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1 Notions and Properties

Let us first recall some related notions and properties.

1.1 Convex Optimization

Consider a convex function f : Rn → R, optimizer x∗ = argminx f(x) satisfies that{
∇f(x∗) = 0

∇2f(x∗) ≤ 0
(1)

1.2 Precedes and Succeeds

A � B means A−B is positive semidefinite (PSD). A � B means B −A is PSD. Notation ≺ and
� means the corresponding matrices are positive definite.

1.3 Taylor Expansion

A function can be Taylor expanded (to the second order)

f(x) = f(x0) +∇f(x)T (x− x0) +
1

2
(x− x0)T∇2f(y)(x− x0) for some y ∈ [x, x0] (2)

1.4 α-Strongly Convex

The following three definitions of α-strongly convex are equivalent.

1. ∇2f(x) � αI ∀x

2. f(y) ≥ f(x) +∇f(x)(y − x) + α
2 ‖y − x‖

2
2

3. f(y)− α
2 ‖y − x‖

2
2 is convex for all x

1.5 L-Smooth

The following three definitions of L-smooth are equivalent.

1. ∇2f(x) � LI ∀x

2. ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

3. f(y) ≤ f(x) +∇f(x)(y − x) + L
2 ‖y − x‖

2
2



2 Convergence of Gradient Descent

Theorem 1 (Convergence of fixed step size GD) If function f : Rn → R is convex, α-strongly

convex and L-smooth, when running GD x+ ← x− t∇f(x) and choose t =
1

L
,

f(x(k))− f(x∗) ≤ (1− α

L
)k(f(x(0))− f(x∗)) (3)

where x∗ is minimizer of f .

Proof: The second difinite of α-strongly convex f(y) ≥ f(x) +∇f(x)(y−x) + α
2 ‖y−x‖

2
2 holds for

any x and y, let y = ỹ =
1

α
∇f(x) minimize the RHS. We have

f(y) ≥ f(x)− 1

2α
‖∇f(x)‖22

choose y = x∗, we have
‖∇f(x)‖22 ≥ 2α(f(x)− f(x∗)) (4)

Consider x+ ← x− t∇f(x) and the third definition of L-smooth f(y) ≤ f(x) +∇f(x)(y− x) +
L
2 ‖y − x‖

2
2,

f(x+) ≤ f(x)− t‖∇f(x)‖22 +
L

2
t2‖∇f(x)‖22

choose t =
1

L
, we have

f(x+)− f(x∗) ≤ f(x)− f(x∗)− 1

2L
t2‖∇f(x)‖22

Combine (4),

f(x+)− f(x∗) ≤ (1− α

L
)(f(x)− f(x∗))

Recursivly,

f(x(k))− f(x∗) ≤ (1− α

L
)k(f(x(0))− f(x∗)) (5)

when 1− α

L
< 1, this is linear convergence.

2

If we want find x(k) such that f(x(k)) − f(x∗) < ε, we only need to run k iterations and

k = O(log
1

ε
/ log

1

1− α

L

) = O(
L

α
log

1

ε
).

An intuitive view why we need smoothness and strongly convexity requirement is shown as

figure 1. Suppose f : Rn → R is α-strongly convex and L-smooth, if the condition number κ =
L

α
is too large, the updating trajectory will be zigzag like with poor performance. You can consider
a ill-conditioned function defined on R2 plane f(x1, x2) = x21 + 10000x22, where L = 10000, α = 1
and κ = 10000.



Figure 1: Ill-conditioned function causes poor gradient descent performance

Theorem 2 (Convergence of adaptive step size GD) If function f : Rn → R is convex and

L-smooth, when running GD x(k+1) ← x(k) − t(k)∇f(x) and ε0 ≤ t(k) ≤ (2− ε0)
1

L
,

1

φk
≥ 1

LR
+ k

ε20
2R2

(6)

where φk = f(x(k))− f(x∗), R is diameter of f(x), i.e. R = maxx‖x− x∗‖ ε0 > 0 is a constant
and x∗ is minimizer of f .

Proof: Given L-smoothness,

f(x(k+1))− f(x(k)) ≤ −t(k)‖∇f(x)‖22 +
L

2
‖t(k)2∇f(x)‖22

= (
L

2
t(k)

2 − t(k))‖∇f(x)‖22

= t(k)(
L

2
t(k) − 1)‖∇f(x)‖22

≤ t(k)(L
2

(2− ε0)
1

L
− 1)‖∇f(x)‖22

= t(k)(−ε0
2

)‖∇f(x)‖22

≤ −ε
2
0

2
‖∇f(x)‖22

i.e.

φk − φk+1 ≥
ε20
2
‖∇f(x)‖22 (7)



Consider

φk = f(x(k))− f(x∗)

≤ 〈∇f(x(k)), x(k) − x∗〉
≤ ‖∇f(x(k))‖‖x(k) − x∗‖
≤ R‖∇f(x(k))‖

(8)

Put (8) into (7),

φk − φk+1 ≥
ε20
2

φ2k
R2

(9)

1

φk+1
− 1

φk
=
φk − φk+1

φkφk+1
≥ φk − φk+1

φ2k
≥ ε20

2R2

Recursively,
1

φk
≥ 1

φ0
+ k

ε20
2R2

≥ 1

LR
+ k

ε20
2R2

(10)

where φ0 = f(x(0))− f(x∗) ≤ R‖∇f(x(0))‖ ≤ LR is used in the last inequality.
2

In order to make φk ≤ ε, it is easy to find k = O(
1

ε
) but it’s not optimal. When using Nesterov

acceleration, k = O(
1√
ε
) can be achieved. In addition if it’s not smooth, k = O(

1

ε2
) can be achieved.

3 Convergence of Stochastice Gradient Descent

We proved the convergence of gradient descent. However, calculating gradient of a function usually
involves visit all the data points which is expensive to calculate. The basic idea of stochastic gradient
descent (SGD) is to use an estimator as a proxy of the gradient, which results in a significantly
speed-up of per-iteration cost and does not hurt the number of iterations too much.

Theorem 3 (Convergence of SGD with fixed step size) A fixed step size SGD xk+1 ← xk−
tgk(xk) and E[gk(x)] = ∇f(x) ∀x. When function f : Rn → R is α-strongly convex and sat-

isfies [‖g(x)‖2] ≤ M2, number of iterations k ∼ O(
1

ε2
) is needed such that E[f(x̄) − f(x∗)] =

E[f(
1

k

∑k
i=1 xi)− f(x∗)] < ε.

Proof:

ak+1 ≡ E[‖xk+1 − x∗‖2] = E[‖xk − tgk(xk)− x∗‖2]
= E[‖xk − x∗‖2]− 2tE[〈gk(xk), xk − x∗〉] + t2E[‖gk(xk)‖2]
≤ ak − 2t〈∇f(xk), xk − x∗〉+ t2M2

(11)



E[f(
1

k

k∑
i=1

xi)− f(x∗)] ≤ E[
1

k

k∑
i=1

(f(xi)− f(x∗))] (convexity)

≤ 1

k

k∑
i=1

E[〈∇f(xk), xk − x∗〉] (convexity again)

≤ 1

k

k∑
i=1

(
ak − ak+1

2t
+
t

2
M2

)
(inequality (11))

=
a0 − ak

2kt
+

1

2
tM2

≤ E[‖x0 − x∗‖2]
2kt

+
1

2
tM2 (throw ak away)

≤ f(x0)− f(x∗)

αkt
+

1

2
tM2 (α-strongly convex)

(12)

If we want E[f(x̄) − f(x∗)] = E[f(
1

k

∑k
i=1 xi) − f(x∗)] < ε, we simply set t ∼ O(

1

ε
) and

k ∼ O(
1

ε2
).
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Theorem 4 (Convergence of SGD with adaptive step size) A SGD xk+1 ← xk − tkgk(xk)
and E[gk(x)] = ∇f(x) ∀x with adaptive step size tk =

1

αk
. When function f : Rn → R is α-

strongly convex and satisfies [‖g(x)‖2] ≤ M2, number of iterations k ∼ O(
1

ε
) is needed such that

E[‖xk − x∗‖2] < ε.

Proof:
Due to α-strongly convexity,

f(x∗)− f(xk) ≥ 〈∇f(xk), x
∗ − xk〉+

α

2
‖xk − x∗‖2 (13)

f(xk)− f(x∗) ≥ 〈∇f(x∗), xk − x∗〉+
α

2
‖xk − x∗‖2 (14)

Add (14) to (13), we have

〈∇f(xk)−∇f(x∗), x∗ − xk〉+ α‖xk − x∗‖2 ≤ 0 (15)

〈∇f(xk), xk − x∗〉 ≥ α‖xk − x∗‖2 (16)

Like what we do in (11), we can get

E[‖xk+1 − x∗‖2] ≤ E[‖xk − x∗‖2]− 2tk〈∇f(xk), xk − x∗〉+ t2kM
2

≤ E[‖xk − x∗‖2]− 2αtk‖xk − x∗‖2 + t2kM
2 (use (16))

= (1− 2αtk)E[‖xk − x∗‖2] + t2kM
2

(17)



Define H = max(‖x0 − x∗‖,
M2

α2
). We want to proove E[‖xk − x∗‖2] ≤

H

k
by induction.

Obviously, E[‖x0 − x∗‖2] satisfies. Suppose E[‖xk − x∗‖2] ≤
H

k
. (17) can be written as

E[‖xk+1 − x∗‖2] ≤ (1− 2αtk)E[‖xk − x∗‖2] + t2kM
2

≤ (1− 2
1

k
)
H

k
+
H

k
(use tk =

1

αk
and definition of H)

=
k − 1

k2
H ≤ H

k + 1

(18)

By induction, we can conclude that E[‖xk − x∗‖2] ≤
H

k
. There exists k ∼ O(

1

ε
), such that

E[‖xk − x∗‖2] ≤
H

k
< ε.

2

4 Stochastic Variance Reduced Gradient (SVRG)

Suppose a function to optimize is the sum of n functions P (w) =
1

n

∑n
i=1 ψi(w). SGD updating

rule is wt+1 ← wt − η∇ψit(wt), where it ∼ [n] is random chosen which induces large variance and
subsequently slows down the convergence.

The idea of SVRG[1] is to use a occasionally updated estimate w̃ to compensate for the ran-
domness of choosing ψit . Figure 2 sketches the intuition of variance reduction.

Figure 2: Intuition of SVRG (from [2])

The algorithm is shown as follows.
Firstly, we can see that the expectation of the new gradient term equals to the true gradient.

Eit [(∇ψit(wt−1)−∇ψit(w̃) + µ̃)] = ∇P (wt−1)−∇P (w̃) +∇P (w̃) = ∇P (wt−1)

Then we can briefly bound the variance (for complete proof, see [2]). Let vt = ∇ψit(wt−1) −
∇ψit(w̃) + µ̃.



Algorithm 1: SVRG

for s = 1, 2, . . . epochs do1

w̃ = w̃s−1;2

µ̃ =
1

n

∑k
i=1 ψi(w̃) = ∇P (w̃);3

w0 = w̃;4

for t = 1, 2, . . . ,m do5

wt = wt−1 − η(∇ψit(wt−1)−∇ψit(w̃) + µ̃) where it ∼ [n];6

option 1: w̃s = wt where t
unif.∼ [m];7

option 2: w̃s = wm;8

E[‖vt‖2] = E[‖∇ψit(wt−1)−∇ψit(w̃) + µ̃‖2]
= E[‖∇ψit(wt−1)−∇ψit(w∗) +∇ψit(w∗)−∇ψit(w̃) + µ̃‖2]
≤ 2E[‖∇ψit(wt−1)−∇ψit(w∗)‖2] + 2E[‖∇ψit(w̃)−∇ψit(w∗)− µ̃‖2]
≤ 2E[‖∇ψit(wt−1)−∇ψit(w∗)‖2] + 2E[‖∇ψit(w̃)−∇ψit(w∗)− E[∇ψit(w̃)− ψit(w∗)]‖2]
≤ 2E[‖∇ψit(wt−1)−∇ψit(w∗)‖2] + 2E[‖∇ψit(w̃)−∇ψit(w∗)‖2]
≤ 4L[P (wt−1)− P (w∗) + P (w̃)− P (w∗)]

(19)
The first inequality uses ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2; the second inequality uses E[‖X −EX‖2] ≤

E[‖X‖2]; the last is due to L-smoothness of function ψi(w). When w gets closer to w∗, the variance
gets closer to zero.
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