1 Stability Bound for Stochastic Gradient Method

1.1 Preliminaries

Consider the following general setting of supervised learning.

- An unknown distribution $\mathcal{D} \in \Delta(Z)$. We receive a sample $S = (z_1, ..., z_n)$ of n examples drawn i.i.d. from \mathcal{D} .
- The goal is to find a model w with small population risk, defined as: $R[w] := \mathbb{E}_{z \sim \mathcal{D}} f(w; z)$, where f(w; z) is the loss of the model parameterized by w encountered on example z.
- However, we cannot measure R[w] directly. The idea is to use a sample-averaged proxy, the empirical risk, defined as $R_S[w] := \frac{1}{n} \sum_{i=1}^n f(w; z_i)$.

Definition 1 A randomized algorithm A is ϵ -uniformly stable if for all data sets $S, S' \in \mathbb{Z}^n$ such that S and S' differ in at most one example, we have

$$\sup_{z} \mathbb{E}_{A}[f(A(S); z) - f(A(S'); z)] \le \epsilon.$$

Recall the important theorem that uniform stability implies generalization in expectation — if an algorithm is uniformly stable, then its generalization error is small.

Theorem 2 [2] Let algorithm A be ϵ -uniformly stable. Then,

$$|\mathbb{E}_{S,A}[R_S[A(S)] - R[A(S)]]| \le \epsilon$$

Consider a general updating rule $G: \Omega \to \Omega$. For example, gradient descent update rule or stochastic gradient descent.

Definition 3 An update rule is η -expansive if for all $v, w \in \Omega$, $||G(v) - G(w)|| \le \eta ||v - w||^1$. It is σ -bounded if $||w - G(w)|| \le \sigma$.

Definition 4 A function $f : \Omega \to \mathbb{R}$ is β -smooth if for all $u, v \in \Omega$, we have $\|\nabla f(u) - \nabla f(v)\| \le \beta \|u - v\|$.

Theorem 5 Assume that f is L-Lipschitz. Then the gradient update G is (αL) -bounded.

Proof: $G(w) = w - \alpha \nabla f(w)$. By Lipschitz condition, $||w - G(w)|| = ||\alpha \nabla f(w)|| \le \alpha L$.

¹If not specified, we consider 2-norm in this note.

Theorem 6 If f is β -smooth. The following properties hold.

- if f is convex and $\alpha < 2/\beta$, then G is 1-expansive.
- if f is γ -strongly convex and $\alpha \leq \frac{2}{\beta + \gamma}$, then G is $\left(1 \frac{\alpha \beta \gamma}{\beta + \gamma}\right)$ -expansive.

Proof:

• Convexity and β -smooth implies the gradients are co-coercive, namely

$$\langle \nabla f(v) - \nabla f(w), v - w \rangle \ge \frac{1}{\beta} \| \nabla f(v) \nabla f(w) \|^2.$$

To see why it is true, on can refer to this $link^2$. Then

$$||G(v) - G(w)||^{2} = ||v - w||^{2} - 2\alpha \langle \nabla f(v) - \nabla f(w), v - w \rangle + \alpha^{2} ||\nabla f(v) - \nabla f(w)||^{2}$$

$$\leq ||v - w||^{2} - (\frac{2\alpha}{\beta} - \alpha^{2}) ||\nabla f(v) - \nabla f(w)||^{2}$$

$$\leq ||v - w||^{2}.$$

• Refer to [2] for a detailed proof.

_	_	_	•	
			I	
			L	
			L	

1.2 Convex Optimization

Theorem 7 $f(\cdot; z)$ is β -smooth, convex, and L-Lipchitz. If step size $\alpha_t \leq 2/\beta$, then

$$\epsilon_{stab} \le \frac{2L^2}{n} \sum_{t=1}^T \alpha_t.$$

Proof: Let S and S' be two samples of size n differing in only a single example. Consider the stochastic gradient updates G_1, \dots, G_T and G'_1, \dots, G'_T induced by running SGM on sample S and S', respectively. Let w_T and w'_T denote the corresponding outputs. Let $\delta_t = ||w_t - w'_t||$. For each step t, there are two cases:

- The examples sampled by SGM are the same one w.p. $1 \frac{1}{n}$. In this case, the function form of G_t and G'_t are the same. We can use the 1-expansivity of G_t and $\alpha_t \leq 2/\beta$ s.t. $\delta_{t+1} \leq \delta_t$.
- The examples sampled are different w.p. $\frac{1}{n}$. In this case, by using the $(\alpha_t L)$ -boundness and 1-expansivity of G_t and G'_t , we have

$$\delta_{t+1} = \|G_t(w_t) - G'_t(w'_t)\| \le \|G_t(w_t) - G_t(w'_t)\| + \|G_t(w'_t) - w'_t\| + \|w'_t - G'_t(w'_t)\| \le 2\alpha_t L + \delta_t.$$

In summary:

$$\mathbb{E}[\delta_{t+1}] = \left(1 - \frac{1}{n}\right) \mathbb{E}[\delta_t] + \frac{1}{n} \left(\mathbb{E}[\delta_t] + 2\alpha_t L\right) = \mathbb{E}[\delta_t] + \frac{2L\alpha_t}{n}.$$

Thus $\mathbb{E}[\delta_T] \leq \frac{2L}{n} \sum_{t=1}^T \alpha_t$, since $f(\cdot; z)$ is Lipchitz, $\mathbb{E}|f(w_T; z) - f(w'_T; z)| \leq L\mathbb{E}[\delta_T] \leq \frac{2L^2}{n} \sum_{t=1}^T \alpha_t$.

²http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf

1.3 Strongly Convex Optimization

Consider the projected stochastic gradient method $w_{t+1} = \Pi_{\Omega}(w_t - \alpha_t \nabla f(w_t; z_t))$, where Π_{Ω} is the Euclidean projection onto the set Ω , namely $\Pi_{\Omega}(v) = \arg \min_{w \in \Omega} \|w - v\|$.

Theorem 8 Assume that the loss function $f(\cdot; z)$ is γ -strongly convex and β -smooth for all z. Suppose we run the projected SGM iteration with constant step size $\alpha \leq 1/\beta$ for T steps. Then, SGM satisfies uniform stability with

$$\epsilon_{stab} \le \frac{2L^2}{\gamma n}$$

where L is at most $\beta diam(\Omega)$.

Proof: First show $f(\cdot; z)$ is *L*-Lipchitz and *L* is finite and bounded. Let $L = \sup_{w \in \Omega} \sup_{z} \|\nabla f(w; z)\|$. Since $f(\cdot; z)$ is β -smooth and convex, for $\forall w \in \Omega$, $\|\nabla f(w; z) - \nabla f(w^*; z)\| \leq \beta \|w - w^*\|$ where w^* is the minimizer. Thus $\|\nabla f(w; z)\| \leq \beta \operatorname{diam}(\Omega)$. Thus *L* is at most $\beta \operatorname{diam}(\Omega)$.

Let $\delta_t = ||w_t - w'_t||$. For each step t, there are two cases:

• The examples sampled by projected SGM are the same one w.p. $1 - \frac{1}{n}$. In this case, the function form of G_t and G'_t are the same. Note that by Theorem 6, if $\alpha \leq 1/\beta$, $\frac{2\alpha\beta\gamma}{\beta+\gamma} \geq \alpha\gamma$ and $\alpha\gamma < 1$, thus G_t is $(1 - \alpha\gamma)$ -expansive and

$$\delta_{t+1} = \|\Pi_{\Omega}(G_t(w_t) - \Pi_{\Omega}(G_tw'_t)\| \le \|G_t(w_t) - G_t(w'_t)\| \le (1 - \alpha\gamma)\delta_t$$

• The examples sampled are different w.p. $\frac{1}{n}$. In this case, by using the (αL) -boundness and $(1 - \alpha \gamma)$ -expansivity of G_t and G'_t , we have

$$\delta_{t+1} \le \|G_t(w_t) - G'_t(w'_t)\| \le \|G_t(w_t) - G_t(w'_t)\| + \|G_t(w'_t) - w'_t\| + \|w'_t - G'_t(w'_t)\| \le 2\alpha_t L + (1 - \alpha\gamma)\delta_t.$$

In summary, $\mathbb{E}[\delta_{t+1}] \leq (1 - \alpha \gamma) \mathbb{E}[\delta_t] + \frac{2\alpha L}{n}$ and $\mathbb{E}[\delta_T] \leq \frac{2\alpha L}{n} \sum_{t=1}^T (1 - \alpha \gamma)^t \leq \frac{2L}{\gamma n}$. Since $f(\cdot; z)$ is Lipchitz,

$$\mathbb{E} |f(w_T; z) - f(w'_T; z)| \le L \mathbb{E}[\delta_T] \le \frac{2L^2}{\gamma n}.$$

2 Stability Bound for Stochastic Gradient Langevin Dynamics

In this section, we introduce the stability bound for stochastic gradient Langevin Dynamics (SGLD). We first introduce what is SGLD³. Consider SGM where at each step t we sample i_t i.i.d. uniformly from [n] and perform the following updating rule:

$$w_{t+1} = w_t - \alpha \nabla f(w_t; z_{i_t}) = w_t - \alpha \nabla f(w_t) + S_t,$$

where $S_t = \alpha \nabla f(w_t) - \alpha \nabla f(w_t; z_{i_t})$ can been viewed as some noise with 0 mean. We then make an assumption that S_t is a Gaussian with 0 mean and unit variance, i.e. $w_{t+1} = w_t - \alpha \nabla f(w_t) + \mathcal{N}(0, 1)$. We name it as Stochastic Gradient Langevin Dynamics (SGLD). It has a strong connection with Langevin dynamic: $dw = -\alpha \nabla f(w) dt + dB_t$.

³This section is a subset of http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/gen-error-bounds.pdf.

Figure 1: An example from [3]. if the initial point is close to the saddle point, small shift on the loss surface leads to completely different local minimum.

Assumption 9 Each loss function $f(\cdot; z)$ is differentiable, C-bounded and L-lipschitz.

Note that we do not assume the loss function to be convex anymore. Under this assumption, traditional SGM is not stable anymore. See Figure 1 for an example.

Theorem 10 Consider two Markov Chain (w_0, w_1, \dots, w_T) and $(w'_0, w'_1, \dots, w'_T)$ with $w_0 = w'_0$. If for $\forall w$, KL $(w_t|w_{t-1} = w||w'_t|w'_{t-1} = w) \leq \alpha_t$, then KL $(w_T||w'_T) \leq \sum_{t=1}^T \alpha_t$.

Proof: Suppose we have two joint distribution p(x, y) and q(x, y) for r.v. (x, y) and (x', y'), respectively. We have the following observation:

$$\begin{aligned} \operatorname{KL}\left(\left(x,y\right)||\left(x',y'\right)\right) &= \int p(x,y)\log\frac{p(x,y)}{q(x,y)}dxdy\\ &= \int p(x)\log\frac{p(x)}{q(x)}dx + \int \left(\int p(y|x)\log\frac{p(y|x)}{q(y|x)}dy\right)dx\\ &= \operatorname{KL}\left(\left|x\right||\right) + \mathbb{E}_{x_0}[\operatorname{KL}\left(\left|y\right||x) = x_0||\left|y'|x'|=x_0\right)].\end{aligned}$$

Due to the non-negativity of KL-Divergence,

$$\begin{aligned} \operatorname{KL}(w_t || w'_t) &\leq \operatorname{KL}((w_{t-1}, w_t) || (w'_{t-1}, w'_t)) \\ &= \operatorname{KL}(w_{t-1} || w'_{t-1}) + \mathbb{E}_w[\operatorname{KL}(w_t | w_{t-1} = w || w'_t | w'_{t-1} = w)] \\ &\leq \operatorname{KL}(w_{t-1} || w'_{t-1}) + \alpha_t. \end{aligned}$$

Thus KL $(w_T || w'_T) \leq \sum_{t=1}^T \alpha_t.$

Theorem 11 Under Assumption 9, for any t and w,

$$\operatorname{KL}\left(w_{t}|w_{t-1}=w||w_{t}'|w_{t-1}'=w\right) \leq \frac{4\alpha^{2}L^{2}}{n^{2}}.$$

Proof: Let $\mu = w - \alpha \nabla f(w)$ and $\mu' = w - \alpha \nabla f'(w)$. Since f and f' differs by a single L-Lipchitz function,

$$\|\mu - \mu'\| = \alpha \|\nabla f(w) - \nabla f'(w)\| \le \frac{2\alpha L}{n}.$$
(1)

Since the conditional distributions of w_t and w'_t are given by $\mathcal{N}(\mu, I)$ and $\mathcal{N}(\mu', I)$, respectively. Following the property of Gaussian, we have

KL
$$(w_t | w_{t-1} = w || w'_t | w'_{t-1} = w) \le ||\mu - \mu'||^2 = \frac{4\alpha^2 L^2}{n^2}.$$

Then for any C-bounded loss function f:

$$\begin{aligned} |\mathbb{E}[f(w_T)] - \mathbb{E}[f(w_T')]| &= \left| \int (p(w)f(w) - q(w)f(w)) \, dw \right| \\ &\leq C \cdot \int |p(w) - q(w)| \, dw = C \cdot \mathrm{TV}(w_T, w_T') \\ &\leq C \cdot \sqrt{\frac{1}{2}} \mathrm{KL}\left(w_T || \, w_T' \right) \\ &\leq \frac{\alpha LC\sqrt{2T}}{n}, \end{aligned}$$

where the first inequality is due to C-boundness, the second inequality is due to Pinsker Inequality [1].

References

- [1] Pinsker's inequality Wikipedia, the free encyclopedia, 2018.
- [2] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In *International Conference on Machine Learning*, pages 1225– 1234, 2016.
- [3] Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of sgld for non-convex learning: Two theoretical viewpoints. arXiv preprint arXiv:1707.05947, 2017.