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Segzseq without RNN7?
ConvS2S: convolutional segZ2seq

convolution+attention

Convolutional Sequence to Sequence Learning



* a 100% convolutional architecture to represent hierarchical
representation of input sequence.

* The crux Is that close Input elements interact at lower layers while
distant interacts at higher layers.



Convolution filter

Each convolution kernel is parameterized as W & R24xkd,
b, € R?¥ and takes as input X € R¥*4 which is a
concatenation of & input elements embedded in d dimen-
sions and maps them to a single output element Y € R2¢
that has twice the dimensionality of the input elements;

Nonlinearity: Gated linear unit
= [A B] € R?%;

v([A B]) = A® o(B)

Pointwise multiplication

They

kd [}

o(B) control which part of A is relevant

Overall encoder-decoder structure
(see later)

h' = (hi,....h,)  Output of the decoder

z' = (21,....2,,)  Output of the encoder

To enable deep convolutional networks, we add residual

connections from the input of each convolution to the out-
put of the block (He et al., 2015a).

b = (W R L g - - s Pygryal + ) + B



Multi-step attention

* attention mechanism for each decoder layer.

: N il l ,
Decoder state | d. = Wih: + b,; + g;
summary: fj\ \
Parameter Current Parameter Previous
. decoder vector target
matrix state element

For decoder layer [ the attention a,ﬁ-_)- of state 7 and source el-
ement j is computed as a dot-product between the decoder
state summary d' and each output z; of the last encoder
block u:

exp (dg - ,:J'-‘) B = (h,....0L)
a..

i > e exp (d - 2) timlfad, . ol

OQutput of the decoder

OQutput of the encoder



Embeddings

Convolutions

Gated
Linear
Units

Attention
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<p> <p> <s> Sie stimmen zu Sie

Training phase

stimmen zu

</s>

Figure 1. Illustration of batching during training. The English
source sentence is encoded (top) and we compute all attention
values for the four German target words (center) simultaneously.
Our attentions are just dot products between decoder context rep-
resentations (bottom left) and encoder representations. We add
the conditional inputs computed by the attention (center right) to
the decoder states which then predict the target words (bottom

| € right). The sigmoid and multiplicative boxes illustrate Gated Lin-
car Units.
exp (d! - ¥
(Li'jz mp(l [J)u
t=1€Xp (di - 21')

m
S 4= "al;(z} +¢;) ejelement input embedding
j=1

c}:added to h!



<p> They agree </s> <p>

Embeddings Figure 1. Illustration of batching during training. The English
source sentence is encoded (top) and we compute all attention
values for the four German target words (center) simultaneously.

Our attentions are just dot products between decoder context rep-

Convolutions

Sﬁ;‘;"r resentations (bottom left) and encoder representations. We add
Units the conditional inputs computed by the attention (center right) to
the decoder states which then predict the target words (bottom
| € right). The sigmoid and multiplicative boxes illustrate Gated Lin-

Attention car Units.
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h" final layer of the decoder just before the softmax

T I Thera are L convolutional layer
L H H H H H | I |
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<p> <p> <s> Sig stimmen zu je stimmen zu </s> Output: p(yi-i-l'ylv' o Yin X) = bOftIna*x(H/Oh‘i +b,) €ER

Testing:
First
produce
this word

In testing:

padding Second

place this word
here



Multi-step attention (In testing)

la maison de Léea <end>

In particular, the attention of the first layer determines a useful source context which Is
then fed to the second layer that takes this information into account when computing

attention etc.
The decoder also has immediate access to the attention history of the k — 1 previous

time steps because the conditional inputs



A trick: positional embedding

First, we embed input elements x = (x,,....x,,) in dis-
tributional space as w = (wy,...,w,,), where w; € RS
is a column in an embedding matrix D € RY >/, We also
equip our model with a sense of order by embedding the ab-

solute position of input elements p = (p1....,pm) Where
p; € R7. Both are combined to obtain input element rep-
resentations € = (wy + Pr...., Wm + Pm)-

* capturing a sense of order in a sequence

* This encoding gives the model a sense of which portion of the sequence of the input (or
output) it is currently dealing with. The positional encoding can be learned, or fixed. Authors
made tests (PPL, BLEU) showing that both: learned and fixed positional encodings perform
similarly.



WMT’16 English-Romanian BLEU

Sennrich et al. (2016b) GRU (BPE 90K) 28.1
ConvS2S (Word 80K) 29.45
ConvS2S (BPE 40K) 30.02
WMT’14 English-German BLEU
Luong et al. (2015) LSTM (Word 50K) 20.9
Kalchbrenner et al. (2016) ByteNet (Char) 23.75
Wau et al. (2016) GNMT (Word 80K) 23.12
Wu et al. (2016) GNMT (Word pieces) 24.61
ConvS2S (BPE 40K) 25.16
WMT’14 English-French BLEU
Wu et al. (2016) GNMT (Word 80K) 37.90
Wu et al. (2016) GNMT (Word pieces) 38.95
Wu et al. (2016) GNMT (Word pieces) + RL ~ 39.92
ConvS2S (BPE 40K) 40.51

Table 1. Accuracy on WMT tasks comapred to previous work.
ConvS2S and GNMT results are averaged over several runs.



Layer 1 Layer 2 Layer 3
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Attention scores for different decoder layers for a sentence translated from English (y-axis) to
German (x-axis). This model uses 8 decoder layers and a 80k BPE vocabulary
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Tranformer:
Attention is all you need



SeqZSeq

RNN:

* Advantages: are popular and successful for variable-length representations such as
sequences 1(e.g. Ian_guagesg, Images, etc. RNN are considered core of seqg2seq (with
attentlont)_. he gating models such as LSTM or GRU are for long-range error
propagation.

* Problems: The sequentiality prohibits parallelization within instances. Long-range
dependencies still tricky, despite gating. Sequence-aligned states in RNN are
wasteful. Hard to model hierarchical-alike domains such as languages.

CNN:

. Advlant?ges: Trivial to parallelize (per layer) and fit intuition that most dependencies
are local.

* Problems: Path length between positions can be Io%arithmic when using dilated
convolutions, left-padding for text. (autoregressive CNNs WaveNet, ByteNET )

Some material from https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-
you-need/#.WtstO3puaUl



* Tranformer:
Solution: Multi-head self-attention mechanism.

Why attention? Table 2 of the paper (later) shows that such attention networks can
save 2—3 orders of magnitude of operations!

Objective

Parallelization of Seq2Seq: RNN/CNN handle sequences word-by-word
sequentially which is an obstacle to parallelize. Transformer achieve parallelization
by replacing recurrence with attention and encoding the symbol position in
sequence. This in turn leads to significantly shorter training time.

‘Reduce sequential computation: Constant O(1) number of operations to learn
dependency between two symbols independently of their position distance in
sequence.



Key Value Attention

Scaled Dot-Product Attention The input consists of queries and keys of dimension dk, and values of dimension dv

t | |
Mathiul Q: queries - OKT
! [ K: keys Attention(Q, K, V') = softmax( )V
SoftMax \/('17
1 V: values
oG opt) dk #(key, value) pair dv dAV
! | | ) ( \
Scale o \ f \ | \ _
MatMul .
fa Ut #queries — Q K #(key, value)— \/ #queries — Result
Q K V

For each query, return the most relevant
(linear combination) value.

Relevance determined by <query, key>



Key Value Attention

Scaled Dot-Product Attention The input consists of queries and keys of dimension dk, and values of dimension dv
t i -
MatMul Q: queries o . QKT .
1 f K: keys Attention((). K. V') = softmax( 1%
7 V: values
MaSK’(Opt') dk #(key, value) pair dv dAV
|
Scale o : \ / A \ | \ -
MatMul .
f 1 #queries — Q #(key, value)— V #aueries  — Result
Q K V

masking out (setting to — @) all values in the input of
the softmax which correspond to illegal connections



Multi-head attention

Multi-Head Attention

t

Linear

i

Concat

MultiHead(Q, K, V) = Concat(heady, ... head, )W ¢
where head; = Attcution(QH"’X.Q. KWE vWwY)

Scaled Dot-Product
Attention

Where the projections are parameter matrices W ¢ € Rwt xdi K ¢ Rdusxdi |7V ¢ [pdme xdu
and WO € Rhde Xdaoss

h = 8 parallel attention layers, or heads
dmodel = 512.
dk = dv = dmodel/h = 64.



Stage 1 Positional @—G-
Encoding

Figure 2. Single layer of Encoder (left) and Decoder (right) that is build out of N = 6 identical layers.
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Encoder

* Stage 1 — Encoder Input

e Stage 2 — Multi-head attention
* Stage 3 — position-wise FFN

Stages 2 and 3 use the residual connection

Decoder
* Stage 1 — Decoder input

* Stage 2 Masked Multi-head attention

* Modified to prevent positions to attend
to subsequent positions.

e Stage 3 — Multi-head attention
* Stage 4 — position-wise FFN

* Stages 2, 3 and 4 also use the residual connection
followed by normalization layer at its output.
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Figure 2. Single layer of Encoder (left) and Decoder (right) that is build out of N = 6 identical layers.

Put together decoder works as follows:

Stagel_out = OutputEmbedding512 + TokenPositionEncoding512
Thus, encoder works like this:
Stage2_Mask = masked_multihead_attention(Stagel_out)
Stage2_Norml = layer_normalization(Stage2_Mask) + Stagel_out
Stage2_Multi = multihead_attention(Stage2_Norml + out_enc) + Stage2_Norml

Stagel_out = Embedding512 + TokenPositionEncoding512 D L. . .
- Stage2_Norm2 = layer_normalization(Stage2 Multi) + Stage2_ Multi

Stage2_out = layer_normalization(multihead_attention(Stagel_out) + Stagel_out)
Stage3_out = layer_normalization(FFN(Stage2_out) + Stage2_out) Stage3_FNN = FNN(Stage2_Norm2)

Stage3_Norm = layer_normalization(Stage3_FNN) + Stage2_Norm2
out_enc = Stage3_out

out_dec = Stage3_Norm



Masked Multl-head attention

* We also modify the self-attention sub-layer in the decoder stack
to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are
offset by one position, ensures that the predictions for position |
can depend only on the known outputs at positions less than 1.

* masking out (setting to — ) all values in the input of the softmax
which correspond to illegal connections



Positional embedding

* Fixed positional embedding

PE (s 2i) = sin(pos/ 10000/ dmeset)

PE (5 .2i+1) = cos(pos/10000%/ )

I iIndicates the frequency
The wavelengths form a geometric progression from 27t to
10000 - 21t

* Feed Forward Network

FFN(x) = max(0, zW; + by )W + bo



Why use self-attention

* self-attention layer enable each position to attend to all previous positions in the decoder,
Including the current position.

* use of self-attention layers instead of recurrent or convolutional layers

« self-attention layers connects all positions with O(1) number of sequentially executed
operations (eg. vs O(n) in RNN)

* Minimize maximum path length between any two input and output positions in network
composed of the different layer types . The shorter the path between any combination of
positions in the input and output sequences, the easier to learn long-range dependencies.

Table I: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer  Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?*) O(n) O(n)

Convolutional O(k-n-d?) 0O(1) O(logy(n))

Self-Attention (restricted) O(r-n-d) 0O(1) O(n/r)




Flowchart



Coreference resolution

* |t Is worth noting that this self-attention strategy allows to face
the issue of coreference resolution where e.g. word “/& In a
sentence can refer to different noun of the sentence depending
on context.
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Figure 5. Co-reference resolution. The itin both cases relates to different token. Adopted from Google BlogZ



Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Nodi BLEU Training Cost (FLOPs)
< EN-DE EN-FR EN-DE EN-FR
ByteNet [13] 23.75
Deep-Att + PosUnk [39] 39.2 1.0-10%
GNMT + RL [38] 24.6 39.92 2.3-10 14.10%
ConvS2S [9] 25.16 4046 9.6-10'® 1.5.10%
MoE [32] 26.03  40.56 2.0-10* 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630  41.16 1.8-10° 1.1-10%
ConvS2S Ensemble [9] 2636  41.29 7.7-10 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 284 41.8 2.3-101




Attention Visualizations
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb *making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:
Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5

and 6. Note that the attentions are very sharp for this word.



Spatial Transtormer Networks
-a different attention mechanism

Jaderberg et al, “Spatial Transformer Networks” , NIPS 2015



* Would like to pay attention to certain areas of an image

o

7" I
~_

Input image:
HxWx3 Cropped and
rescaled image:
XXY X3

Box Coordinates:
(xc, yc, w, h)



Idea: Function mapping
pixel coordinates (xt, yt) of

Can we make this output to pixel coordinates
function differentiable? (xs, ys) of input
o T ;
(Xt, Y') N ( Tf ) _ [ 0y, 010 613 ] ;;
Yi o1 Oy o3 '1'

Input image:
HxWx3 Cropped and
rescaled image:
Xx¥x3

Box Coordinates:
(xc, yc, w, h)



Can we make this
function differentiable?

Input image:

HxWx3 Cropped and

rescaled image:

XxXYx3

Box Coordinates:
(xc, yc, w, h)

Idea: Function mapping
pixel coordinates (xt, yt) of
output to pixel coordinates

0: parameters we

(xs, ys) of input

(3 )-Lo
l/f ta1

To(G)

tho 013
By o3

“U Y

need to learn

0

Repeat for all pixels
in output to get a
sampling grid

Affine transformation.

But it can be a more general transform




* A module can be Inserted to any place of a network
* Used several times in later deepmind papers

A small
Localization network The set of sampling
predicts transform 0 \ points
5 L.ocalisation net Tid :
' o
Input: —, -8 a Output: Region of

Full image 4 interest from input

Sampler |

Spatial Transformer



To(G)

Grid generator uses 0 to
compute sampling grid %\,
o T3 b1 b1z bh3 1;
Localization network ( ye ) - [ Oy Ooy Oos } !/1,-

predicts transform 6 N SR ' '
\ Localisation net 4 .[;‘ / (x7,y7) €Ty (G) |nd|cates which

The localization network can be FC network or a
CNN. points in U we want to focus on

I'ne last layer snould a regression layer to produce
0

Output: Region of

Input: _.
interest from input

Full image

Spatial Transformer

Sampler uses
bilinear interpolation V; = Z Z( e mmax(0,1 — |z7 —m|) max(0,1 — |y; —n|)
to produce output S
Output V is determined by input U and
sampling points (x7,y;) € To(G)




ave H W
S = > 3 wax(0, 1 = Ja} = m) max(0, 1 = |y} = nl)

< 0 iflm—z|>1

6V°
‘ZZ mmax(0,1 = |y? —n|) 41 ifm >z}
-1 ifm <z




R I
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i| 1

To = MyB, where B 1is a target grid representation
getl g2 p

* We can even learn the target grid B (using “thin plate spline™ ) (again through
backprop)

Insert spatial transformers into a
classification network and it learns
to attend and transform the input

Differentiable “attention /
transformation” module

-

Sampler




Resources

Resources for attentions and NTMs
* https://distill.pub/2016/augmented-rnns/

* A good read : http://ruder.io/deep-learning-nlp-best-practices/
(lot of notes and tricks for deep learning in NLP)

* Google cache: |
http://webcache.googleusercontent.com/search?g=cache:t VgmDEvBo8J:ruder.io/deep-

learning-nlp-best-practices/+&cd=s&nhI=en&ct=clnk&gl=us
* https://distill.pub/2016/augmented-rnns/#attentional-interfaces
(with very nice animation)

https://distill.pub/ (strongly recommend!)



https://distill.pub/2016/augmented-rnns/
http://ruder.io/deep-learning-nlp-best-practices/
http://webcache.googleusercontent.com/search?q=cache:t_VgmDEvBo8J:ruder.io/deep-learning-nlp-best-practices/+&cd=3&hl=en&ct=clnk&gl=us
https://distill.pub/2016/augmented-rnns/
https://distill.pub/

Thanks

Some materials are taken from https://blog.heuritech.com/2016/01/20/attention-mechanism/
https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-
need/# WitstO3puaUl



https://blog.heuritech.com/2016/01/20/attention-mechanism/
https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/

