
IIIS 2018 Spring: ATCS - Selected Topics in Optimization
Lecture date: June 4th, 2018
Instructor: Jian Li Scribe: Zihan Zhang

1 Definition of Reinforcement Learning

Generally, we formulate reinforcement learning problem by Markov decision process(MDP).

Definition1 (MDP) A MDP is a 5-tuple (S,A, P, r, γ), where

• S is a set of states which we assume finite here;

• As is a set of actions available from state s and when it’s clear we often omit the subscript;

• P (s′|s, a) is the probability that action a in state s will lead to state s′ in the next timestep;

• r(s′, s, a) is the reward the one would get after executing action a in state s and arriving s′;

• γ ∈ [0, 1] is the discount factor.

The agent is asked to find a series actions {at}Tt=0 such that the long term reward is maximized,
i.e. we aim to maximize

Ea0:∞ [
T∑
t=0

γtrt]

where T ∈ N ∪ {∞} is the horizon.
A policy π is a mapping from S × [T] to A. We say the agent follows π when the agent chooses

actions according to π.
Definition2 (Value function and Q-function). Given a policy π, then value function and
Q-function are defined as:

Vπ(s) = Eπ[
∞∑
t=0

γtrt|s0 = s]

Qπ(s, a) = Eπ[

∞∑
t=0

γtrt|s0 = s, a0 = a]

and the optimal value function and Q-function are defined as:

V ∗(s) = sup
π
Vπ(s)

Q∗(s) = sup
π
Qπ(s, a)

It’s trivial to find the iteration of V and Q:

Vπ(s) = Eπ[r0 + γV (s′)]

Qπ(s, a) = E[r0] + γ
∑
s′

P (s′|s, a)Vπ(s′)

V ∗(s) = maxaQ
∗(s, a) = maxa∈AS

Ea[r0] + γ
∑
s′

P (s′|s, a)V ∗(s′)

Q∗(s, a) = E[r0] +
∑
s′

P (s′|s, a)V ∗(s)

Remark1. Here we consider the discountted case, i.e. γ < 1. Actually when the horizon T is
finite, we could do nothing more than dynamic programming. In the case T = ∞, to keep the
long-term reward converge, we have to select γ < 1. Alternatively, we could consider the average
reward per step. For more details, please refer to [1]

2 Basic Algorithms

Definition2 (Bellman Operator) Suppose S = [n], then T : Rn → Rn is defined as:

T vi = maxa∈Ai

n∑
j=1

P (j|i, a)(r(j, i, a) + γvj)

when π is a policy independent of t, then Tπ is defined as:

Tπvi =
n∑
j=1

P (j|i, π)(r(j, i, π) + γvj)

Tπv = rπ + γPπv

where P (j|i, π) =
∑

a∈Ai
Pr(a|π)P (j|i, a) and r(j, i, π) =

∑
a∈Ai

Pr(a|π)r(j, i, a).

It’s easy to see that T is a contraction with factor γ < 1 in L∞ space. So we have following
claims:

• v = T v ⇐⇒ v is the optimal value function and we denote it as v∗;

• limk→∞ T kv = v∗ for any v ∈ Rn;

• π is optimal iff T v = Tπv = v∗

To solve v∗, we list 3 algorithms.

Algorithm 1: Value Iteration (VI)

v0 ← 01

for t = 0, 1, 2, . . . , T do2

vt+1 ← T vt3

return vT4

Note that if we select mt = 1 for all t, then MPI turns to be VI, and if mt =∞, MPI becomes
PI. So we only need to show convergence for MPI.

Algorithm 2: Policy Iteration (PI)

v0 ← 01

for t = 0, 1, 2, . . . , T do2

find πt such that Tπtvt = T vt3

vt+1 ← limk→∞T kπtvt = vπt4

return vT5

Algorithm 3: Modified Policy Iteration (MPI)

v0 ← 01

for t = 0, 1, 2, . . . , T do2

find πt such that Tπtvt = T vt3

vt+1 ← T mt
πt vt4

return vT5

Theorem1. MPI algorithm converges when T →∞.
Proof. Define D = {v ∈ Rn, T v ≥ v} where x ≥ y means xi ≥ yi for all i ∈ [n]. Denote T kv0 = uk,
we’ll prove that vk ≥ uk and vk ∈ D by induction. For k = 0, the induction hypothesis is satisfied.
Assume now it holds for k = 0, 1, 2, .., n, we have vn+1 = T mn

πn vn = vn +
∑mn−1

i=0 T iπn(Tπnvn − vn) ≥
T vn ≥ T un = un+1 and T vn+1 − vn+1 ≥ T mn

πn (T vn − vn) ≥ 0. Thus the hypothesis is satisfied for
k = n+ 1. At last, because v∗ ≥ limt→∞vt ≥ limt→∞ut = v∗, we have limt→∞ vt = v∗.

3 LP-solution

Consider following LP problem:

min
∑
s

u0(s)v(s)

s.t.
v(s) ≥

∑
s′

P (s′|s, a)(r(s′, s, a) + γv(s′))

for any s ∈ S and a ∈ As.
Claim. If u0(s) > 0 for any s, then the solution of this LP problem is the optimal value function.
Proof. We only need to show T v = v. Suppose T v(s) > v(s) for some s = s0, then we could
decrease v(s0) with a proper positive stepsize keeping all the constraints still satisfied. On the
other side, the target

∑
s u0(s)v(s) is strictly decreased because u0(s0) > 0, which is contrary to

the optimality of v.

4 Techniques to Evaluate Value Function

In previous discussion, we assume that the transition probability P and the reward function r is
known, but in practice we have to estimate this random variables by sampling. Here we’re going

to talk about how to evaluate value function given a fixed policy π (which we often omit when it’s
clear). We have following algorithms:

Algorithm 4: α-MC

v(s)← 0 for all s1

for t = 0, 1, 2, . . . , T do2

Play a sequence starting from st until terminal to get {rj}∞j=0;3

v(st)← (1− α)v(st) + α
∑∞

j=0 γ
jrj ;4

return vT5

Algorithm 5: α-TD

v(s)← 0 for all s1

for t = 0, 1, 2, . . . , T do2

Play one step starting from st to get {st+1, rt};3

v(st)← (1− α)v(st) + α(rt + γv(st+1));4

return vT5

5 Learn Q-function

Instead of solve value function, we can try to optimize for Q-function. We lists two algorithms
here: Q-learning (off-policy TD control) and Sarsa (on-policy TD control)

Algorithm 6: Q-learning

Q(s, a)← 0 for all s and a1

for t = 0, 1, 2, . . . , T do2

option1: for a ∈ Ast do3

Q(st, a)←
∑

s′ P (s′|st, a)(r(s′, s, a) + γmaxa′ Q(s′, a′))4

option2: for a ∈ Ast do5

Q(st, a)← (1− α)Q(st, a) + (1− α)
∑

s′ P (s′|st, a)(r(s′, s, a) + γmaxa′ Q(s′, a′))6

option3: play one step starting from st with action at = a and get {st+1, rt}7

Q(st, a)← (1− α)Q(st, a) + α(rt + maxa′ Q(st+1, a
′))

return QT8

One could replace the 6-th line of algorithm7 with

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
a′

Q(s′, a′))

in the off-policy case.

Algorithm 7: Sarsa

Input: H: number of episodes1

for i = 0, 1, 2, . . . ,H do2

Initialize the state to be s03

while s is not the terminal state do4

Take action a , observe r and s′, and derive a′ according to Q(s′) (here we do not5

specify the method to derive a′, and a possible choice is ε-greedy method);
Q(s, a)← (1− α)Q(s, a) + α(r + γQ(s′, a′));6

s← s′, a← a′7

return Q8

References

[1] Puterman M L. Markov decision processes: discrete stochastic dynamic programming[M]. John
Wiley, Sons, 2014.

	Definition of Reinforcement Learning
	Basic Algorithms
	LP-solution
	Techniques to Evaluate Value Function
	Learn Q-function

