
IIIS 2017 Spring: ATCS - Selected Topics in Optimization
Lecture date: March 5th, 2018
Instructor: Jian Li Scribe: Zihan Zhang

1 Multiplicative Weight Algorithm

Coin Guess Problem (special case of expert problem): Given any sequence of binary value of length
T (1 represents the face and 0 for the tail), at time step t ≤ T , expert i gives prediction cti ∈ {0, 1}.
Then the algorithm give a distribution pt ∈ ∆([n]) based on the history and follow the prediction
of expert i with probability of pti. And then we observe the actual result ct. The regret is define as:

RegT = max
i∈[n]

T∑
t=1

I[cti = ct]−
T∑
t=1

n∑
i=1

ptiI[cti = ct]

Remark: Here we choose to compare with the best expert because in the worst case, the adversary
could choose ct after we make the decision pt such that the loss is at least one half.

This is a classical online optimization problem. Denote the loss mt
i = I[cti 6= ct] the MW

algorithm is given as following:

Algorithm 1: MW for Coin Guess

Initially, let w1
i = 0 for all i ∈ [n], ε < 1/2;1

for = 1,2,...,T do2

wt =
∑

i∈[n]w
t
i ;3

pti = wti/w
t;4

choose expert with probability of pti;5

observe loss mt
i;6

update wt+1
i = wti(1− εmt

i)7

Theorem1.

E[RegT] ≤ εT +
logN

ε

Proof.
Denote the loss of Algorithm 1 at time t as mt

A

mt
A =

∑
i

ptim
t
i

First, we observe that

wt+1 =
∑
i∈[n]

wt+1
i =

∑
i∈[n]

wti(1− εmt
i)

= wt − wt
∑
i∈[n]

wti
wt
εmt

i

= wt − wt
∑
i∈[n]

ptiεm
t
i

= wt(1− εE[mt
A])

Then we have

wT+1 = w1ΠT
t=1(1− εE[mt

A]) ≥ wT+1
i = ΠT

t=1(1− εmt
i)

for any i ∈ [n], and

logN − ε
T∑
t=1

mt
A ≥ logN +

T∑
t=1

log(1− εmt
A) ≥

T∑
t=1

log(1− εmt
i) ≥ −

T∑
t=1

εmt
i + ε2mt

i

The following fact is used here. When ε ∈ [0, 1/2] and mt
i ∈ {0, 1}, we have inequality −εmt

A ≥
log(1− εmt

A), log(1− εmt
i) ≥ −εmt

i − ε2mt
i.

We have

T∑
t=1

mT
A ≤

T∑
t=1

mt
i + logN/ε+ ε

T∑
t=1

(mt
i)

2 ≤
T∑
t=1

mt
i + logN/ε+ εT

For any i ∈ [n]. Let ε =
√

logN/T , we have

RegT =
T∑
t=1

mT
A −max

i

T∑
t=1

mt
i ≤

√
T logN

Hence, the regret is bounded by O(
√
T logN).

2 Applications in Zero-Sum Game

Zero-sum game: Here we consider the problem minx maxy x
TMy where M ∈ Rm×n (for simplicity,

we assume that entries of M are either 0 or 1), x ∈ ∆m = {x ∈ Rm|xi ≥ 0, ∀i ∈ [m],
∑m

i=1 xi = 1}
and y ∈ ∆n (the capacity region is often omitted when clear). By Von Neumann’s Minimax
theorem, we have

λ∗ = min
x

max
y
xTMy = max

y
min
x
xTMy

Now we want get a mixed δ-optimal strategy, i.e. find a xδ and yδ, such that

max
y
xTδMy ≤ λ∗ + δ

min
x
xTMyδ ≥ λ∗ − δ

We only give an algorithm for the first inequality, i.e. find a δ-optimal strategy for the row player.
Regarding each row as an expert, then for any adversarial sequence {jt}Tt=1, by theorem1 we could
find a sequence of strategy {xt}Tt=1, such that

T∑
t=1

xtMejt ≤ min
i∈[m]

T∑
t=1

eTi Mejt + 2
√

log(m)T ≤ Tλ∗ + 2
√

log(m)T

By choosing ejt as the best responding strategy for xt, we get

Tλ∗ ≤
T∑
t=1

xtMejt ≤ Tλ∗ + 2
√

log(m)T

λ∗ ≤ 1

T

T∑
t=1

xtMejt ≤ λ∗ + 2

√
log(m)

T

Let τ = argmint xtMejt , by choosing T > 4 log(m)
δ2 , then

xτMejτ ≤ λ∗ + δ

.

3 Online Gradient Descent

Let’s now think about another expansion of experts problem. Suppose there is a convex set K ⊂ Rn
and a family of convex functions F mapping K to R. At time step t, the agent select xt ∈ K, then
the environment provides a convex function ft ∈ F . The regret is define as

RegT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

In this case, there are uncountable experts with each x ∈ K corresponding one expert. However,
convexity of ft makes the problem tractable.

Algorithm 2: Gradient Descent

Initially, select x1 ∈ K, ηt =
√

1/T ;1

for t = 1,2,...,T do2

xt+1 = ProjK(xt − ηt∇ft(xt))3

Return xT+1;4

Theorem2 Assume D(K) = maxx,y∈K ||x − y|| = D and ||∇f(x)|| ≤ N, ∀f ∈ F and x ∈ K, we
have following bounds for algorithm2

RegT ≤ 2ND
√
T

Proof

For any x ∈ K, by convexity of ft we have ft(xt) − ft(x) ≤ ∇ft(xt)T (xt − x). Denote gt =
∇ft(xt), yt+1 = xt − ηtgt, xt+1 = Proj(yt+1).

||xt+1 − x∗||2 ≤ ||yt+1 − x∗||2 = (xt − x∗ − ηtgt)2

= ||xt − x∗||2 − 2ηtgt(xt − x∗) + η2
t ||gt||2

(xt − x∗)gt ≤
1

2ηt
(||xt − x∗||2 − ||xt+1 − x∗||2) +

η2
t

2
||gt||2

RegT =

T∑
t=1

(xt − x∗)gt

≤ 1

2η1
||x1 − x∗||2 −

1

2ηt
||xT − x∗||2 +

1

2

T∑
t=2

(
1

ηt
− 1

ηt−1
)||xt − x∗||2 +

1

2

T∑
t=1

N2ηt

≤ D2(
1

2η1
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1
)) +

1

2

T∑
t=1

N2ηt

=
D2

2ηT
+

1

2
N2

T∑
t=1

ηt

When ηt is fixed and ηt =

√
D2

TN2
, we have regret bound RegT ≤ 2ND

√
T .

When ηt =

√
D2

tN2
, we have regret bound RegT ≤

√
2ND

√
T .

4 Universal Portfolio Algorithm

In this section we’ll talk about the stock investment problem. Suppose there are m stocks in the
market, and in the t-th day, the return of stock i is xit > 0 which we don’t know at the start of
the t-th day. Now we should make investment in the beginning of each day, the problem is: how
to make profit as much as we can?
Constant rebalanced portfolio (CRP): The strategy is quite easy. Given b ∈ ∆n, at the start of
each day, we buy stock i with bi of all our wealth. Then at the end of T-th day, the total wealth
is ST (b, x1:T) = ΠT

t=1(
∑n

i=1 bixit). Denote µn be the uniform distribution on ∆n, we have following
algorithm:

Algorithm 3: Universal Portfolio (UP)

Initially, S0(b, x) = 1 for all b ∈ ∆n and x;1

for t = 1,2,...,T do2

b̂t =

∫
∆n

bSt−1(b,x1:t−1)dµ(b)∫
∆n

St−1(b,x1:t−1)dµ(b)
;

3

make investment following b̂t4

Performance of Universal Portfolio
Here the target is the best CRP strategy. We have following result:

Theorem3. Denote the total wealth of Universal Portfolio at the end of T-th day is SUP (T, x1:T),
then for any b∗ ∈ ∆n and x1:T ,

SUP (T, x1:T)

ST (b∗, x1:T)
≥ e−1

(T + 1)n−1

Proof. Note that

SUP (t, x1;t)

SUP (t− 1, x1:t−1)
=

∫
∆n

bTxtSt−1(b, x1:t−1)dµ(b)∫
∆n

St−1(b, x1:t−1)dµ(b)
=

∫
∆n

St(b, x1:t)dµ(b)∫
∆n

St−1(b, x1:t−1)dµ(b)

by induction and SUP (0) = 1, we have

SUP (t, x1:t) =

∫
∆n

St(b, x1:t)dµ(b)

consider the region B(b∗, α) = (1 − α)b∗ + α∆n = {b|b = (1 − α)b∗ + αz, z ∈ ∆n}. It’s clear that
if b1 ≥ b2, then St(b1, x1:t) ≥ St(b2, x1:t) if we expand the definition of S into Rn+, thus for any
b ∈ B(b∗, α), St(b, x1:t) ≥ (1−α)tSt(b

∗, x1:t). In the other side, it’s easy to get µ(B(b∗, α)) = αn−1,
so we have

SUP (T, x1:T) =

∫
∆n

ST (b, x1:T)dµ(b) ≥ (1− α)Tαn−1ST (b∗, x1:T)

by setting α = 1
T+1 , the conclusion follows.

References

[1] Arora S, Hazan E, Kale S. The Multiplicative Weights Update Method: a Meta-Algorithm
and Applications[J]. Theory of Computing, 2012, 8(1): 121-164.

[2] Blum A, Kalai A. Universal portfolios with and without transaction costs[J]. Machine Learning,
1999, 35(3): 193-205.

	Multiplicative Weight Algorithm
	Applications in Zero-Sum Game
	Online Gradient Descent
	Universal Portfolio Algorithm

