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Outline
• Backgammon (双陆棋)


• Checkers (⻄西洋跳棋)


• Daily-Double Wagering in Jeopardy!


• Optimal Memory Control


• Human-level Video Game Play


• Game of Go (围棋)


• Personalized Web Services


• Thermal Soaring (热动⼒力力滑翔)



Backgammon Rules

http://www.247backgammon.org

http://www.247backgammon.org


Tesauro’s TD-Gammon 0.0

gradient from BP

198 input units:  
4(num of pieces)*2(black/white)*24(points)  
+ 2(pieces removed from board) + 2(pieces on the bar)  
+ 2(black/white turn)



Other Versions of TD-
Gammon

• TD-Gammon 1.0: add specialized backgammon features 
• TD-Gammon 2.0: add selective two-ply search procedure, 

with 40 hidden units 
• TD-Gammon 2.1: add selective two-ply search procedure, 

with 80 hidden units 
• TD-Gammon 3.0: selective three-ply search procedure, with 

169 hidden units



Samuel’s Checkers Player
• minmax procedure: leaf (value function) -> root (backed-up 

value)


• rote-learning: save a description of each board position 
encountered during play together with their backup value


• a sense of direction: decreasing a position’s value a small 
amount each time it was backed up

http://www.247checkers.com/

http://www.247checkers.com/


Samuel’s Checkers Player

• learning by generalization: modify the parameters of the 
value function



Samuel’s Checkers Player
• Problems


• no rewards upon the end of game -> value function 
become consistent merely by giving a constant to all 
positions


• temporary solution: give piece-advantage a large, non-
modifiable weight & set other weights back to zero if 
they gain large absolute values


• Aware the value of a state should equal to the value of 
likely following state, but there’s no TRUE value defined. 



Daily-Double Wagering in 
Jeopardy! : Rules

• First two rounds: select a 
clue, announce the clue, first 
buzzing in to answer


• DD: bet more than $5 and 
less than owned


• Final round: seal the answer 
and bet


• Information is incomplete



WATSON

• decrease downside risk


• decrease estimated confidence on itself


• prevent large bet

estimated from practice data

learn from LR (play against human model)



WATSON: Result

• win rate from 61% to 67%


• considering DD is needed only 1.5~2 times in each game



Optimizing Memory Control
• DRAM structure: w/r via row buffer


• DRAM operation


• row commands: activate / precharge


• column commands: read / write


• Objective: minimize latency / maximize throughput


• Planning can minimize latency, e.g. execute several 
column commands on the same row together



Optimizing Memory Control:  
Turn into RL Problem

• reward: r/w -> 1 otherwise -> 0


• state: contents of transaction queue


• state feature: 6 integer vector and tile coding


• action: precharge, activate, read, write, noOp 


• make system safe from timing and resource restrictions: 
noOp


• SARSA with linear approximation



Optimizing Memory Control:  
Result



Human-level Video Game 
Play: Problem Description

• Atari Games: 210x160 pixels 128-color 60Hz video games


• Objective: 


• up to 18 kinds of operations


• score as high as possible


• same algorithm and neural network structure for 40+ different 
games



Human-level Video Game 
Play: Detail

• DQN


• reward:


• score increase in the next step: +1


• score decrease in the next step: -1


• score unchanged: 0


• reward can work regardless of different score ranges in 
different games



Human-level Video Game 
Play: Detail

• 210x160 pixels 128-color -> 84x84 illuminant pixel and 4 
recent frames


• Q(s, a) is given by a neural network


• input: 84x84x4


• output: 18 (corresponding to up to 18 operations)


• structure: Conv(20x20x32) Conv(9x9x64) Conv(7x7x64) 
FC(512) Out(18)  activation: ReLU



Human-level Video Game 
Play: Contribution

• experience replay: add tuple to replay memory and Q-
learning update a mini-batch uniformly sampled from 
replay memory


• advantage:


• each experience can be learned multiple times


• reduce variance in weight updating


• reduce instability induced by experiences based on 
similar weights



Human-level Video Game 
Play: Contribution

• use a duplicated network:


• weights in duplicated network updated every C steps


• reduce instability



Human-level Video Game 
Play: Results

• Training: 50 million frames (38 days of experience)


• Testing: 5min session x 30 (with random initial state)


• Testing for human: 2hrs practice, 5min x 20


• compared by score


• 29/46 games reached or exceeded human level (greater 
or equal to 75% of human’s score)



The Game of Go: 
Problem Description

• Game of Go


• Difficulty:


• Search space is significantly large


• Not easy to find a simple evaluation function



The Game of Go: 
Runtime Frame Work

• APV-MCTS


• expansion: by SL policy network


• simulation: by rollout policy


• evaluation: searched reward together with a value 
network



The Game of Go: 
AlphaGo Pipeline



The Game of Go: 
Detail

• input feature: 19x19x48 many special designed feature for 
the game of go - binary/integer value


• self-play against a randomly selected policies produced 
by earlier iterations of learning algorithm -> prevent 
overfitting



The Game of Go: 
AlphaGo Zero



Personalized Web Services

Greedy Optimization                    →      LTV Optimization

(iteratively)



Thermal Soaring

State feature: local vertical wind speed, local vertical wind accelerate, torque  
by wind, local temperature 
Actions: (increase/decrease) (bank angle/ angle of attach) (0, 2.5°, 5°) 
Objective: gain as much altitude as possible 
Method: SARSA (Simulation by 2.5min episodes with 1s time step in 1km3 box)



Summary
• Backgammon 


• Checkers


• Daily-Double Wagering in Jeopardy!


• Optimal Memory Control


• Human-level Video Game Play


• Game of Go


• Personalized Web Services


• Thermal Soaring


