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1 Introduction

In this lecture, we cover some optimization techniques with their theoretical analysis. We first
introduce the ODE interpretation and convergence of Heavy ball method. Then we use construction
method to show the lower bound of first-order method. Finally, we present ODE interpretation
and analysis of Nesterov’s acceleration.

2 Notation

We consider the objective function f is l-strongly convex and L-smooth. Thus lI � ∇2f � LI. We
use κ = L

l to denote condition number of ∇2f .

3 Heavy ball method

Heavy ball method is also called chebyshev iterative method. Its update rule is:

xk+1 = xk − γ∇f(x) + β(xk − xk−1) (1)

3.1 ODE interpretation

The corresponding ODE of heavy ball method is:

µ
d2x

dt2
= −∇f(x)− bdx

dt
(2)

We can regard d2x
dt2

as acceleration, −∇f(x) as force and −bdx
dt as friction. By discretizing (2), we

obtain:

µ
x(t+ ∆t)− 2x(t) + x(t−∆t)

∆t2
= −∇f(x(t))− bx(t)− x(t−∆t)

∆t
(3)

(Note in the left we can use Tayler expansion to get the differential)
Thus, from (3) we have:

x(t+ ∆t) = x(t)− ∆t2

µ
∇f(x(t)) + (1− b

µ
∆t)(x(t)− x(t−∆t)) (4)

In the equation above, let γ = ∆t2

µ and β = 1− b
µ∆t which is equivalent to (1).



3.2 Convergence analysis

The convergence rate of heavy ball method is O(
√
κ log 1

ε ), where κ is condition number of ∇2f and
ε is error tolerance. In the following, we first show that the convergence rate of gradient descent,
which is O(κ log 1

ε ). Then we show the improved convergence rate of heavy ball method.

Theorem 1. The convergence rate of gradient descent is O(κ log 1
ε ).

Proof [1]. Denote the update rule of gradient descent Gα(x) = x − α∇f(x). Assume ||Gα(x) −
Gα(y)|| < LG||x− y||, where LG is a constant less than 1. There exists the lemma below.

Lemma 2. ||xk+1 − x∗||2 ≤ LkG||x1 − x∗||2, where x∗ is the optimal solution of f.

Proof.

||xk+1 − x∗||2 = ||xk − αk∇f(xk)− (x∗ − αk∇f(x∗))||2
= ||Gα(xk)−Gα(x∗)||2
≤ LG||xk − x∗||2

(5)

By using Eq (5) k times, the lemma is proved.

Lemma 3. Assume f is l-strongly convex and L-smooth. Therefore, LG ≤ max{|1−αl|, |1−αL|}.

Proof.

||Gα(x)−Gα(y)||2 = ||x− α∇f(x)− (y − α∇f(y))||2
= ||(x− y)(I − α∇2f(z))||2
≤ ||x− y||2||I − α∇2f ||2
≤ ||x− y||2 max{|1− αl|, |1− αL|}.

(6)

where z ∈ [x, y] and the last line comes from the definition of matrix spectral norm. Thus, LG ≤
max{|1− αl|, |1− αL|}.

In lemma 3, let α = 2
l+L , so LG = 1 − O( 1

κ). Then let (1 − O( 1
κ))t ≤ ε, we can obtain

t = O(κ log 1
ε ).

Theorem 4. For heavy ball method, assume f is l-strongly convex and L-smooth and let γ =
4

(
√
l+
√
L)2

and β =
√
L−
√
l√

L+
√
l
. We have ||xk+1 − x∗||2 ≤ (

√
κ−1√
κ+1

)k||x1 − x∗||2.

Proof. In the following proof, instead of looking at ||xk+1−x∗||2, we examine ||xk+1−x∗||2 + ||xk−
x∗||2:



∥∥∥∥[xk+1 − x∗
xk − x∗

]∥∥∥∥ =

∥∥∥∥[xk + β(xk − xk−1)− x∗
xk − x∗

]
− γ

[
∇f(xk)

0

]∥∥∥∥
=

∥∥∥∥[(1 + β)I −βI
I 0

] [
xk − x∗
xk−1 − x∗

]
− γ

[
∇2f(zk)(xk − x∗)

0

]∥∥∥∥
=

∥∥∥∥[(1 + β)I − γ∇2f(zk) −βI
I 0

] [
xk − x∗
xk−1 − x∗

]∥∥∥∥
≤
∥∥∥∥[(1 + β)I − γ∇2f(zk) −βI

I 0

]∥∥∥∥∥∥∥∥[ xk − x∗
xk−1 − x∗

]∥∥∥∥
(7)

where zk ∈ [xk, x∗](w.l.o.g. let xk < x∗), and let

T =

[
(1 + β)I − γ∇2f(zk) −βI

I 0

]
(8)

We introduce the following Proposition:

Lemma 5. For β ≥ max{|1−
√
γl|2, |1−

√
γL|2}, ρ(T ) = maxi |λi(T )| ≤

√
β.

Proof. Let UΛUT be the eigendecomposition of ∇2f(zk). Let Π be the 2n×2n matrix with entries

Πi,j =


1 i odd, j = (i+ 1)/2

1 i even, j = n+ i/2

0 otherwise

(9)

We have

Π

[
U 0
0 U

] [
(1 + β)I − γ∇2f(zk) −βI

I 0

] [
U 0
0 U

]T
ΠT

=Π

[
(1 + β)I − γΛ −βI

I 0

]
ΠT

=


T1 0 . . . 0
0 T2 . . . 0
...

. . .
...

0 0 . . . Tn


(10)

where

Ti =

[
1 + β − γλi −β

1 0

]
(11)

That is, T is similar to the block diagonal matrix with 2× 2 diagonal blocks Ti. To compute the
eigenvalues of T , it suffices to compute the eigenvalues of all of the Ti. For fixed i, the eigenvalues
of the 2× 2 matrix are roots of the equation

u2 − (1 + β − γλi)u+ β = 0 (12)



In the cases that β ≥ (1−
√
γλi)

2, the roots of the characteristic equations are imaginary, and both
have magnitude

√
β. Note that by assumption

(1−
√
γλi)

2 ≤ max{|1−
√
γl|2, |1−

√
γL|2} (13)

and letting β = max{|1−
√
γl|2, |1−

√
γL|2} completes the proof.

Hence, setting γ = 4
(
√
l+
√
L)2

and β = max{|1 −
√
γl|2, |1 −

√
γL|2} = (

√
L−
√
l√

L+
√
l
)2. Thus ρ(T ) ≤

√
β =

√
κ−1√
κ+1

. ∥∥∥∥[xk+1 − x∗
xk − x∗

]∥∥∥∥ ≤ √κ− 1√
κ+ 1

∥∥∥∥[ xk − x∗
xk−1 − x∗

]∥∥∥∥
≤
(√κ− 1√

κ+ 1

)2∥∥∥∥[xk−1 − x∗
xk−2 − x∗

]∥∥∥∥
≤ . . .

≤
(√κ− 1√

κ+ 1

)k∥∥∥∥[x1 − x∗
x0 − x∗

]∥∥∥∥
(14)

Or, in other words, ∥∥∥xk+1 − x∗
∥∥∥ ≤ (√κ− 1√

κ+ 1

)k∥∥x1 − x∗
∥∥ (15)

4 Lower bound of first order method

Theorem 6. There exists a L-smooth and l-strongly convex function f : l2 → R with condition
number κ = L

l such that for any k ≥ 1 and any black box first order method, the following lower
bound holds.

f(xk)− f(x∗) ≥ l

2

(√κ− 1√
κ+ 1

)2(k−1)∥∥x1 − x∗
∥∥2

(16)

Proof [3]. As is typical of lower bound proofs, we prove this theorem by constructing an example.
The example function we construct is an l2 function. Informally speaking, l2 functions are vectors
with infinitely many coordinates that are also square summable. Formally,

l2 = {x = (x(n)), n ∈ N,
∞∑
i=1

x(i)2 < +∞} (17)

We define an operator that assumes the form of a tridiagonal matrix. Let

A =


2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

. . .
. . .

. . .

 (18)



Using the operator above, we can define the following quadratic function.

f(x) =
l(κ− 1)

8
(xTAx− 2eT1 x) +

l

2
‖x‖2 (19)

Here, e1 denotes the first vector of the canonical basis, i.e., e1 = [1, 0, ..., 0]T . We compute the
gradient of f .

∇f(x) =
l(κ− 1)

4
(Ax− e1) + lx (20)

We assume that the starting point for our gradient descent routine will be x1 = 0. Plugging that
into the expression above, we get ∇f(x)x=x1 = − l(κ−1)

4 e1.
Since xk is the linear combination of xk−1 and ∇f(xk−1), it is easy to show (by mathematical

induction) that if xk has non-zero entries upto element at index k−1, then xk+1 will have non-zero
entries upto k. The way the Hessian A is designed, the non-zero values propogate linearly across
the dimensions, one dimension per each step of the gradient descent routine.

That is, xk(i) = 0,∀t ≥ k. Let’s now consider the norm∥∥∥xk − x∗∥∥∥ =
∞∑
i=1

(xk(i)− x∗(i))2

≥
∞∑
i=k

(xk(i)− x∗(i))2

=
∞∑
i=k

(x∗(i))2

(21)

Because f is l-strongly convex, it gives us

f(xk)− f(x∗) ≥ l

2

∥∥∥xk − x∗∥∥∥2
≥ l

2

∞∑
i=k

(x∗(i))2 (22)

If we differentiate f and set ∇f to 0, we obtain an infinite linear system, of the following form.

1− 2
κ+ 1

κ− 1
x∗(1) + x∗(2) = 0,

x∗(k − 1)− 2
κ+ 1

κ− 1
x∗(k) + x∗(k + 1),∀k ≥ 2

(23)

The solution of the above system is given by

x∗(i) =
(√κ− 1√

κ+ 1

)i
(24)

Now, we plug this into the above expression, which gives us



f(xk)− f(x∗) ≥ l

2

∥∥∥xk − x∗∥∥∥2

≥ l

2

∞∑
i=k

(x∗(i))2

=
l

2

∞∑
i=k

(√κ− 1√
κ+ 1

)2i

=
l

2

(√κ− 1√
κ+ 1

)2(k−1)∥∥x1 − x∗
∥∥2

(25)

This proves the theorem.

5 Nesterov’s acceleration

The update rule of Nesterov’s acceleration is

xk+1 = yk − s∇f(yk)

yk = xk +
k − 1

k + 2
(xk − xk−1)

(26)

where y0 = x0. The related second-order ODE takes the following form:

d2x

dt2
+

3

t

dx

dt
+∇f(x) = 0 (27)

For the derivation of the ODE, please refer to [6].
As for the convergence rate, there exists the theorem below.

Theorem 7. If f is convex, f(xk)− f(x∗) ≤ 2‖x0−x∗‖
k2

.

Proof. Consider the energy functional ε(k) = k2(f(xk)− f(x∗)) + 2
∥∥xk + 1

2k
dx
dk − x

∗∥∥.

dε

dk
= 2k(f(xk)− f(x∗)) + k2〈∇f(xk),

dx

dk
〉+ 4〈x+

k

2

dx

dk
− x∗, 3

2

dx

dk
+
k

2

d2x

dk2
〉

= 2k(f(xk)− f(x∗)) + 4〈xk − x∗,−k∇f(xk)

2
〉 (by using (27))

≤ 0 (by convexity)

(28)

Thus, f(xk)− f(x∗) ≤ ε(k)
k2
≤ ε(0)

k2
=

2‖x0−x∗‖
k2

.

6 Brief Summary

In this section, we briefly summarize some topics (or taxonomy) of optimization techniques. Deriva-
tive based optimization can be mainly divided into two categories: full gradient methods and
stochastic gradient methods. Full gradient methods require full batch samples to update at
each step, including Gradient Descent (GD), Heavy Ball method, Nesterov Accelerated Gradient



Descent (NAGD)[5], etc.. However, stochastic gradient methods sample a subset samples at every
step, which include Stochastic Gradient Descent (SGD), Stochastic Variance Reduced Gradient
(SVRG)[4] and so on. Besides, distributed optimization is another emerging topic which considers
updating in parallel each time, related works including ADMM[2], AsySVRG[7] and so on.
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