
Application and Case
Studies

Reinforcement Learning Seminar

19 Jan 2018

�1

Outline
• Backgammon (双陆棋)

• Checkers (⻄西洋跳棋)

• Daily-Double Wagering in Jeopardy!

• Optimal Memory Control

• Human-level Video Game Play

• Game of Go (围棋)

• Personalized Web Services

• Thermal Soaring (热动⼒力力滑翔)

Backgammon Rules

http://www.247backgammon.org

http://www.247backgammon.org

Tesauro’s TD-Gammon 0.0

gradient from BP

198 input units:
4(num of pieces)*2(black/white)*24(points)
+ 2(pieces removed from board) + 2(pieces on the bar)
+ 2(black/white turn)

Other Versions of TD-
Gammon

• TD-Gammon 1.0: add specialized backgammon features
• TD-Gammon 2.0: add selective two-ply search procedure,

with 40 hidden units
• TD-Gammon 2.1: add selective two-ply search procedure,

with 80 hidden units
• TD-Gammon 3.0: selective three-ply search procedure, with

169 hidden units

Samuel’s Checkers Player
• minmax procedure: leaf (value function) -> root (backed-up

value)

• rote-learning: save a description of each board position
encountered during play together with their backup value

• a sense of direction: decreasing a position’s value a small
amount each time it was backed up

http://www.247checkers.com/

http://www.247checkers.com/

Samuel’s Checkers Player

• learning by generalization: modify the parameters of the
value function

Samuel’s Checkers Player
• Problems

• no rewards upon the end of game -> value function
become consistent merely by giving a constant to all
positions

• temporary solution: give piece-advantage a large, non-
modifiable weight & set other weights back to zero if
they gain large absolute values

• Aware the value of a state should equal to the value of
likely following state, but there’s no TRUE value defined.

Daily-Double Wagering in
Jeopardy! : Rules

• First two rounds: select a
clue, announce the clue, first
buzzing in to answer

• DD: bet more than $5 and
less than owned

• Final round: seal the answer
and bet

• Information is incomplete

WATSON

• decrease downside risk

• decrease estimated confidence on itself

• prevent large bet

estimated from practice data

learn from LR (play against human model)

WATSON: Result

• win rate from 61% to 67%

• considering DD is needed only 1.5~2 times in each game

Optimizing Memory Control
• DRAM structure: w/r via row buffer

• DRAM operation

• row commands: activate / precharge

• column commands: read / write

• Objective: minimize latency / maximize throughput

• Planning can minimize latency, e.g. execute several
column commands on the same row together

Optimizing Memory Control:
Turn into RL Problem

• reward: r/w -> 1 otherwise -> 0

• state: contents of transaction queue

• state feature: 6 integer vector and tile coding

• action: precharge, activate, read, write, noOp

• make system safe from timing and resource restrictions:
noOp

• SARSA with linear approximation

Optimizing Memory Control:
Result

Human-level Video Game
Play: Problem Description

• Atari Games: 210x160 pixels 128-color 60Hz video games

• Objective:

• up to 18 kinds of operations

• score as high as possible

• same algorithm and neural network structure for 40+ different
games

Human-level Video Game
Play: Detail

• DQN

• reward:

• score increase in the next step: +1

• score decrease in the next step: -1

• score unchanged: 0

• reward can work regardless of different score ranges in
different games

Human-level Video Game
Play: Detail

• 210x160 pixels 128-color -> 84x84 illuminant pixel and 4
recent frames

• Q(s, a) is given by a neural network

• input: 84x84x4

• output: 18 (corresponding to up to 18 operations)

• structure: Conv(20x20x32) Conv(9x9x64) Conv(7x7x64)
FC(512) Out(18) activation: ReLU

Human-level Video Game
Play: Contribution

• experience replay: add tuple to replay memory and Q-
learning update a mini-batch uniformly sampled from
replay memory

• advantage:

• each experience can be learned multiple times

• reduce variance in weight updating

• reduce instability induced by experiences based on
similar weights

Human-level Video Game
Play: Contribution

• use a duplicated network:

• weights in duplicated network updated every C steps

• reduce instability

Human-level Video Game
Play: Results

• Training: 50 million frames (38 days of experience)

• Testing: 5min session x 30 (with random initial state)

• Testing for human: 2hrs practice, 5min x 20

• compared by score

• 29/46 games reached or exceeded human level (greater
or equal to 75% of human’s score)

The Game of Go:
Problem Description

• Game of Go

• Difficulty:

• Search space is significantly large

• Not easy to find a simple evaluation function

The Game of Go:
Runtime Frame Work

• APV-MCTS

• expansion: by SL policy network

• simulation: by rollout policy

• evaluation: searched reward together with a value
network

The Game of Go:
AlphaGo Pipeline

The Game of Go:
Detail

• input feature: 19x19x48 many special designed feature for
the game of go - binary/integer value

• self-play against a randomly selected policies produced
by earlier iterations of learning algorithm -> prevent
overfitting

The Game of Go:
AlphaGo Zero

Personalized Web Services

Greedy Optimization → LTV Optimization

(iteratively)

Thermal Soaring

State feature: local vertical wind speed, local vertical wind accelerate, torque
by wind, local temperature
Actions: (increase/decrease) (bank angle/ angle of attach) (0, 2.5°, 5°)
Objective: gain as much altitude as possible
Method: SARSA (Simulation by 2.5min episodes with 1s time step in 1km3 box)

Summary
• Backgammon

• Checkers

• Daily-Double Wagering in Jeopardy!

• Optimal Memory Control

• Human-level Video Game Play

• Game of Go

• Personalized Web Services

• Thermal Soaring

