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1 Stability Bound for Stochastic Gradient Method

1.1 Preliminaries

Consider the following general setting of supervised learning.

• An unknown distribution D ∈ ∆(Z). We receive a sample S = (z1, ..., zn) of n examples
drawn i.i.d. from D.

• The goal is to find a model w with small population risk, defined as: R[w] := Ez∼Df(w; z),
where f(w; z) is the loss of the model parameterized by w encountered on example z.

• However, we cannot measure R[w] directly. The idea is to use a sample-averaged proxy, the
empirical risk, defined as RS [w] := 1

n

∑n
i=1 f(w; zi).

Definition 1 A randomized algorithm A is ε-uniformly stable if for all data sets S, S′ ∈ Zn such
that S and S′ differ in at most one example, we have

sup
z

EA[f(A(S); z)− f(A(S′); z)] ≤ ε.

Recall the important theorem that uniform stability implies generalization in expectation — if
an algorithm is uniformly stable, then its generalization error is small.

Theorem 2 [2] Let algorithm A be ε-uniformly stable. Then,

|ES,A[RS [A(S)]−R[A(S)]]| ≤ ε

Consider a general updating rule G : Ω → Ω. For example, gradient descent update rule or
stochastic gradient descent.

Definition 3 An update rule is η-expansive if for all v, w ∈ Ω , ‖G(v)−G(w)‖ ≤ η ‖v − w‖1. It
is σ-bounded if ‖w −G(w)‖ ≤ σ.

Definition 4 A function f : Ω → R is β-smooth if for all u, v ∈ Ω, we have ‖∇f(u)−∇f(v)‖ ≤
β ‖u− v‖.

Theorem 5 Assume that f is L-Lipschitz. Then the gradient update G is (αL)-bounded.

Proof: G(w) = w − α∇f(w). By Lipschitz condition, ‖w −G(w)‖ = ‖α∇f(w)‖ ≤ αL. 2

1If not specified, we consider 2-norm in this note.



Theorem 6 If f is β-smooth. The following properties hold.

• if f is convex and α < 2/β, then G is 1-expansive.

• if f is γ-strongly convex and α ≤ 2
β+γ , then G is

(
1− αβγ

β+γ

)
-expansive.

Proof:

• Convexity and β-smooth implies the gradients are co-coercive, namely

〈∇f(v)−∇f(w), v − w〉 ≥ 1

β
‖∇f(v)∇f(w)‖2 .

To see why it is true, on can refer to this link2. Then

‖G(v)−G(w)‖2 = ‖v − w‖2 − 2α〈∇f(v)−∇f(w), v − w〉+ α2 ‖∇f(v)−∇f(w)‖2

≤ ‖v − w‖2 − (
2α

β
− α2) ‖∇f(v)−∇f(w)‖2

≤ ‖v − w‖2 .

• Refer to [2] for a detailed proof.

2

1.2 Convex Optimization

Theorem 7 f(·; z) is β-smooth, convex, and L-Lipchitz. If step size αt ≤ 2/β, then

εstab ≤
2L2

n

T∑
t=1

αt.

Proof: Let S and S′ be two samples of size n differing in only a single example. Consider the
stochastic gradient updates G1, · · · , GT and G′1, · · · , G′T induced by running SGM on sample S and
S′ , respectively. Let wT and w′T denote the corresponding outputs. Let δt = ‖wt − w′t‖. For each
step t, there are two cases:

• The examples sampled by SGM are the same one w.p. 1− 1
n . In this case, the function form

of Gt and G′t are the same. We can use the 1-expansivity of Gt and αt ≤ 2/β s.t. δt+1 ≤ δt.

• The examples sampled are different w.p. 1
n . In this case, by using the (αtL)-boundness and

1-expansivity of Gt and G′t, we have

δt+1 = ‖Gt(wt)−G′t(w′t)‖ ≤ ‖Gt(wt)−Gt(w
′
t)‖ + ‖Gt(w

′
t)− w′t‖ + ‖w′t −G′t(w′t)‖ ≤ 2αtL+ δt.

In summary:

E[δt+1] =

(
1− 1

n

)
E[δt] +

1

n
(E[δt] + 2αtL) = E[δt] +

2Lαt

n
.

Thus E[δT ] ≤ 2L
n

∑T
t=1 αt, since f(·; z) is Lipchitz, E |f(wT ; z)− f(w′T ; z)| ≤ LE[δT ] ≤ 2L2

n

∑T
t=1 αt.

2

2http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf

http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf


1.3 Strongly Convex Optimization

Consider the projected stochastic gradient method wt+1 = ΠΩ(wt−αt∇f(wt; zt)), where ΠΩ is the
Euclidean projection onto the set Ω, namely ΠΩ(v) = arg minw∈Ω ‖w − v‖.

Theorem 8 Assume that the loss function f(·; z) is γ-strongly convex and β-smooth for all z.
Suppose we run the projected SGM iteration with constant step size α ≤ 1/β for T steps. Then,
SGM satisfies uniform stability with

εstab ≤
2L2

γn

where L is at most βdiam(Ω).

Proof: First show f(·; z) is L-Lipchitz and L is finite and bounded. Let L = supw∈Ω supz ‖∇f(w; z)‖.
Since f(·; z) is β-smooth and convex, for ∀w ∈ Ω, ‖∇f(w; z)−∇f(w∗; z)‖ ≤ β ‖w − w∗‖ where w∗

is the minimizer. Thus ‖∇f(w; z)‖ ≤ βdiam(Ω). Thus L is at most βdiam(Ω).
Let δt = ‖wt − w′t‖. For each step t, there are two cases:

• The examples sampled by projected SGM are the same one w.p. 1 − 1
n . In this case, the

function form of Gt and G′t are the same. Note that by Theorem 6, if α ≤ 1/β, 2αβγ
β+γ ≥ αγ

and αγ < 1, thus Gt is (1− αγ)-expansive and

δt+1 = ‖ΠΩ(Gt(wt)−ΠΩ(Gtw
′
t)‖ ≤ ‖Gt(wt)−Gt(w

′
t)‖ ≤ (1− αγ)δt.

• The examples sampled are different w.p. 1
n . In this case, by using the (αL)-boundness and

(1− αγ)-expansivity of Gt and G′t, we have

δt+1 ≤ ‖Gt(wt)−G′t(w′t)‖ ≤ ‖Gt(wt)−Gt(w
′
t)‖+‖Gt(w

′
t)− w′t‖+‖w′t −G′t(w′t)‖ ≤ 2αtL+(1−αγ)δt.

In summary, E[δt+1] ≤ (1 − αγ)E[δt] + 2αL
n and E[δT ] ≤ 2αL

n

∑T
t=1(1 − αγ)t ≤ 2L

γn . Since f(·; z) is

Lipchitz,

E |f(wT ; z)− f(w′T ; z)| ≤ LE[δT ] ≤ 2L2

γn
.

2

2 Stability Bound for Stochastic Gradient Langevin Dynamics

In this section, we introduce the stability bound for stochastic gradient Langevin Dynamics (SGLD).
We first introduce what is SGLD3. Consider SGM where at each step t we sample it i.i.d. uniformly
from [n] and perform the following updating rule:

wt+1 = wt − α∇f(wt; zit) = wt − α∇f(wt) + St,

where St = α∇f(wt)−α∇f(wt; zit) can been viewed as some noise with 0 mean. We then make an
assumption that St is a Gaussian with 0 mean and unit variance, i.e. wt+1 = wt−α∇f(wt)+N (0, 1).
We name it as Stochastic Gradient Langevin Dynamics (SGLD). It has a strong connection with
Langevin dynamic: dw = −α∇f(w)dt+ dBt.

3This section is a subset of http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/

gen-error-bounds.pdf.

http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/gen-error-bounds.pdf
http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/gen-error-bounds.pdf


Figure 1: An example from [3]. if the initial point is close to the saddle point, small shift on the
loss surface leads to completely different local minimum.

Assumption 9 Each loss function f(·; z) is differentiable, C-bounded and L-lipschitz.

Note that we do not assume the loss function to be convex anymore. Under this assumption,
traditional SGM is not stable anymore. See Figure 1 for an example.

Theorem 10 Consider two Markov Chain (w0, w1, · · · , wT ) and (w′0, w
′
1, · · · , w′T ) with w0 = w′0.

If for ∀w, KL
(
wt|wt−1 = w||w′t|w′t−1 = w

)
≤ αt, then KL ( wT ||w′T ) ≤

∑T
t=1 αt.

Proof: Suppose we have two joint distribution p(x, y) and q(x, y) for r.v. (x, y) and (x′, y′),
respectively. We have the following observation:

KL ( (x, y)|| (x′, y′)) =

∫
p(x, y) log

p(x, y)

q(x, y)
dxdy

=

∫
p(x) log

p(x)

q(x)
dx+

∫ (∫
p(y|x) log

p(y|x)

q(y|x)
dy

)
dx

= KL ( x|| y) + Ex0
[KL ( y|x = x0|| y′|x′ = x0)].

Due to the non-negativity of KL-Divergence,

KL ( wt||w′t) ≤ KL
(

(wt−1, wt)|| (w′t−1, w
′
t)
)

= KL
(
wt−1||w′t−1

)
+ Ew[KL

(
wt|wt−1 = w||w′t|w′t−1 = w

)
]

≤ KL
(
wt−1||w′t−1

)
+ αt.

Thus KL ( wT ||w′T ) ≤
∑T

t=1 αt. 2

Theorem 11 Under Assumption 9, for any t and w,

KL
(
wt|wt−1 = w||w′t|w′t−1 = w

)
≤ 4α2L2

n2
.



Proof: Let µ = w− α∇f(w) and µ′ = w− α∇f ′(w). Since f and f ′ differs by a single L-Lipchitz
function,

‖µ− µ′‖ = α ‖∇f(w)−∇f ′(w)‖ ≤ 2αL

n
. (1)

Since the conditional distributions of wt and w′t are given by N (µ, I) and N (µ′, I), respectively.
Following the property of Gaussian, we have

KL
(
wt|wt−1 = w||w′t|w′t−1 = w

)
≤ ‖µ− µ′‖2 =

4α2L2

n2
.

2
Then for any C-bounded loss function f :

|E[f(wT )]− E[f(w′T )]| =
∣∣∣∣∫ (p(w)f(w)− q(w)f(w)) dw

∣∣∣∣
≤ C ·

∫
|p(w)− q(w)| dw = C · TV(wT , w

′
T )

≤ C ·
√

1

2
KL ( wT ||w′T )

≤ αLC
√

2T

n
,

where the first inequality is due to C-boundness, the second inequality is due to Pinsker Inequal-
ity [1].
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