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1 Notions and Properties

Let us first recall some related notions and properties.

1.1 Convex Optimization

Consider a convex function f : R™ — R, optimizer x* = argmin, f(z) satisfies that

Viz*)=0
{V%f(x*) <0 W

1.2 Precedes and Succeeds

A < B means A — B is positive semidefinite (PSD). A = B means B — A is PSD. Notation < and
> means the corresponding matrices are positive definite.

1.3 Taylor Expansion

A function can be Taylor expanded (to the second order)

£() = fwo) + VI@) (2 = 20) + 5 (&~ 20) V(o) (&~ w0) for some y € [z, 7] (2)

1.4 a-Strongly Convex

The following three definitions of a-strongly convex are equivalent.
1. V2f(z) =al Vx
2. f(y) > f(2) + VI(@)(y —2) + §lly — =3

3. fly) — glly - z||3 is convex for all x

1.5 L-Smooth

The following three definitions of L-smooth are equivalent.
1. VQf(:r) < LI Vx
2. [Vf(x) = VIl < Lz -yl

3. fly) < fla) + Vf(2)(y —2) + 5y — I3



2 Convergence of Gradient Descent

Theorem 1 (Convergence of fixed step size GD) If function f : R™ — R is conver, a-strongly

1
convex and L-smooth, when running GD z + x — tV f(x) and choose t = I

a

Fa®) = f@") < (1= D) - f@7) 3)

where x* is minimizer of f.

Proof: The second difinite of a-strongly convex f(y) > f(z) + V f(z)(y — z) + |y — |3 holds for
1

any = and y, let y = § = —V f(x) minimize the RHS. We have
a

F) 2 7() — 5 IV 5 @3

choose y = z*, we have
IV£(@)I3 = 2a(f(z) - f(a)) (4)
Consider z1 +— x — tV f(x) and the third definition of L-smooth f(y) < f(z)+ Vf(z)(y —z) +
L 2
Flly =2,

L
F@®) < fla) =tV (@)l + §t2HVf($)H§
choose t = %, we have

f@®) = @) < flx) = f(z*) - %ﬁﬂvf(f)”%
Combine (4)),

Fa®) = f@®) < (1= 2)(f(2) = f(a7))
Recursivly,
* a *
fa®) = fa) < (1- Z)k(f(if(o)) — f(@")) ()
when 1 — 2 < 1, this is linear convergence.
L O
If we want find z*) such that f(z*)) — f(2*) < ¢, we only need to run k iterations and

1 1 L
k= O(logg/log ; a) = O(alog

1

€

).
An intuitive view why we need smoothness and strongly convexity requirement is shown as

o
is too large, the updating trajectory will be zigzag like with poor performance. You can consider

a ill-conditioned function defined on R? plane f(z1,22) = 2?2 + 1000023, where L = 10000, o = 1
and x = 10000.

L
ﬁgure Suppose f : R" — R is a-strongly convex and L-smooth, if the condition number x = —



well-conditioned ill-conditioned

Figure 1: Ill-conditioned function causes poor gradient descent performance

Theorem 2 (Convergence of adaptive step size GD) If function f : R" — R is conver and
1
L-smooth, when running GD 1) « 2(®) — BV f(z) and ¢ < t*) < (2 — eo)z,
1 1 e
> i 6
or ~ LR * 2R? (6)

where ¢y, = f(z®)) — f(2*), R is diameter of f(x), i.e. R = max,|z —z*|| o > 0 is a constant
and =¥ is minimizer of f.

Proof: Given L-smoothness,

Fa®) — @) < OV @)3 + LIV @3

= (107 )|V (@) 3
= (S — 1)V 1)

L 1
<022 - )7~ VIV@)IB
= 1O (= DIVI@)3

2
< - FIVI@IB

l.e.

2
br = dri1 = V@)1 (7)



Consider

op = f(z “”) — f(a")

(k)
< (VF®),a® - a%) .
< IV f)[2®) — 27|
< R||Vf (M)
Put nto ,
m—mﬂ_gg (9)
L S ) et e B ¢k—¢k+1> i
brv1 Pk Pedkr1  DF T 2R?
Recursively, P
Lol % sl 9 (10)

& o R2 = LR ' "2R?
where ¢o = f(z() — f(z*) < R|[Vf(2)|| < LR is used in the last inequality.

1
In order to make ¢y < €, it is easy to find kK = O(=) but it’s not optimal. When using Nesterov
€

1
) can be achieved. In addition if it’s not smooth, k = O(

acceleration, k = O( — ) can be achieved.
€

NG
3 Convergence of Stochastice Gradient Descent

We proved the convergence of gradient descent. However, calculating gradient of a function usually
involves visit all the data points which is expensive to calculate. The basic idea of stochastic gradient
descent (SGD) is to use an estimator as a proxy of the gradient, which results in a significantly
speed-up of per-iteration cost and does not hurt the number of iterations too much.

Theorem 3 (Convergence of SGD with fixed step size) A fizved step size SGD g1 + x) —
tgr(xk) and Elgy(z)] = Vf(z) Va. When function f : R® — R is a-strongly convexr and sat-

isfies [||g(x)]|?] < M?, number of iterations k ~ O(E%) is needed such that E[f(Z) — f(z*)] =
B/ (7 Sy o) — [ <.

Proof:
apr1 = Bll|zpsr — 2% = Elllag, — tgr(ae) — 2*|%]

= E[||zy — 2*||*] — 2tE[(gr(2x), 21 — 2*)] + E[|lge (@) [?]  (11)
< ajp — 2t<Vf(:13k),LL’k - $*> + t2M2



k k
E[f (¢ > o) — f@)] <Ef (f(zi) = f(z%))]  (convexity)

i=1 =1

| =

k
1
< z ZE[(Vf(xk), xp —x*)]  (convexity again)
i=1
k
< 1 Z Tk Tkl EJ\/[2 (inequality (L1))) (12)
~k pt 2t 2
ag — ag 1 2
= “tM
ot 2

+ §tM2 (throw aj away)

- 2kt
< f(xo)a;tf(w ) + %tM 2 (a-strongly convex)
If we want E[f(z) — f(z¥)] = E[f(% S @) — f(a¥)] < e, we simply set t ~ O(%) and
k ~ 0(6%).
g

Theorem 4 (Convergence of SGD with adaptive step size) A SGD zj1 < i — tigr(zk)

1
and Elgr(z)] = Vf(x) Va with adaptive step size t, = e When function f : R — R is a-
o

1
strongly conver and satisfies [||g(x)||?] < M2, number of iterations k ~ O(=) is needed such that
€

E[|lax — 2*|°] <e.

Proof:
Due to a-strongly convexity,

F@) = ) = (Ve), 0 = i) + G o — 2| (13)
fan) = @) = (V@) o —a%) + 5l — | (14)
Add () to (13), we have
(VF(@r) = Vf(a*). 2" — i) + allzg —2*|* < 0 (15)
(VS (wx)sx — ) = aljog — ) (16)

Like what we do in , we can get

Ell|lzesr — 2|17 < Elllze — 2*)1*] — 266(V f (x1), 7 — *) + ;3 M
< E[||zx — x*HQ] — 2aty ||z — x*H2 + t%M2 (use )

= (1 = 2at,)E[||x), — =*|*] + 7 M



M? H
Define H = max(||lzg — z*||, —5). We want to proove E[||x; — 2*||*] < — by induction.
a

H
Obviously, E[||zo — x*||?] satisfies. Suppose E|[||zy — z*||?] < - can be written as

Ell ek — 2*|°] < (1 = 2at)E[|lzy, — «*|%] + i M>

1.H H 1
<(1- 2%)? + - (use tg, = e and definition of H) (18)
E—1 H
= H<
k2 T k+1

. . 112 H . 1
By induction, we can conclude that E[||zy — z*[|°] < - There exists k& ~ O(-), such that

€

H
Ellm — 2] < 2 <

4 Stochastic Variance Reduced Gradient (SVRG)

1
Suppose a function to optimize is the sum of n functions P(w) = — > " ¢;(w). SGD updating
n

rule is wyq1 < wy — NV, (w), where i, ~ [n] is random chosen which induces large variance and
subsequently slows down the convergence.

The idea of SVRGII] is to use a occasionally updated estimate @ to compensate for the ran-
domness of choosing v;,. Figure [2] sketches the intuition of variance reduction.

,f'/' '
V@) V@)
&< VP@)-Vy,@) o, VP@)-Vy, (@)
%V P
k

Figure 2: Intuition of SVRG (from [2])

The algorithm is shown as follows.
Firstly, we can see that the expectation of the new gradient term equals to the true gradient.

E;, [(Vibi, (wi—1) — Vibs, (@) + fi)] = VP(wi—1) — VP(0) + VP () = VP(wi-1)

Then we can briefly bound the variance (for complete proof, see [2]). Let v = Vb, (wi—1) —
Vi, (@) + f.



Algorithm 1: SVRG

1 for s=1,2,... epochs do

2 W = Ws—1;
~ 1 g - -

3 w= " Zi:l Yi(w) = VP(w);

4 wo = UNJ;

5 fort=1,2,...,m do

6 | we = wi1 — (Vi (wi—1) — Vi, (@) 4 fi) where iy ~ [n];
option 1: ws = w; where t i [ml];

8 | option 2: wWg = wp;

E[||ve|”] = E[| Vi, (we-1) —
= E[||Vi, (wi-1) = Vibi, (w") + Vi, (w*) = Vb, (@) + fi]]?]
< 2E[|| Ve, (wi-1) — Vipy, (w”) 2E[[| Vi, (@) — Vs, (w*) — fil|?]
< 2E[[| Vi, (wi—1) — Vb, (w”) 2E[[|Vepi, (w) — Vipy, (w”) — B[V, () —
< 2E[[| Vi, (wi—1) — Vi, (w”) 2E[| Ve, (@) — Vi, (w*)|1%]
<AL[P(wi—1) — P(w") + P(w) — P(w")]

Vi, (0) + fil?]

%] +
%] +
%] +

(19)

The first inequality uses ||a + b||> < 2||a||? + 2||b||?; the second inequality uses E[[|X —EX||?] <
E[|| X|?]; the last is due to L-smoothness of function 1;(w). When w gets closer to w*, the variance

gets closer to zero.
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