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1 Definition of Reinforcement Learning

Generally, we formulate reinforcement learning problem by Markov decision process(MDP).

Definitionl (MDP) A MDP is a 5-tuple (S, A, P,r,v), where
e S is a set of states which we assume finite here;
e A, is a set of actions available from state s and when it’s clear we often omit the subscript;
e P(s'|s,a) is the probability that action a in state s will lead to state s’ in the next timestep;
e 7(s',s,a) is the reward the one would get after executing action a in state s and arriving s';
e v € [0,1] is the discount factor.

The agent is asked to find a series actions {a;}7_, such that the long term reward is maximized,

l.e. we aim to maximize
T
2 : t
EaO:oo[ ’7 rt}
t=0

where T' € N U {oo} is the horizon.

A policy 7 is a mapping from S x [T] to A. We say the agent follows m when the agent chooses
actions according to .
Definition2 (Value function and Q-function). Given a policy 7, then value function and
Q-function are defined as:

Vz(s) = E”[Z virelsg = s]
=0

Qx(s,a) = Eﬂ[z yirlso = s, a0 = al
t=0
and the optimal value function and Q-function are defined as:
V*(s) = sup Vx(s)
Q" (s) = sup Qr(s, a)
It’s trivial to find the iteration of V' and Q:
Va(s) = Exlro + V()]

Qx(s,a) = E[ro] + ’yZP(s’]s,a)VW(s’)

s



V*(s) = maz,Q* (s, a) = mazqeasEqlro] + ’yz P(s|s,a)V*(s")

S/

Q*(s,a) = Elro] + 3 P(/]s,a)V* (s)
s/
Remarkl. Here we consider the discountted case, i.e. v < 1. Actually when the horizon T is
finite, we could do nothing more than dynamic programming. In the case T = oo, to keep the
long-term reward converge, we have to select v < 1. Alternatively, we could consider the average
reward per step. For more details, please refer to [I]

2 Basic Algorithms
Definition2 (Bellman Operator) Suppose S = [n], then 7 : R" — R" is defined as:
Tv; = MaZaeA, Z P(]ha a)(r(j7 Uy a) + 7”])
j=1

when 7 is a policy independent of ¢, then 7 is defined as:
n
Tevi = ) P(jli, ) (r (G4, 7) + yv5)
j=1

Trv =71 +~vPrv
where P(jli,n) = ZaeAi Pr(a|m)P(jli,a) and r(j,i,7) = ZaGAi Pr(a|m)r(j,i,a).
It’s easy to see that T is a contraction with factor v < 1 in L space. So we have following
claims:
e v =Tv <= v is the optimal value function and we denote it as v*;
o limj,_,oo 7*v = v* for any v € R™;
e 7 is optimal iff Tv = Tv = v*

To solve v*, we list 3 algorithms.

Algorithm 1: Value Iteration (VI)

1v9+<0
2 fort=0,1,2,...,7 do
3 LUtJrl(_TUt

4 return vp

Note that if we select m; = 1 for all ¢, then MPI turns to be VI, and if m; = oo, MPI becomes
PI. So we only need to show convergence for MPI.



Algorithm 2: Policy Iteration (PI)
v9 < 0
fort=0,1,2,...,7 do
find 7y such that 7,0, = Ty
Vi1 = limg oo TRV = vp,

[N I e

5 return vr

Algorithm 3: Modified Policy Iteration (MPI)
vg < 0

fort=0,1,2,...,7 do

L find 7 such that Tr,v = Tvs

N N e

m
Vet < T

5 return vrp

Theoreml1. MPI algorithm converges when 17" — co.

Proof. Define D = {v € R", Tv > v} where x > y means x; > y; for all i € [n]. Denote T*vg = uz,
we’ll prove that vy > ug and v € D by induction. For k = 0, the induction hypothesis is satisfied.
Assume now it holds for £ = 0,1,2,..,n, we have v,11 = T""v, = v, + Z@@)—l 7;’n (T, Un — V) >
Tvn > Tup = tnpg1 and Topg1 — Vpg1 > T (Tvn — vn) > 0. Thus the hypothesis is satisfied for
k =n+ 1. At last, because v* > lim;_oos > limy_ooty = v*, we have limy_,oo v = v*.

3 LP-solution

Consider following LP problem:

minZuo(s)v(s)

s.t.

v(s) 2 Y Ps']s,a)(r(s',s,a) +yu(s)

for any s € S and a € A;.

Claim. If ug(s) > 0 for any s, then the solution of this LP problem is the optimal value function.
Proof. We only need to show 7Tv = v. Suppose Tv(s) > v(s) for some s = sg, then we could
decrease v(sg) with a proper positive stepsize keeping all the constraints still satisfied. On the
other side, the target > uo(s)v(s) is strictly decreased because ug(sg) > 0, which is contrary to
the optimality of v.

4 Techniques to Evaluate Value Function

In previous discussion, we assume that the transition probability P and the reward function r is
known, but in practice we have to estimate this random variables by sampling. Here we're going



to talk about how to evaluate value function given a fixed policy 7 (which we often omit when it’s
clear). We have following algorithms:

Algorithm 4: o-MC
v(s) « 0 for all s
fort=0,1,2,...,7 do
Play a sequence starting from s; until terminal to get {r; }})O:O;
L v(sy) + (1 —a)v(se) + ozE;’iO ¥

5 return vrp

NI SR

Algorithm 5: o-TD

v(s) <= 0 for all s
fort=0,1,2,...,7 do
L Play one step starting from s; to get {siy1,7¢};

N

v(se) < (1= a)olse) + alre +yv(se41));

5 return vrp

5 Learn Q-function

Instead of solve value function, we can try to optimize for Q-function. We lists two algorithms
here: Q-learning (off-policy TD control) and Sarsa (on-policy TD control)

Algorithm 6: Q-learning

1 Q(s,a) < 0 for all s and a

2 fort=0,1,2,...,7 do

3 optionl: for a € A;, do

4 L Q(stv a) A Zs’ P(8/|St> a)(r(s’, 5, CL) + Y maxy Q(slv al))

5 option2: for a € A;, do

6 L Q(st,a) + (1 —a)Q(st,a) + (1 —a) > P(s'|st,a)(r(s, s, a) + ymaxy Q(s',a’))

7 option3: play one step starting from s; with action a; = a and get {s;+1,7¢}
Q(st,a) < (1 = a)Q(st, a) + ary + maxy Q(se+1,a"))

8 return Qr

One could replace the 6-th line of algorithm?7 with
Q(s,a) « (1 = a)Q(s,a) + a(r + ymax Q(s', a’))
CL/

in the off-policy case.



Algorithm 7: Sarsa

1 Input: H: number of episodes

2 fort:=0,1,2,...,H do

3 Initialize the state to be sg

4 while s is not the terminal state do

5 Take action a , observe r and s, and derive ' according to Q(s’) (here we do not
specify the method to derive a’, and a possible choice is e-greedy method);
Q(s,a) (1 - a)Q(s,a) + alr +1Q(s, a));
s+ s,a<+d

N o

return Q)

o]
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