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1  Stability Bound for Stochastic Gradient Method

1.1 Preliminaries
Consider the following general setting of supervised learning.

e An unknown distribution D € A(Z). We receive a sample S = (z1,...,2,) of n examples
drawn i.i.d. from D.

e The goal is to find a model w with small population risk, defined as: R[w| := E,pf(w;2),
where f(wj;z) is the loss of the model parameterized by w encountered on example z.

e However, we cannot measure R[w] directly. The idea is to use a sample-averaged proxy, the
empirical risk, defined as Rg[w] := £ Y% | f(w; 2).

Definition 1 A randomized algorithm A is e-uniformly stable if for all data sets S,S’ € Z™ such
that S and S’ differ in at most one example, we have

sup E[f(A(S): 2) = J(A(8):2)] < e.

Recall the important theorem that uniform stability implies generalization in expectation — if
an algorithm is uniformly stable, then its generalization error is small.

Theorem 2 [2] Let algorithm A be e-uniformly stable. Then,
[Es.a[Rs[A(S)] — RIA(S)]]] < e

Consider a general updating rule G : Q — €. For example, gradient descent update rule or
stochastic gradient descent.

Definition 3 An update rule is n-expansive if for all v,w € Q , |G(v) — G(w)|| < nljv — wHEI It
is o-bounded if |w — G(w)|| < 0.

Definition 4 A function f: Q — R is f-smooth if for all u,v € Q, we have |V f(u) — Vf(v)] <
Bllu=wvll.

Theorem 5 Assume that f is L-Lipschitz. Then the gradient update G is (aL)-bounded.
Proof: G(w) = w — aV f(w). By Lipschitz condition, ||lw — G(w)|| = ||aV f(w)| < aL. O

MIf not specified, we consider 2-norm in this note.



Theorem 6 If f is 3-smooth. The following properties hold.

e if f is conver and oo < 2/f3, then G is 1-expansive.

e if f is y-strongly conver and o < ﬁ, then G is (1 — gﬁ?y)-.expansive.

Proof:

e Convexity and S-smooth implies the gradients are co-coercive, namely
1
(Vf(v) =Vf(w),v—w) = 3 IV £ (@)V f(w)]*.

To see why it is true, on can refer to this linkﬂ Then

IG() = G()|* = v —w|* = 2a(Vf(v) = V(w),0 —w) + o |V f(0) = Vf(w)|
<o - wl® - (%a = a®)||Vf(v) = Vf(w)|?

2
< v —wll”.

e Refer to [2] for a detailed proof.

1.2 Convex Optimization

Theorem 7 f(-;2) is -smooth, conver, and L-Lipchitz. If step size oy < 2/, then

T
2L2
€stab < n Qt.

t=1

Proof: Let S and S’ be two samples of size n differing in only a single example. Consider the
stochastic gradient updates Gy, - -+ ,Gr and G/, - - - , G/ induced by running SGM on sample S and
S", respectively. Let wr and w/. denote the corresponding outputs. Let §; = ||w; — wj||. For each
step t, there are two cases:

e The examples sampled by SGM are the same one w.p. 1 — % In this case, the function form
of Gy and G} are the same. We can use the l-expansivity of G; and «y < 2/ s.t. dp41 < 6.

e The examples sampled are different w.p. % In this case, by using the (a;L)-boundness and
l-expansivity of Gy and G}, we have

Or1 = [|Ge(wr) — Gi(wp) || < [|Ge(we) = Ge(wp) || + G (wi) — will + lw — Giwp)l| < 200 L + 6.

In summary:

1 1 2L
]E[5t+1] = (1 — n> E[(St] + ﬁ (]E[(;t] + 2atL) = ]E[ét] + nat .
Thus E[d7] < % Zthl ay, since f(+; z) is Lipchitz, E | f(wr; 2) — f(wh; 2)| < LE[67] < % Zthl 0.

a

*http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient . pdf


http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf

1.3 Strongly Convex Optimization

Consider the projected stochastic gradient method w1 = I (wy — ¢V f (wy; 2¢)), where Ilg is the
Euclidean projection onto the set €2, namely Ilo(v) = arg ming,eq [|[w — v

Theorem 8 Assume that the loss function f(-;z) is vy-strongly conver and [B-smooth for all z.
Suppose we run the projected SGM iteration with constant step size o < 1/ for T steps. Then,
SGM satisfies uniform stability with

€stab < ——
yn

where L is at most Sdiam(€2).

Proof: First show f(+; z) is L-Lipchitz and L is finite and bounded. Let L = sup,,cq sup, ||V f(w; 2)||.
Since f(; z) is B-smooth and convex, for Vw € Q, |V f(w; z) — V f(w*; 2)|| < B |lw — w*|| where w*
is the minimizer. Thus ||V f(w; z)|| < fdiam(€2). Thus L is at most Sdiam(£2).

Let §; = |jwy — w}||. For each step ¢, there are two cases:

e The examples sampled by projected SGM are the same one w.p. 1 — % In this case, the

function form of G; and G} are the same. Note that by Theorem@ if a <1/, % > ay

and ay < 1, thus Gy is (1 — ary)-expansive and
i1 = [Ha(Ge(we) — Ha(Gawp)|| < [|Ge(we) — Ge(wy)l] < (1= av)dr.

e The examples sampled are different w.p. % In this case, by using the (aL)-boundness and
(1 — ary)-expansivity of Gy and G}, we have

Ot1 < [1Ge(wr) — Giwp)[| < [|Ge(we) = G(wp) [ +Ge(w}) — will +|w — Giw)[| < 200 L+(1—ay)dr.

In summary, E[§41] < (1 — ay)E[&] + % and E[67] < % Zg’:l(l —ay)t < % Since f(:2) is
Lipchitz,
’ 2172
E|f(wr;z) — f(wr; 2)| < LE[o7] < o

2 Stability Bound for Stochastic Gradient Langevin Dynamics

In this section, we introduce the stability bound for stochastic gradient Langevin Dynamics (SGLD).
We first introduce what is SGL[ﬂ Consider SGM where at each step t we sample é; i.i.d. uniformly
from [n] and perform the following updating rule:

wip1 = wy — aV f(we; z,) = wy — aV f(wg) + S,

where S; = aV f(w;) —aV f(wy; z;,) can been viewed as some noise with 0 mean. We then make an
assumption that Sy is a Gaussian with 0 mean and unit variance, i.e. w11 = w—a'V f(w)+N (0, 1).
We name it as Stochastic Gradient Langevin Dynamics (SGLD). It has a strong connection with
Langevin dynamic: dw = —aV f(w)dt + dBs.

3This section is a subset of |http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/
gen-error-bounds.pdf.


http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/gen-error-bounds.pdf
http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/gen-error-bounds.pdf

Figure 1: An example from [3]. if the initial point is close to the saddle point, small shift on the
loss surface leads to completely different local minimum.

Assumption 9 Each loss function f(-; z) is differentiable, C-bounded and L-lipschitz.

Note that we do not assume the loss function to be convex anymore. Under this assumption,
traditional SGM is not stable anymore. See Figure [I| for an example.

Theorem 10 Consider two Markov Chain (wo, w1, -- ,wr) and (wp, w), -, wh) with wy = wy,.
If for Yw, KL (w|wi—1 = w]| wj|w;_; = w) < ay, then KL (wr||wf) < ST o

Proof: Suppose we have two joint distribution p(x,y) and ¢(z,y) for r.v. (z,y) and (2/,y'),
respectively. We have the following observation:

N r o p(x,y) -
KL ((@.)]| (') = [ p(o.9)lox By
)

= /p(x) log ‘Z(—i)dm—i— (/p(y|x) logp(y|x)dy> dx

q(ylz)
=KL (2[|y) + Ea [KL (yla = zo|| y'|2" = 20)].

Due to the non-negativity of KL-Divergence,
KL (we||w;) < KL ((we-1, )| (wi_y, w}))
=KL (wi—1||wi_y) + Eu[KL (wi|wi—1 = wl|| wiw;_; = w)]
<KL (wi—]|wi_y) + o
Thus KL (wr||wh) < S oy O
Theorem 11 Under Assumption[9, for any t and w,

40212
n?

KL (wiwe—1 = wl|wijwi_; = w) <



Proof: Let p=w — aV f(w) and p/ = w — aV f'(w). Since f and f’ differs by a single L-Lipchitz
function,

=1 = a |V (w) - T (w)] < 22F. 1)

Since the conditional distributions of w; and w; are given by N (u, I) and N (1, I), respectively.
Following the property of Gaussian, we have

/HQ 4022

KL (w1 = w| wjlw;_y = w) < = | = 227

Then for any C-bounded loss function f:
ELf (wr)] — E[f(wp)]| = ] [ ) )~ atwisw) dw\
< [ lp(w) - gfw)] dw = C- TV(wr, up)

1
< €[ 5KL (wrl | wh)
< oaLC\2T

n

where the first inequality is due to C-boundness, the second inequality is due to Pinsker Inequal-
ity [1].
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