Stock Price Prediction via Discovering Multi-Frequency Trading Patterns

Liheng Zhang University of Central Florida 4000 Central Florida Blvd. Orlando, Florida 32816 lihengzhang1993@knights.ucf.edu Charu Aggarwal IBM T. J. Watson Research Center New York 10598 charu@us.ibm.com Guo-Jun Qi^{*} University of Central Florida 4000 Central Florida Blvd. Orlando, Florida 32816 guojun.qi@ucf.edu

SRT Group Zhang Chuheng 2018-05-12

Motivation

- Strategies are based on different patterns on different frequencies
- **DFT** transform time domain to frequency domain
- RNN can learn temporal patterns from nonlinear and non-stationary data
- LSTM, a variant of RNN, can capture long-term dependency of stock price

- Input gate regulates the allowed amount of new information flowing into the memory cell
- Forget gate controls how much information should be kept in the cell
- **Output gate** defines the amount of information that can be output

Recap: DFT

Recap: DFT

SFM

 $i_t = \text{sigmoid}(W_i x_t + U_i h_{t-1} + b_i)$ $f_t = \operatorname{sigmoid}(W_f x_t + U_f h_{t-1} + b_f)$ activation function data vector $\tilde{c_t} = \tanh(W_c x_t + U_c h_{t-1} + b_c)$ data matrix outer product X $c_t = i_t \circ ilde{c_t} + f_t \circ c_{t-1}$ element-wise multiplication $o_t = \operatorname{sigmoid}(W_o x_t + U_o h_{t-1} + V_o c_t + b_o)$ 0 sigmoid $h_t = o_t \circ \tanh(c_t)$ S_{t-1} $i_t = \text{sigmoid}(W_i x_t + U_i h_{t-1} + b_i)$ decomposition $m{f_t^{ste}} = ext{sigmoid}(m{W_{ste}}m{x_t} + m{U_{ste}}m{h_{t-1}} + m{b_{ste}}) \in \mathbb{R}^D$ F $m{f_t^{fre}} = ext{sigmoid}(m{W_{fre}}m{x_t} + m{U_{fre}}m{h_{t-1}} + m{b_{fre}}) \in \mathbb{R}^K$ $F_t = f_t^{ste} \otimes f_t^{fre} \in \mathbb{R}^{D imes K}$ $ilde{c_t} = anh(W_c x_t + U_c h_{t-1} + b_c)$ h 1-1 $\mathbf{S_t} = \mathbf{F_t} \circ \mathbf{S_{t-1}} + (\mathbf{i_t} \circ \mathbf{\tilde{c_t}}) \begin{bmatrix} e^{j\omega_1 t} \\ e^{j\omega_2 t} \\ \dots \\ e^{j\omega_K t} \end{bmatrix}^T \in \mathbb{C}^{D \times K}$ X. SFM $oldsymbol{A}_{oldsymbol{t}} = |oldsymbol{S}_{oldsymbol{t}}| = \sqrt{(Reoldsymbol{S}_{oldsymbol{t}})^2 + (Imoldsymbol{S}_{oldsymbol{t}})^2} \in \mathbb{R}^{D imes K}$ $o_t = ext{sigmoid}(W_o x_t + U_o h_{t-1} + V_o c_t + b_o)$ $\angle \boldsymbol{S_t} = \arctan(\frac{Im\boldsymbol{S_t}}{Re\boldsymbol{S_t}}) \in [-\frac{\pi}{2}, \frac{\pi}{2}]^{D \times K}$ $h_t = o_t \circ c_t$

frequency components

σ

composition

St

h,

 $\begin{aligned} \mathbf{i}_{t} &= \operatorname{sigmoid}(\mathbf{W}_{i}\mathbf{x}_{t} + \mathbf{U}_{i}\mathbf{h}_{t-1} + \mathbf{b}_{i}) \\ \mathbf{f}_{t}^{ste} &= \operatorname{sigmoid}(\mathbf{W}_{ste}\mathbf{x}_{t} + \mathbf{U}_{ste}\mathbf{h}_{t-1} + \mathbf{b}_{ste}) \in \mathbb{R}^{D} \\ \mathbf{f}_{t}^{fre} &= \operatorname{sigmoid}(\mathbf{W}_{fre}\mathbf{x}_{t} + \mathbf{U}_{fre}\mathbf{h}_{t-1} + \mathbf{b}_{fre}) \in \mathbb{R}^{K} \\ \mathbf{F}_{t} &= \mathbf{f}_{t}^{ste} \otimes \mathbf{f}_{t}^{fre} \in \mathbb{R}^{D \times K} \\ \mathbf{\tilde{c}}_{t} &= \operatorname{tanh}(\mathbf{W}_{c}\mathbf{x}_{t} + \mathbf{U}_{c}\mathbf{h}_{t-1} + \mathbf{b}_{c}) \\ \mathbf{S}_{t} &= \mathbf{F}_{t} \circ \mathbf{S}_{t-1} + (\mathbf{i}_{t} \circ \mathbf{\tilde{c}}_{t}) \begin{bmatrix} e^{j\omega_{1}t} \\ e^{j\omega_{2}t} \\ \dots \\ e^{j\omega_{K}t} \end{bmatrix}^{T} \in \mathbb{C}^{D \times K} \\ \mathbf{c}_{t} &= \operatorname{tanh}(\mathbf{A}_{t}\mathbf{u}_{a} + \mathbf{b}_{a}) \begin{bmatrix} e^{j\omega_{1}t} \\ e^{j\omega_{K}t} \end{bmatrix}^{T} \\ \mathbf{o}_{t} &= \operatorname{sigmoid}(\mathbf{W}_{o}\mathbf{x}_{t} + \mathbf{U}_{o}\mathbf{h}_{t-1} + \mathbf{V}_{o}\mathbf{c}_{t} + \mathbf{b}_{o}) \\ \mathbf{h}_{t} &= \mathbf{o}_{t} \circ \mathbf{c}_{t} \end{aligned}$

Price prediction is a simple linear transform of latest hidden state $\hat{v}_{t+n} = w_p h_t + b_p$ Loss is the standard mean squared loss $\mathcal{L} = \sum_{m=1}^{M} \sum_{t=1}^{T} (v_{t+n}^m - \hat{v}_{t+n}^m)^2$

V_t

v is normalized price

Experiment

• Dataset: top five stocks with largest market capitalization in each sector in US market

basic materials	cyclicals 1	energy	financials	healthcare	industrials	non-cyclicals $^{\rm 2}$	technology	telecommunications 3	utilities
BHP	AMZN	CVX	BAC	JNJ	BA	KO	AAPL	CHL	D
DOW	CMCSA	\mathbf{PTR}	BRK-B	MRK	\mathbf{GE}	MO	GOOGL	DCM	DUK
RIO	DIS	RDS-B	JPM	NVS	MA	PEP	INTC	NTT	EXC
\mathbf{SYT}	HD	TOT	SPY	\mathbf{PFE}	MMM	\mathbf{PG}	MSFT	Т	NGG
VALE	TM	XOM	WFC	UNH	UPS	WMT	ORCL	VZ	\mathbf{SO}

• Result: smaller squared error compared with AR and LSTM

	1-step	3-step	5-step
AR	6.01	18.58	30.74
LSTM	5.93	18.38	30.02
\mathbf{SFM}	5.57	17.00	28.90

$$oldsymbol{S_t} = oldsymbol{F_t} \circ oldsymbol{S_{t-1}} + (oldsymbol{i_t} \circ oldsymbol{ ilde c_t}) egin{bmatrix} e^{j\omega_1 t} \ e^{j\omega_2 t} \ ... \ e^{j\omega_K t} \end{bmatrix}^T \in \mathbb{C}^{D imes K}$$

 Hidden state dimension: #patterns expected to explore on each frequency

# of states	10	20	40	50
1-step	5.57	5.79	6.15	5.91
3-step	18.48	19.20	17.25	17.00
5-step	29.48	29.84	31.30	28.90

• #frequencies: how many frequency levels expected to explore

# of frequencies	5	10	15	20
1-step	6.69	5.91	5.91	5.88
3-step	18.39	17.00	19.15	19.52
5-step	30.95	28.9	30.57	31.22

注

•
$$\bigstar$$
 T $S_t = F_t \circ S_{t-1} + (i_t \circ \tilde{c}_t) \begin{bmatrix} e^{j\omega_1 t} \\ e^{j\omega_2 t} \\ ... \\ e^{j\omega_K t} \end{bmatrix}^T \in \mathbb{C}^{D \times K}$

- S的储存一直是复数, 直到output的时候才变成幅值
- 如果认为F都是1(不遗忘),那么S可以展开为 $S_t = \sum_{t'=1}^{t} x_t' \Omega_{t'}, x_t = i_t \circ \tilde{c}_t, \Omega$ 是傅里叶基底,那么一行是对于 $d \in [D]$ 这个hidden state的时序上面的傅里叶变换