
IIIS 2018 Spring: ATCS - Selected Topics in Optimization
Lecture date: Feb 26, 2018
Instructor: Jian Li Scribe: Chenxing Li

1 Supervised Learning

A supervised learning is a task of learning a regression function or classification function for a set
given a series of training data (xi, yi) sampled from the set. xi is an instance and yi is the label of
this instance. In order to judge the performance of learnt function, we need a series of test data
(x∗i , y

∗
i ) to judge training data.

In a parametric learning, the number of parameters are fixed. In a non-parametric learning,
the number of parameters may grow as training data grows.

1.1 Additive model

An additive model makes classification or regression based on the linear combination of a series of
base models. Adaboost, gradient boosting and random forest are the examples of additive model.

An additive model of binary classification is defined following

f(x) =

M∑
m=1

βmGm(x).

Here βm are the parameters and Gm are binary classifier in which Gm(x) ∈ {−1, 1}.
The goal of training algorithm is to minimized the total loss, so the objective function is given

by

min
βm,rm

N∑
i=1

L(yi, f(xi)).

Here βm is the parameters of additive model. rm is the parameters for base classifier Gm.
L(yi, f(xi)) is the loss fucntion given a pair of the true result and preditated result.

In additive model, decision tree is a popular choice for base classfier.

1.2 Forward Stagewise Additive Modeling

The Forward Stagewise Additive Modeling is a greedy algorithm which learns Gm one by one.
Suppose we have

fm−1(x) =
m−1∑
i=1

βiGi(x),

we want to learn the Gm(x) and βm given the minimum loss, a.k.a.



(βm, Gm)← arg min
βm,Gm

N∑
i=1

exp [L(yi, fm−1(xi) + βmGm(xi))] .

If we use L(yi, f(xi)) = exp [−yif(xi)] as loss function, the objective function will be

N∑
i=1

[L(yi, fm−1(xi) + βmGm(xi))]

=

N∑
i=1

exp [−yi(fm−1(xi) + βmGm(xi))]

=
N∑
i=1

w
(m)
i exp [−βmyiGm(xi)]

Here w
(m)
i = exp [−yifm−1(xi)] is constant, since βm and Gm are the only two variables.

So we can find the optimal stage solution from

(βm, Gm)← arg min
βm,Gm

N∑
i=1

w
(m)
i exp [−βmyiGm(xi)] .

Since

exp [−βmyiGm(xi)] =

{
e−βm yi = G(xi)
eβm yi 6= G(xi)

,

we have

N∑
i=1

w
(m)
i exp [−βmyiGm(xi)]

=

N∑
i=1

w
(m)
i e−βm +

(
eβm − e−βm

) N∑
i=1

w
(m)
i I[yi 6= G(xi)].

For any given βm,
∑N

i=1w
(m)
i exp [−βmyiGm(xi)] is positive linear correlation with

∑N
i=1w

(m)
i I[yi 6=

G(xi)], we can claim

Gm = arg min
G

N∑
i=1

w
(m)
i I[yi 6= G(xi)].

Set errm be the weighted average loss of Gm,

errm =

∑N
i=1w

(m)
i I[y 6= G(xi)]∑N
i=1w

(m)
i

.

Apply derivation to the loss function, we can find that βm = 1
2 log 1−errm

errm
gives the minimum

loss.



1.3 Adaboost Algorithm

Adaboost algorithm is essentially the same as forward stagewise additive modeling with exponential
loss function, which is introduced in the previous part.

Given training data {(xi, yi)}Ni=1, adaboost algorithm is defined formally in Algorithm 1

Algorithm 1: An Algorithm

Initially, let wi = 1
N , i ∈ [N ];1

for m = 1, · · · ,M do2

Fit classifier Gm (with respect to wi);3

Set errm ←
(∑N

i=1wiI[yi 6= Gm(xi)]
)
/
(∑N

i=1wi

)
;4

Set αm ← log(1− errm)− log(errm);5

for i = 1, · · · , N do6

Update wi ← wi exp [αm · I[yi 6= Gm(xi)]];7

Output classifier sign
(∑M

m=1 αmGm(xi)
)

;8

Claim 1 Let zm =
∑N

i=1w
(m)
i ,

zm = 2(1− errm)zm−1

.

Proof:

zm =
N∑
i=1

w
(m)
i

=

N∑
i=1

w
(m−1)
i exp[αm · I[yi 6= Gm(xi)]]

= eαm ·
∑

i∈{j|yj 6=Gm(xj)}

w
(m−1)
i +

∑
i∈{j|yj=Gm(xj)}

w
(m−1)
i

=
1− errm

errm
· errm · zm−1 + (1− errm) · zm−1

= 2(1− errm) · zm−1

2

Theorem 2

1

N

N∑
i=1

I[f(xi) 6= yi] ≤
M∏
m=1

2
√
errm(1− errm).

Proof: Since yi, Gm(xi) ∈ {1,−1} for all i ∈ [N ],m ∈ [M ], we have I[yi 6= Gm(xi)] = 1
2(1 −

yiGm(xi))



w
(M)
i =

1

N
· exp

[
M∑
m=1

αm · I[yi 6= Gm(xi)]

]

=
1

N
· exp

[
1

2
·
M∑
m=1

αm · (1− yiGm(xi))

]

=
1

N
· exp

[
1

2
·
M∑
m=1

αm

]
· exp

[
−1

2
· yi ·

t∑
m=1

αmGm(xi)

]

=
M∏
m=1

[√
1− errm

errm

]
· 1

N
· exp

[
−1

2
· yi ·

t∑
m=1

αmGm(xi)

]
.

Because I[f(xi) 6= yi] ≤ e−0.5yif(xi), we have

1

N
·
N∑
i=1

I[f(xi) 6= yi]

≤ 1

N
·
N∑
i=1

exp

[
−1

2
· yi ·

t∑
m=1

αmGm(xi)

]

=

M∏
m=1

√
errm

1− errm
·
N∑
i=1

w
(M)
i

=
M∏
m=1

√
errm

1− errm
· zM

=
M∏
m=1

√
errm

1− errm
·
M∏
m=1

2(1− errm)

=

M∏
m=1

2
√

errm(1− errm).

2

2 Gradient Boosting

2.1 Ensemble of regression tree

Suppose there are K regression tree, and fk is the function defined by the k-th tree. The prediction
is given by

ŷi =
K∑
k=1

fk(xi), fk ∈ F ,

where F is the space of functions containing all regression trees.



In training one regression tree, we use piecewise step function to approach the real function.
And the training loss function is defined by the error between real function and piecewise step
function.

In order to avoid overfitting, we need to balance the training loss and the complexity of function.
So the loss function is defined by

Obj =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk),

where l(yi, ŷi) is the loss for each prediction and Ω(·) is complexity function of each tree. We
usually use the depth or the number of leaves to present the complexity of a regression tree.

Loss function has several popular choices

• Square loss: l(yi, ŷi) = (yi − ŷi)2, which results in common gradient boosted machine.

• Logistic loss: l(yi, ŷi) = yi ln(1 + e−ŷi) + (1− yi) ln(1 + eŷi), which results in LogitBoost

Here is also an example for tree complexity definition.

Ω(ft) = γT +
1

2
λ

T∑
i=1

w2
j .

Note: T is the number of leaves, wj is the L2 norm of leaf scores.

2.2 Additive Training

In additive training, the prediction started with ŷ
(0)
i = 0 for all the testing element xi. In round t,

we update yi by

ŷ
(t)
i = ŷ

(t−1)
i + ft(xi).

In each round, we need to choose round function ft according to objective function, which is
given by

Obj(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) + const.

If we use square loss, then the objective function will given by

Obj(t) =
n∑
i=1

[
2(ŷ

(t−1)
i − yi)ft(xi) + ft(xi)

2
]

+ Ω(ft) + const.

For general loss function, we take Taylor expansion of the loss function, recall

f(x+ ∆x) ' f(x) + f ′(x)∆x+
1

2
f ′′(x)∆x2,

we get

Obj(t) '
n∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) + const.



Remove the terms independent with ft, we get

Obj(t) '
n∑
i=1

[
gift(xi) +

1

2
hif

2
t (xi) + Ω(ft)

]

=

n∑
i=1

[
giwq(xi) +

1

2
hiw

2
q(xi)

]
+ γT + λ

1

2

T∑
j=1

w2
j

=

n∑
j=1

∑
i∈Ij

giwj

+
1

2

∑
i∈Ij

hi + λ

w2
j

+ γT

=

n∑
j=1

[
Gjwj +

1

2
(Hj + λ)w2

j

]
+ γT

Here q(x) returns the leaf index the sample x fall into, Ij = {i|q(xi) = j}, Gj =
∑

i∈Ij gi, Hj =∑
i∈Ij hi.
The optimal solution is

w∗j = − Gj
Hj + λ

,Obj = −1

2

T∑
j=1

G2
j

Hj + λ

Now we know that the optimal solution for the weight of each leaf given a tree in additive
training model. We also need to decide how to grow the tree.

Here is a greedy algorithm for growing the tree:

• Start with the root

• Calculate the gain of each split according

Gain =
1

2

[
G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ

]
− γ.

• Choose the best split or stop (if gain¡0).

If there are too many split points, it is expensive to try all the splits, so it is necessary to reduce
the number of potential split points, such as sampling or use quantiles. XGBoost and LightGBM
used more involved quantiles.

References

[1] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119-139.

[2] Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016:
785-794.


	Supervised Learning
	Additive model
	Forward Stagewise Additive Modeling
	Adaboost Algorithm

	Gradient Boosting
	Ensemble of regression tree
	Additive Training


