n-step targets

@ For example, in the episodic case,
with linear function approximation:

@ 2-step target:

: 2. T
Gipy2 = Rip1 + YRiqpo + 7 "Wy 1 X490

@ n-step target:

Gt:t—l—n = Rt—|—1 + -+ /Yn_lRt—l—n - ’YnW;r+n_1Xt+n



Any set of update targets can be averaged
to produce new compound update targets

A compound backup

@ For example, half a 2-step plus half a 4-step

1 1
U = iGt:t+2 + §Gt:t—|—4

—

@ Called a compound backup

@ Draw each component

N[

@ Label with the weights for that component



The A-return is a compound update target
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A-return Weighting Function

weight given to

T the 3-step return total area = 1
\ is (1 — \)\?

decay by A

weight given to
actual, final return
is ANT—t-1

Time —

s St |
G = (1—A) N Gren + ANMTUIG,
n=1
- ~ - T
Until termination After termination



Relation to TD(0) and MC

@ The A-return can be rewritten as:

1=

GY = (1—X) N ' Grapn + NG
n=1
~ ~ ~ —
Until termination After termination

e If A =1, you get the MC target:

T—t—1
Gt = (1-1) Y 1"'Gewn + 177Gt = Gy

n=1
e If A =0, you get the TD(0) target:
T—t—1

Gi\ — (1_0) Z On_th:t—l—n + OT_t_th — Gt:t—|—1

n=1



The off-line A-return “algorithm”

@ Wait until the end of the episode (offline)

@ Then go back over the time steps, updating

Wil = Wi+« Gi\ _@(Shwt) V@(Stawt)7 t = OaaT_l



The A-return alg performs similarly to n-step algs
on the 19-state random walk (Tabular)
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Intermediate A is best (just like intermediate n is best)
A-return slightly better than n-step



The forward view looks forward from the state being updated
to future states and rewards
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The backward view looks back
to the recently visited states (marked by eligibility traces)

@ Shout the TD error backwards

@ The traces fade with temporal distance by YA



The Semi-gradient TD(A) algorithm

Wit = Wi + 000 Z

Oy Riv1 +YO(Sta1,We) — 0(St,wy)

Z_1 = 0,
Z¢ = ’}/)\Zt_l + V@(St,wt)

New error bound:




Eligibility traces (mechanism)

@ The forward view was for theory

@ The backward view i1s for mechanism same shape as W

/

¢ New memory vector called eligibility trace z; [R®

@ On each step, decay each component by yA and
increment the trace for the current state by 1

@ Accumulating trace

Z_1 = 0,
Z¢ = ’7)\Zt_1 + V@(St,wt)

accumulating eligibility trace

times of visits to a state
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Semi-gradient TD()\) for estimating 0 = v,

Input: the policy 7 to be evaluated
Input: a differentiable function 9 : St x R? . R such that ¢(terminal,-) = 0

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):
Initialize S
z 0 (a d-dimensional vector)
Repeat (for each step of episode):
Choose A [z(-|S)
Take action A, observe R, S’
z — YAz + [o(Fw)
0 « R+~0(S",w)—0(S,w)
W« W+ Qoz
S 5

until S’ is terminal




TD(A) performs similarly to offline A-return alg.
but slightly worse, particularly at high «

Tabular 19-state random walk task

TD(V) Off-line A-return algorithm

(from the previous section)
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Can we do better? Can we update online?



The A-return can also be truncated at some horizon /&

h—t—1
Ghn = (1=X) > N7'Gupyn + NG, 0<t<h<T

n=1

n-step-truncated A-return method:

L1 L1
. A N
Witn = Witn—1 + 0 Giypp — 0(St,Witn—1) L8, Wiyn—1), 0=st<T



The A-return can also be truncated at some horizon /&

h—t—1
Ghn = (1=X) > N7 'Gupgn + NGy, 0<t<h<T

n=1

n-step-truncated A-return method:

L1 L1
. A R
Witn = Wipn—1 + 0 Gy = 0056, Wegpn—1) LilE,Wiin—1), O=st<T

For a reasonable 7, this may do better than TD(}A),
at the cost of the n-step delay of updates

R —




The A-return can also be truncated at some horizon /&

h—t—1
Ghn = (1=X) > N7 'Gupgn + NGy, 0<t<h<T

n=1

n-step-truncated A-return method:

L1 L1
. A R
Witn = Wipn—1 + 0 Gy = 056, Wign—1) L[O08,Wipn—1), O=st<T

For a reasonable 7, this may do better than TD(}A),
at the cost of the n-step delay of updates

e B

But even better is true online TD(A)

T — T —




True online TD(A) performs best of all
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Tabular 19-state random walk task
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Accumulating, Dutch, and Replacing Traces

@ All traces fade the same:

@ But increment differently!

| | | | | times of state visits

J\'\\ accumulating traces
K dutch traces

1 ™ replacing traces
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True online TD(A)

Wit = Wi + &5tZt + « (W;Xt — W;r_lxt) (Zt — Xt)

zt = YAZi—1 + (1 — ayAz,_1x:) X4 dutch trace



True online TD(\)

Wii] = Wy + ozétztEa (W;rXt — WtT_lxt) (zt — x@

Zy = YAZy_1 + (1 — Oé’YAZ;r_lXt) Xt dutch trace



True online TD(\)

Wii] = Wy + ozétztEa (WtTXt — WtT_lxt) (zt — xtD

Zy = YAZy_1 + (1604”)’)@;_1;9) X¢ dutch trace




Traces for control — Sarsa(A) (on-policy)

Wil = Wi + 055tZt
Ot = Riy1 +YG(Stq1, Arp1, Wi) — G(Se, Ar, Wy)

Z_ = O,

z; = YAz;_1 + Lg(3y, Ay, wy)



Sarsa()) is better than n-step Sarsa on Mountain Car
with tile-coding linear function approximation

Sarsa(\) with replacing traces n-step Sarsa
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Conclusions regarding Eligibility Traces

@ Provide an efficient, incremental way to combine MC and TD
@ Includes advantages of MC (better when non-Markov)
@ Includes advantages of TD (faster, comp. congenial)

@ True online TD()) is new and best
¢ Is exactly equivalent to online A-return algorithm

@ Three varieties of traces: accumulating, dutch, (replacing)

@ Traces for prediction and on-policy control

@ Trace methods often perform better than n-step methods

@ Traces do have a small cost in computation (=X2)
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True online TD(A)

Wit = Wi + &5tZt + « (W;Xt — W;r_lxt) (Zt — Xt)

zt = YAZi—1 + (1 — ayAz,_1x:) X4 dutch trace



True online TD(\)

Wii] = Wy + ozétztEa (W;rXt — WtT_lxt) (zt — x@

Zy = YAZy_1 + (1 — Oé’YAZ;r_lXt) Xt dutch trace



True online TD(\)

Wii] = Wy + ozétztEa (WtTXt — WtT_lxt) (zt — xtD

Zy = YAZy_1 + (1604”)’)@;_1;9) X¢ dutch trace




The online A-return alg uses a truncated A-return
as 1ts target

h—t—1
Grp = (1=XN) Y N 'Gupn + NG, 0<t<h<T

n=1

horizon h = t+3

h - o h A < h h '
wh, = wl+a [Gt:h — (S, w! )] (&8, w) There 1s a separate
w sequence for each /!



The online A-return algorithm

wh = w4 o [GY), —0(S,,wh)] LS, wh) There 1s a separate
w sequence for each h!



The online A-return algorithm

Wiiq

h=1
h =2
h=3

1 A
WO —l_ a GO:]_ -
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2 D)\
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/IA}(SOnWO)
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The online A-return algorithm

wh = w4 o [GY), —0(S,,wh)] LS, wh) There 1s a separate
w sequence for each h!

h=1: wi=wi+a Gy, —i(So,ws) LilSo,wp)

|:|
h=2: W% = Wg + d |:|GO ’IA}(S(),WO) mg,wo)

wi = wi + O G1:2 — 9(S1,wi) mla“ﬁ)

T T T T
: W) Wi W5 Wj
h=3: w)=wp+

a
wi = WS + 0
a

(SOvWO) mOvWO)
— 0(S1,wW?3) IZZCfl?l,wl) True online TD(\)
— 0(So,w3) IZZ(IfQ,w2) computes just the

diagonal, cheaply

(for linear FA)

@>

3 . 3
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The simplest example of deriving a backward view
from a forward view

@ Monte Carlo learning of a final target
¢ Will derive dutch traces
@ Showing the dutch traces really are not about TD

@ They are about efficiently implementing online algs



The Problem:
Predict final target G with linear function approximation

episode

Time 0 1 2 ce. T T
Data X0 X1 X2 ... XT-1 (G
Weights Wo Wgo Wop .. Wgp WT
Predictions Wy Xo Wy X; WgX2 ... WgXT_1
~ G

MC: Wil = Wi + Oét(G — W;l_Xt)Xt

step size

all done attime T



Computational goals

Computation per step (including memory) must be
1. Constant. (non-increasing with number of episodes)
2. Proportionate. (proportional to number of weights, or O(n))

3. Independent of span. (not increasing with episode length) In
general, the predictive span is the number of steps between
making a prediction and observing the outcome

MC: Wt_|_1th—|-Oé[G—th;tl]Xt, t:O,...,T—l
/

step size all done attime T



Computational goals
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general, the predictive span is the number of steps between
making a prediction and observing the outcome
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/

- , What is the span?
step size all done attime T P
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Computational goals

Computation per step (including memory) must be
1. Constant. (non-increasing with number of episodes)
2. Proportionate. (proportional to number of weights, or O(n))

3. Independent of span. (not increasing with episode length) In
general, the predictive span is the number of steps between
making a prediction and observing the outcome

MC: Wt_|_1th—|-Oé[G—th;tl]Xt, t:O,...,T—l
— What is the span? T

step sizo all done attime T ls MC indep of span?
S | '



Computational goals

Computation per step (including memory) must be
1. Constant. (non-increasing with number of episodes)
2. Proportionate. (proportional to number of weights, or O(n))

3. Independent of span. (not increasing with episode length) In
general, the predictive span is the number of steps between
making a prediction and observing the outcome

MC: Wt_|_1th—|-Oé[G—th;tl]Xt, t:O,...,T—l
— What is the span? T

step size all done attime T |
Is MC indep of span? No



Computational goals

Computation per step (including memory) must be

1. Constant. (non-increasing with number of episodes)

2. Proportionate. (proportional to number of weights, or O(n))

3. Independent of span. (not increasing with episode length) In
general, the predictive span is the number of steps between
making a prediction and observing the outcome

MC: Wi = Wi + [G — th;tl] X¢,
/

step size

all done attime T

t=0,....T—1

Computation and memory needed
at step T increases with T'= not |0S



Final Result

Given:
Wo X0,X1,X2,...,XT—1 G
MC algorithm:
1 1
Witq :Wt+Oz(G—W2—Xt)Xt, t=0,...,7—1
Equivalent independent-of-span algorithm:
W = ar_q1 + GZT_l, a; € Rd, Z © Rd
aOiWO, then atiat_l—cvtxtXtTat_l, t = 1,,T—1

Zo = pXg, then z, =z, — OétXtX;th—l + apxy, t=1 T —1

9 o o oy

Proved:
Wt = Wy  (the final weights of both algorithms are the same)



|| 1

MC: Wt+1=Wt+a(G—Wtht)xt, t=0,....,T—1

— —

L1
wr =wr—1+0 G— |v:V|T_1XT_1 X7T—1
1 I:I
— V\Ile-v_l -+ GXT_l _XT_le—l + aGXT-l
= I— GXT—1XE wr—1 + 0Gxr—1

= Fr—ywr—1 +aGxr—;

where F; = I — ax;xd a forgetting, or fading, matrix. Now, recursing,
=Fr_1 (Fr—owp—o + aGx7—2) + AGxX7—1
=Fr_1Frowr—o+0G (Fr—1xp—9 + X7p—1)
=Fr—1Fr—2 (Fr—3wr—3 + 0Gxr—3) + OG (Fr—1X7—2 + X7-1)

=Fr 1 FroFr swr 3+ 0G (Fr—1Froxr—3+Fr_1xp—2 +xX7-1)

'
= ]E‘_jlﬂ_lFT_f_l-_i . F()W(?_I—I— aG Fr—1Fr—o--- Fk_|_1Xk

ar—i = M0 ]
Z7—1

= ar—1 + aGzp—1, auxiliary short-term-memory vectors a; € Rd, Zi € R4



4 R
=3 Fr_o.-.-Fowg_+ aG Fr—1Fpr—o--- Fk_|_1Xk
1 Fr 317 Fowo—

ar—i = M0 ]
Z7—1

= ap—1 + aGzr—1,



= ]El;tl"_lFT_l_gt»_i_i . F()W(?_I—l— aGG Fr—1Fpr—o--- F;H_le
ar—1 = [T1]

= ap—1 + aGzr—1,

'
iZFtFt—l"'Fk+1xk, 1<t<T

1
g
Ve
L

=
S
t

o
=S

+
%

T
= (I — XX, ) Zi_1 + Xt
T
= Zi—1 — XXy Zy 1 + Xy
T
=Z4 1 — (zt_lxt) X+ + X¢

=Zi_ 1+ (1 — ozth_lxt) X4,

= FFi—1---Fowg = Fay—1 = ay—1 —axyX,

t—1

1=st<T



Final Result

Given:
Wo X0,X1,X2,...,XT—1 G
MC algorithm:
1 1
Witq :Wt+Oz(G—W2—Xt)Xt, t=0,...,7—1
Equivalent independent-of-span algorithm:
W = ar_q1 + GZT_l, a; € Rd, Z © Rd
aOiWO, then atiat_l—cvtxtXtTat_l, t = 1,,T—1

Zo = pXg, then z, =z, — OétXtX;th—l + apxy, t=1 T —1

9 o o oy

Proved:
Wt = Wy  (the final weights of both algorithms are the same)



Conclusions from the forward-backward derivation

@ We have derived dutch eligibility traces from an MC update,
without any TD learning

@ Dutch traces, and in fact all eligibility traces, are not about TD;
they are about efficient multi-step learning

@ We can derive new non-obvious algorithms that are equivalent
to obvious algorithms but have better computational properties

@ This is a different type of machine-learning result,
an algorithm equivalence



True online Sarsa(A) results on Mountain Car

1

-150
True Online Sarsa()\)

T

-200
v Sarsa(\) with replacing traces
-250

T

- Sarsa(A) with replacing traces
and clearing the traces of other actions

Mountain Car -

Reward per episode
averaged over
first 20 episodes
and 100 runs

=350

-400
N

-450

T

Sarsa(\) with accumulating traces

-500
q

_550 Il Il Il Il Il Il Il Il J
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

U x number of tilings (8)

Adapted from van Seijen and Sutton (2014)



Other traces for Q: Original Watkins Q(A)

Watkins’s Q(A)

S I P
D S S G S
LA S GRS G
R SRR S O
L
—1 o ' és ISM Rify



Other traces for Q: Tree-Backup(A)

Tree Backup(A)

ttttt



Other traces for Q: Tree-Backup(A)

Update Rules
Z: = Y NI AL Se)ze—1 + La(Fy, Ay, wy)

Wil = Wi + 000, Zy

@ No importance sampling

@ No guarantees of stability when used off-policy with
powerful function approximation



Off-policy Traces with importance sampling

@ Learning about an arbitrary policy typically requires the
use of importance sampling ratios between the behavior

policy and the target policy. pr=1" ((i:'l gt))

@ We define state based returns, and a forward view update.
G = e Resn £Y 01 (1= At )olSiaawn) £ Aa G+ (1= p)i(Stwe)
Wip1 = Wy + O G?S_—I 0(S¢,we)  Lol8:,wy)
@ After some work (Section 12.9), we get another trace.
ze = pr (Vi iZi—1 + VO(S,wy))
Wil = Wi + 000; 2
@ This is not guaranteed to be stable with strong function

approximation, and importance sampling can introduce
substantial variance. Can still work in practice.



Conclusions regarding Eligibility Traces

@ Provide an efficient, incremental way to combine MC and TD
@ Includes advantages of MC (better when non-Markov)
@ Includes advantages of TD (faster, comp. congenial)

@ True online TD(A) is new and best
¢ Is exactly equivalent to online A-return algorithm

@ There is a true online Sarsa(A)

@ Three varieties of traces: accumulating, dutch, (replacing)

@ Traces for prediction and on-policy control

@ Traces for off-policy control and prediction

@ Trace methods often perform better than n-step methods

@ Traces do have a small cost in computation (=X2)
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