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Recurrent Neural Networks (RNN)
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CNN: parameter sharing in space
CNN: %E Iﬂi/\%/ ;&

RNN: parameter sharing in time (suitable for sequences, in particular sequences with variable lengths)

RNN: 7ZEBTE] FHESH GE& TR, THEZKFFD
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Basics

Character-level
language model
example
FRFRAE 5 Y
Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars: ‘e’
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* Learns time dependency gradually:
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"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



“Proot” generated by RNN

* Training data — an algebraic geometry book Fi—AR% LA 1l 25

For @, . where L, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xp U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, ?? and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= UU, XS, U,
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy, is a scheme where x, 2’ 5" € S’ such that Ox .+ — O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S”)
and we win.
To prove study we see that F|y is a covering of A”, and T; is an object of Fx/gs for

i >0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M*=1I° 'SSpc('(k) 05.5 = ‘,_\I}-)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) ¢ (Sch/S) ppr

and

7 =T'(S,0) — (U.Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. 0
The result for prove any open covering follows from the less of Example ??. It may
replace S by X,paces.étate Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim | X| (by the formal open covering X and a single map ij\,(A) =
Spee(B) over U compatible with the complex
Set(A) =T'(X, 0,\'.0.\.).

When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition ?7?
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T' is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [],-, ., Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.

The following lemma surjective restrocomposes of this implies that F, = F, =

';-.\'. w0

Lemma 0.2. Let X be a locally Noctherian scheme over S, E = Fys. Set I =
Jy CT. Since I" C I" are nonzero over ig < p is a subset of J, o 0 Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma 77 we see that

D(Ox+) = Ox(D)
where K is an F-algebra where 4,4, is a scheme over S. O




static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); Generated

if (state)

cmd = (int)(int_state " (in_8(&ch->ch_flags) & Cmd) ? 2 : 1); C COde

else
seq = 1;
for (i = 0; i < 16;: i++) { RNNAE B Y CAAY
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000£ff£££££f8) & 0x000000£f) << B;
if (count == 0)
sub(pid, ppc md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}

NIl = P WS e s g e e e e ] 239y . oy q o all = by
Our usger pages pointer to piace camera 1I all dash

8

subsystem info = &of changes[PAGE SIZE];

rek controls(offset, idx, &soffset);

/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);

for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");



RNN

» Self feedback loop
RNN H % 157
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* Unroll/Unfold a RNN in time
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RNN

o Hi Nlnput: (—ZH.|a) &= a list of vectors) T1,..., Tt 1, Tty Tpi1s-n., T
o fE—BFZ) In each time step: y y y
hy_4 h, e
ol v ol w e
. —> > >
hy = o (W(hh)ht—l + W(hx)ﬂ’:[t]) I_)i "’: ‘» :

” . S |
i = 50ftmax(W( )hf,) [....] [..,.]

(0000

Wwkh) ¢ RPnxDn  p(he) c pPrxd 7 (S) ¢ RIVIXDn

Key idea: we use the same set of W weights at all time steps!
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X A]RNN Bi-directional RNN

Qutput Layer

Backward Layer

Forward Layer

Input Layer

Figure 3.5: An unfolded bidirectional network. 5ix distinct sets of weights
are reused at every timestep, corresponding to the input-to-hidden, hidden-to-
hidden and hidden-to-output connections of the two hidden layers. Note that no
information flows between the forward and backward hidden layers; this ensures
that the unfolded grnp% m-.vr.llé

fort=1to T do
Forward pass for the forward hidden layer, storing activations at each
timestep

fort =T to 1 do
Forward pass for the backward hidden layer, storing activations at each
timestep

for all ¢, in any order do
Forward pass for the output layer, using the stored activations from both
hidden layers

Algorithm 3.1: BRNN Forward Pass

for all £, in any order do
Backward pass for the output layer, storing 0 terms at each timestep
Far + — T +n An

BPTT backward pass for the forward hidden layer, using the stored ¢ terms
from the output layer

fort=1to T do
BPTT backward pass for the backward hidden layer, using the stored &
terms from the output layer

Algorithm 3.2: BRNN Backward Pass

Figure from Graves. Supervised Sequence Labelling with Recurrent Neural Networks




% XA RNN Deep Bi-directional RNN

@ @ @ [}
‘ v 4 ] -} ‘\ } - A I B
® S @ 9 @ & @ 2
Ah AT A AA T A AT AN AN
—(1) (1)

h(z) ‘e ® ‘o ® ‘e ® ‘— () (i-1)
‘ Y A A Y A AT A AN f (W h ¥ v h 1+l T

—»(:) — (1) = (1)

f(W h“”+V hiot +

—(L) «(L)

= g(U[ht ,hr ]+C)

—(i)

b )

(1)

b )



B0 RE N 9%/ X 1] it
Gradient Vanishing/Exploding problem

# dimensionality of hidden state

5
50 __# number of time steps ) ) ) ) )
= np.random. randn(H,H) if the largest eigenvalue is > 1, gradient will explode

If the largest eigenvalue is < 1, gradient will vanish

WRBRIFEE>1, BHEERIE

# forward pass of an RNN (ignoring inputs Xx)

hs = {}

i {} / AN

;2[-1] = np.random.randn(H) ﬁﬂ%%j{%&ﬁﬁ<1, Tﬁﬁ}%/ﬁﬁe

for t in xrange(T): [hh ey deq . _ . . '
Sl b s o can control exploding with gradient clipping

np.maximum(®, ss[t]) & L . ) 5
Re- can control vanishing with LSTM

dhs = {} F Gradient Clipping &b 3585 B 48 /E v) B
dss = {} FHLSTM A B A5 B ¥4 2k ] B

dhs[T-1] = np.random.randn(H) # start off fhe chain with random gradient
for t in reversed(xrange(T)):

L
dss[t] = (hs[t] > ©) * dhs[t] # bgfkprop through the nonlinearity &« BF ‘}'L\W RQ u
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state & 6‘(’ ‘l’\/\\f‘/ 3WY\0Y DWOQ

# backward pass of the RNN

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]
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Gradient Vanishing/Exploding problem

Similar but simpler RNN formulation:

by = Wf(ht_l)—l—W(hm)x[t]
g = WO f(hy)

Total error is the sum of each error at time steps t

OE < OF,

OW = oW
t=1

Hardcore chain rule application:
t

OE; Z OF; Oy; Ohy Ohy
ow e~ Oy Ohy Ohy, OW
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Gradient Vanishing/Exploding problem

% B i OFE; Oys |Ohy |Ohy,
8VV'__k:16%h Ohy |Ohy |OW

* Remember: he = Wi(he1) + WD gy
e More chain rule, remember:
(")h,-t : 8h,j

8]1,{; N ikt ahj—l
* Each partial is a Jacobian: ofi Of1]
af {é)f Of ] s
Ko T wml T,
“x 8'11 d.r | 8,](.?31 o {'fm.
L 01y Oy o
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Gradient Vanishing/Exploding problem

. . h ! ({)h h pr—— h

e From previousslide: —% — / = e =)
p 81& H é)hj_l : .
j=k i O
0 O
* Remember: h; = Wf(hi1)+ Wz 0 0]
= “ . E)h,j.?n

e To compute Jacobian, derive each element of matrix: o
7=—1.n

t

ol Oh ; : : /
il H - S H wdiag[f'(hj—1)]

(‘)hh 1 é)h_;,-_l jkt1

[

Check at home

that you understand
0 > the diag matrix

\ 2 ) formulation

o Where: diag(z) =
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Gradient Vanishing/Exploding problem

Analyzing the norms of the Jacobians, yields:

8hj
Oh,_1

Where we defined ‘s as upper bounds of the norms

< Wl diag[f' (hj-1)]ll < Bw B

The gradient is a product of Jacobian matrices, each associated
with a step in the forward computation.

t

8 h j
ahj_l

oh o
H ‘ < (BwBn) "

(9]“

This can become very small or very large quickly [Bengio et al
1994], and the locality assumption of gradient descent breaks
down. = Vanishing or exploding gradient



Gradient Clipping

0.35
0.30
0.25 .
o
0.20 5
Algorithm 1 Pseudo-code for norm clipping 0.15
- OE 0.10
A 0.05
if ||g|| > threshold then :
g g .thregfr.u!rfg
end if

Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.



 Keras Code

keras.layers.recurrent.SimpleRNN(units, activation="tanh', use_bias=True, kernel_initializer="'glorot_uniform’,
recurrent_initializer='orthogonal’, bias_initializer="'zeros', kernel_regularizer=None,

recurrent_regularizer=None, bias_regularizer=None, activity regularizer=None, kernel_constraint=None,
recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

« ZH ..
https://keras.io/lavers/recurrent/

Tensorflow

class tf.contrib.rnn.BasicRNNCell

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicRNNCell


https://keras.io/layers/recurrent/

Long Short Term Memory (LSTM)
S TRTRL VA i




Overview
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et gate

/
ot =0 (W, [he—1,24] + bo)
h; = oy * tanh (C})




In many papers, it looks like this
LSTMAE HAthpaperd I HEZ T

net-output h(t)

memory block
. outputgate-state

o(t)

i

fovpuaisterabate \ Lone eSS
ft) o) (< uy m
toCe sz l{ Thare i no Suy peehde,
" o Llos B G?J,:\J‘Q\e«.i\‘ do tla Penass
Tanh oM
4N R AT peehole, AN FI T PS54

.
L L LT T T L L L L L T P T

net-input: x(B) + hit-1) http://christianherta.de/lehre/dataScience/machinelLearning/neuralNetworks/LSTM.php



http://christianherta.de/lehre/dataScience/machineLearning/neuralNetworks/LSTM.php

e T T T T PP P PP

memory block

T e e PR T PP T PP s

outputgate-state

forgetgate-state

cell-state(s)

Inputgate-state

"1llDblaclloocllDbooalll.clllll--lll..ooclll.oolDlolclll.llaclloo.ll.loolllDbllclll..lllDooolllD.oal.loclll|lllalll.o.c|lloocll.ll¢¢ll...lcl

net-input: x(t) + h{t-1)

In the following a memory block has only one memory cell. So all cell (and gate) states of the complete hidd
Then the forward pass formulars for LSTM are (t is now an index as usual);

Input gates:
iy = o(TtWai + b1 Wi + €11 Wa + b;)

Forget gates:
fo=al@Wer+heaWip + ceaWep + by)

et
Cell units:

& = fy o8 1+ iy 0 tanh(ZWae + Byt We +b.)

Cutput gates:
6.*_ = U{E’f Wﬂ) 55 hvt—]_ﬂffw = Er_Wm = b.:})
‘—'\_,___-

The hidden activation (output of the cell) is alsa given by a product of two terms:
he = 6 o tanh(&;)

‘2" Is the Hadarmard product (element-wise multiplication).

per!

layer cal

[ ———

[Rnne C\““E‘AS

©

T

H Fhare 6 no sy peshde,

this 1 egivaled do the pravacs
(e

LT T T T TP

Forget Gate

be written as a vector €.

Input Gate

Block

Figure 4.2: LSTM memory block with one cell. The three gates are nionlin-
ear smmmation units that collect activations from inside and outside the block,
and control the activation of the cell via multiplications {small black circles).
The input and output. gates multiply the input and ontput of the coll while the
forget gate mmltiplics the cell’s previous state. No activation function is applied
within the cell. The gate activation function *f7 is usually the logistic sigmoid,
8o that the gate activations are between 0 (gate closed) and 1 (gate open). The
cell input and output activation fimctions (‘g' and ‘h’) are usually tanh or lo-
gistic sigmoid, though in some cases ‘b’ is the identity function. The weighted
‘peephole’ connections from the cell to the gates are shown with dashed lines
All other connections within the block are unweighted (or equivalently, have a
fixed weight of 1.0). The only outputs from the block to the rest of the network
emanate from the output gate multiplication.
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sigmoid -1
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tanh — | g

4n 4*n

21\, More compact

( sigm
f = 5]g11'1 W! (
0 s1gm
g tanh

{:ff :fﬂ)ﬂi_l""ﬂ‘ﬁjq

hi = 0 ® tanh(c})




An LSTM Network
LSTM X 2%

< het e retoork
UI"YDU'QDQ I ’JD'\M.Q_

Z IR BE R 18] &
R, % AE NfeedbackME45 5T

Figure 4.3: An LSTM network. The network consists of four input units, a
hidden layer of two single-cell LSTM memory blocks and five output units. Nof
all connections are shown. Note that each block has four inputs but only one
output.



How LSTM deal with gradient vanishing problem

LSTM UMAR] iR Ae B Y 2% ] et

~0%.2991¢

Q- @@ = = N

f

O
Wt 5& Sm
Inputs
Time 1 2 3 4 5 6 7

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (*—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and off by the
output gate without affecting the cell.

Figure from Graves. Supervised Sequence Labelling with Recurrent Neural Networks



Visualizing LSTM
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Visualizing LSTM

Color: cell state

If statement cell

»

LL
match_class_bits(int class, u3z *mask)

code depth cell



e Keras Code

keras.layers.recurrent.LSTM(units, activation="tanh’, recurrent_activation="'hard_sigmoid', use_bias=True,
kernel_initializer="glorot_uniform’, recurrent_initializer='orthogonal’, bias_initializer='zeros’, unit_forget_bias=True,

kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel _constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

« ZH:
https://keras.io/layers/recurrent/



https://keras.io/layers/recurrent/

GRU (Gated Recurrent Unit)



GRU (Gated Recurrent Unit)

YtCﬁ%wl How Wt A{* C%1&ﬁ£d;?;

v TJ’%ﬁaleht_leé?Tﬁf U?Z“ﬁ%‘ﬁﬂﬁfmu t
wfu%
» Update gate n=0 (W<~”~>;,-, + U(:m,_l)
* Reset gate re =0 (WP, + U0k )

* New memory content: hy = tanh (Wzy 4+ 7, 0 Uhy_1)

If reset gate unit is ~0, then this ignores previous 1 Freset gate 20, N ZME £ HiCZ, HidFHEE
memory and only stores the new word information

* Final memory at time step combines current and -
. BB A ne
previous time steps:  hy =z 0 hy_1 + (1 — 2z) 0 by REALILE T § ST ATART 1L



LSTM and GRU

GRU

(fewer parameters)



e Keras Code

keras.layers.recurrent.GRU(units, activation="tanh', recurrent_activation="'hard_sigmoid', use_bias=True,
kernel_initializer="glorot_uniform’, recurrent_initializer='orthogonal’, bias_initializer="'zeros', kernel_regularizer=None,

recurrent_regularizer=None, bias_regularizer=None, activity regularizer=None, kernel_constraint=None,
recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

« ZH:
https://keras.io/layers/recurrent/



https://keras.io/layers/recurrent/

Embedding #k A

« Embedding: Embed a high-dim vector to a low dim space 5 5 4 7] 2= WL 5 e (i 4 17 &=
 We first embed each word to a short vector as follows:

Iy = ‘wa :[Ii’
[mtor 0,0,1,0,....,0,0) |
Here, I, is an indicator column vector that has a single one o AT IR S B Sone-hot A &, ]

111 (0,0,1,0,....,0,0)
ohts T . ahaiil ¢ - Akae 2 %) o (HixMEAHKE, AEHBEZRAGHEML,
E?El'ghth ]['1/1_'“ hpemfly a wPrd embedding m:lit_nx thfi[ we ini B D 25 o EmbeddingB i o L 4E 11 B
tialize with 300-dimensional word2vec [}!] weights and . EEWHIEAL R Word2vecE i i 45 5L

keep fixed due to overfitting concerns.

at the index of the ¢-th word in a word vocabulary. The

Word2Vec is a very popular idea in natural language processing. Check it out for yourself.

Man - Woman + King = ? Answer: Queue.



Embedding #k A

* https://keras.io/layers/embeddings/

keras.layers.embeddings.Embedding(input_dim, output_dim, embeddings_initializer="uniform’,

embeddings_regularizer=None, activity regularizer=None, embeddings_constraint=None, mask_zero=False,
input_length=None)



https://keras.io/layers/embeddings/

Example Keras code

from keras.datasets import imdb

e https://keras.io/datasets/
e IMDB Movie reviews sentiment e e eriion,

maxlen=None,
seed=113,

classification

oov_char=2,
index_from=3)

* Dataset of 25,000 movies reviews from IMDB, labeled by sentiment
(positive/negative). Reviews have been preprocessed, and each review * Returns:

is encoded as a sequence of word indexes (integers). For convenience, o 2 tuples:

WOf'dS are indexed by overall frequency in the dataset: SO that fOf' = x_train, x_test: list of sequences, which are lists of indexes (integers). If the num_words argument was specific, the
instance the integer "3" encodes the 3rd most frequent word in the maximum possible index value is num_words-1. If the maxlen argument was specified, the largest possible sequence
data. This allows for quick filtering operations such as: "only consider length is maxlen.

the top 10,000 most common words, but eliminate the top 20 most = y_train, y_test: list of integer labels (1 or 0).

common words". + Arguments:

o path: if you do not have the data locally (at '~/.keras/datasets/' + path ), it will be downloaded to this location.

* As aconvention, "0" does not stand for a specific word, but instead is
used to encode any unknown word.

o num_words: integer or None. Top most frequent words to consider. Any less frequent word will appear as ocov_char
value in the sequence data.

o skip_top: integer. Top most frequent words to ignore (they will appear as ocov_char value in the sequence data).

o maxlen: int. Maximum sequence length. Any longer sequence will be truncated.

o seed: int. Seed for reproducible data shuffling.

o start_char: int. The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding
character.

o oov_char: int. words that were cut out because of the num_words or skip top limit will be replaced with this character.

o index_from: int. Index actual words with this index and higher.


https://keras.io/datasets/
https://keras.io/preprocessing/sequence/

https://github.com/fchollet/keras/blob/master/examples/imdb_Istm.py

K e ra S C O d e maxlen: None or int. Maximum sequence length, longer }

sequences are truncated and shorter sequences are
padded with zeros at the end.

"""Trains a LSTM on the IMDE sentiment classification task.

The dataset is actually too small for LSTM to be of any advantage print('Pad sequences (samples x time)')
compared to simpler, much faster methods such as TF-IDF + LogReg. ¥_train = sequence.pad_sequences(x_train, maxlen=maxlen)
Notes: ¥ _test = sequence.pad sequences(x test, maxlen=maxlen)

print(*x_train shape:', x_train.shape)
- RHNs are tricky. Choice of batch size is important, print('x _test shape:', x test.shape)

choice of loss and optimizer is critical, etc.

Some configurations won't converge. print(*Build model...") Embedding layer: 20000dim -> 128dim ]

model = Sequential()
- L5TM loss decrease patterns during training can be quite different model.add(Embedding (max_features, 128)) LSTM layer: hidden state 128dim ]
" — ¥

from what you see with ChNs/MLPs/etc. model.add(LSTM{128, dropout=8.2, recurrent_dropout=8.2))

model.add(Dense(1l, activation="sigmoid")})
from _ future  import print function :i Output: dense layter, 1d. ]

# try using different optimizers and different optimizer configs
from keras.preprocessing import sequence . L .
model.compile(loss="binary_crossentropy’,

P ' N N
optimizer="adam", - % Z [y,. log g, + (1 — yn)log(l - ﬁﬂ}ﬂ
metrics=["accuracy’]) ned

from keras.models import Sequential

from keras.layers import Dense, Embedding

from keras.layers import LSTM

from keras.datasets import imdb
print(*Train...")

max_features - 20000 % Max #twords ] model.fit(x_train, y_train,

batch_size=batch_size,

maxlen = 88 # cut texts after this number of words (among top max_features most common words)

batch_size = 32 epochs=15,
validation data=(x_test, y_test))

print(’'Loading data...’) score, acc = model.evaluate(x_test, y_test,
(x_train, y_train), (x_test, y test) = imdb.load data(num words=max_features) batch_size=batch_size)
print(len(x_train), "train segquences’) print('Test score:', score)

print(len(x_test), 'test sequences') print('Test accuracy:', acc)



nlication — Image Captioning

~

/_

N A Nami

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy, Li
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Some details - Loss function for training

* One could use the cross entropy loss (treating the output, by softmax, as a classification problem,
i.e., classifying the words) ---
* Maximize the log probability assigned to the target labels (e.g., in Karpathy and Li)
* Also called the perplexity measure (e.g., in Mao et al.)

Perplexity 1s a standard measure for evaluating
language model. The perplexity for one word sequence (i.e. a sentences) wy.r is calculated as
follows:

L
log, PPL(wy.|I) = —% Z logs P(w, |wy.na1,I)
n=1

where L is the length of the word sequences, PP L(wy.;|I) denotes the perplexity of the sentence
wy.r, given the image I. P{w,|w).,-1,I) is the probability of generating the word w,, given I and
previous words w;.,—1. It corresponds to the feature vector of the SoftMax layer of our model.

The cost function of our model is the average log-likelihood of the words given their context words
and corresponding images in the training sentences plus a regularization term. It can be calculated
by the perplexity:
<
? 1% ) ] 2
€=~ Y L-log, PPL(w() |1V) + ||6]]3
T a=l
where N is the number of words in the training set and # is the model parameters.

Mao et al. Explain Images with Multimodal Recurrent Neural Networks



Some Details - Embedding

* Embedding: We first embed each word to a short vector as follows:
Iy = I{‘?wﬂt

Here, I, is an indicator column vector that has a single one
at the index of the ¢-th word in a word vocabulary. The
weights W, specify a word embedding matrix that we ini-
tialize with 300-dimensional word2vec [}!] weights and
keep fixed due to overfitting concerns.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy, Li

Word2Vec is a very popular idea in natural language processing. Check it out for yourself.

Man - Woman + King = ? Answer: Queue.
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before:
h = tanh(Wxh * x + Whh * h)

nNOow.
h = tanh(Wxh * x + Whh * h + Wih * v)
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Text Generation - Example
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1867 lines (85 sloc) 3.25 KB

"' 'Example script to generate text from Nietzsche's writings.

¢JERK IR
At least 28 epochs are required before the generated text /EEEE)E. N HH

starts sounding coherent.

It is recommended to run this script on GPU, as recurrent

networks are gquite computationally intensive.

If you try this script on new data, make sure your corpus

has at least ~18@k characters. ~1M is better.

from _ future_ import print_function

from keras.models import Sequential

from keras.layers import Dense, Activation
from keras.layers import LSTM

from keras.optimizers import RMSprop

from keras.utils.data_utils import get_file
import numpy as np

import random

import sys

path = get file( 'nietzsche.txt’, origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt’

text = open(path).read().lower() iiﬂi)ﬁ% E‘J iZIK/ﬁEy‘ji)” éf?\i&*}%

print('corpus length:", len(text))

chars = sorted({list{set{text)))
print( total chars:', len(chars))

char_indices = dict{{c, i) for i, ¢ in enumerate(chars))

indices char = dict{{i, c) for i, ¢ in enumerate(chars))

S SR ) i




# cut the text in semi-redundant sequences of maxlen characters

maxlen = 46

step = 3

sentences = []

next_chars = []

for i in range(@, len(text) - maxlen, step):
sentences.append(text[i: 1 + maxlen])
next_chars.append(text[i + maxlen])

print('nb sequences:', len(sentences))

print('Vectorization...")

¥ = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.boo
y = np.zeros((len(sentences), len(chars)), dtype=np.bool) @ji}”éf?%&?}% X' y
for 1, sentence in enumehateEsentenCEj}: X: 3_d tensor (#/FU%, /@%KE’ #iﬁ‘l)
for t, char in enumerate(sentence): .
’ Y: 2-d tensor (#5) -, #id))

X[i, t, char_indices[char]] =1

y[i, char_indices[next_chars[i]]] = 1

ST REHE X,y
#3458 A 1-hot vector

# build the model: a single LSTM
print({'Build model...")

model = Sequential()

model.add(LSTM({128, input_shape={maxlen, len{chars}))) |

model.add(Dense(len{chars))) @jmé%’ —‘ELST!\//I’\ —:EDense’ %Eiﬁﬁlﬂj
model.add(Activation( ' softmax')) | T\EéSOftmaX7 2&;&%#1@ (Eplen(CharS))

optimizer = RMSprop(lr=8.81)

|
model.compile(loss="categorical_crossentropy’, optimizer=optimizer) —l E[A}_\'—E'IOSS functlonfrn,ﬁt,uzﬁyi




Preds/&—“>prob vector,

\ . Temperature 2 fill KA AT R 5
%l‘i%ﬁ’ /Flé_l:_‘ | lil R Temperature=1, JIi-2 % predsti e HIMES R

PN

def sample(preds, temperature=1.8):
# helper function to sample an index from a probability array

preds = np.asarray({preds).astype( floathd")

preds = np.log(preds) / temperature log a; 10g¢1j
Y

exp_preds = np.exp{preds) ;Hé*ﬁ%$e T /Z e T

preds = exp preds / np.sum(exp_preds) Tempiﬂ_ﬁ/]\i_qzig

probas = np.random.multinomial(l, preds, 1)

return np.argmax(probas) N 2 i predsti € FIMER KL LIK




# train the model, output generated text after each iteration
for iteration in range(l, 68):

print()

print('-" * 58)

print({'Iteration’', iteration)

model.fit(X, v,

batch_size=128,

epochs=1)

start_index = random.randint(®, len(text) - maxlen - 1)

Pl e

SRR R, {E

I

for diversity in [8.2, 8.5, 1.8, 1.2]:
print()

print(’----- diversity:', diversity)

generated = '

text 147 B

Sentence & 7Etext [ — %)

sentence =

generated += sentence

print(’----- Generating with seed: "' + sentence + *7°

sys.stdout.write(generated)
M H5 Hl P sentence, P4 H400117]

text[start_index: start_index + maxlen] \| iﬁ"’ Eﬁéiﬁj%start index

for i in range(408):

¥ = np.zeros{ (1, maxlen, len(chars)))

for t, char in enumerate(sentence):

x[8, t, char_indices[char]] = 1.

preds = model.predict(x, verbose=08)}[8] /J

X72& H Aisentencef]1-hot vector %7~ (A] PAHEFR
maxlen’>dim=len(chars)f/1-hot vectors)

next _index = sample(preds, diversity)

next char = indices char[next_index]

generated += next_char

sentence = sentence[l:] + next_char

sys.stdout.write(next_char)
sys.stdout.flush()
print()

Preds e f A1 10, RPN Z 1% (dim=len(chars))

1% preds 7] F il € FIBERKAE K — A1)

B NP R H ATA Ak




e Awesome RNN: a lot of useful references
* https://github.com/kjw0612/awesome-rnn

 Some slides borrowed from cs231n, cs224d at Stanford
http://cs231n.stanford.edu/syllabus.html
http://cs224d.stanford.edu/index.html



