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1 Multiplicative Weight Algorithm

Coin Guess Problem (special case of expert problem): Given any sequence of binary value of length
T (1 represents the face and 0 for the tail), at time step ¢ < T', expert i gives prediction ¢! € {0,1}.
Then the algorithm give a distribution p' € A([n]) based on the history and follow the prediction
of expert ¢ with probability of p!. And then we observe the actual result c¢!. The regret is define as:
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Remark: Here we choose to compare with the best expert because in the worst case, the adversary
could choose ¢! after we make the decision p? such that the loss is at least one half.

This is a classical online optimization problem. Denote the loss m! = I[c! # ¢!] the MW
algorithm is given as following;:

Algorithm 1: MW for Coin Guess

1 Initially, let w} = 0 for all i € [n], € < 1/2;
2 for =1,2,...,T do

3 w' = Zie[n] wj;
4 pl = w!/wh
5 choose expert with probability of p!;
6 observe loss mﬁ;
7 update witt = wi(1 — em?)
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Denote the loss of Algorithm 1 at time ¢ as m/,
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First, we observe that
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Then we have
w' = W' (1 - eBlmYy)) > w1 =TI, (1 — emj)

for any ¢ € [n], and
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The following fact is used here. When € € [0,1/2] and m;“f € {0, 1}, we have inequality —em!, >

log(1 — emY), log(1 — em!) > —em! — e*m!.

‘We have

T T T

T
Znﬂ < Zm§+logN/e+eZ(m§)2 < Zmﬁ—i—logN/e—i-eT
=1 =1

t=1 t=1

For any i € [n]. Let e = y/log N/T, we have
RegT—ZmA—maXZm TlogN
Hence, the regret is bounded by O(v/TlogN).

2 Applications in Zero-Sum Game

Zero-sum game: Here we consider the problem min, max, 2T My where M € R™*" (for simplicity,
we assume that entries of M are either 0 or 1), z € A™ = {x € R™|x; > 0,Vi € [m],>."" z; = 1}
and y € A" (the capacity region is often omitted when clear). By Von Neumann’s Minimax
theorem, we have

A* = minmax z? My = maxminz’ My
Now we want get a mixed J-optimal strategy, i.e. find a x5 and ys, such that
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We only give an algorithm for the first inequality, i.e. find a d-optimal strategy for the row player.
Regarding each row as an expert, then for any adversarial sequence { jt}thl, by theoreml we could
find a sequence of strategy {z;}L_;, such that

T T
thMejt < m[ln} ZeiTMejt + 2y/log(m)T < TX* + 2+/log(m)T
t=1 Emii=

By choosing e, as the best responding strategy for x;, we get
T
TA* <Y a;Mej, < TA* + 24/log(m)T
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Let 7 = argmin; x;Mej,, by choosing 1" > 41%2(771)7 then

z-Mej <X +6

3 Online Gradient Descent

Let’s now think about another expansion of experts problem. Suppose there is a convex set K C R"
and a family of convex functions F mapping K to R. At time step ¢, the agent select x; € K, then
the environment provides a convex function f; € F. The regret is define as
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In this case, there are uncountable experts with each x € K corresponding one expert. However,
convexity of f; makes the problem tractable.

Algorithm 2: Gradient Descent

1 Initially, select z; € K, ny = \/1/T;
2 for t=1,2,...,T do

3 | @1 = Proji(ze —mV fi(x))

4 Return zr,;

Theorem?2 Assume D(K) = maxg yex ||z —y|| = D and ||V f(z)|] < N,Vf € F and z € K, we
have following bounds for algorithm2

Regr < 2NDVT

Proof
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For any = € K, by convexity of f; we have fi(z;) — fi(z) < Vfi(x))T (21 — x). Denote g; =
Vfi(z1), yer1 = e — g, Te1 = Proj(ye1).
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When 7, is fixed and n; = 4/ TN we have regret bound Regr < 2NDV/T.

D2
When 7y = 4/ INT we have regret bound Regr < vV2ND+/T.

Universal Portfolio Algorithm

In this section we’ll talk about the stock investment problem. Suppose there are m stocks in the
market, and in the t-th day, the return of stock i is x;z > 0 which we don’t know at the start of
the t-th day. Now we should make investment in the beginning of each day, the problem is: how

to make profit as much as we can?

Constant rebalanced portfolio (CRP): The strategy is quite easy. Given b € A, at the start of
each day, we buy stock ¢ with b; of all our wealth. Then at the end of T-th day, the total wealth
is S7(b,x1.7) = Hthl(Z?:l bix;t). Denote py, be the uniform distribution on A,,, we have following
algorithm:

Algorithm 3: Universal Portfolio (UP)

1 Initially, So(b,z) =1 for all b € A,, and z;
2 for t=1,2,...,T do

3
4

by =

S, bSt—1(ba1:—1)dp(b)

Ja,, St=1(bx1:i—1)du(b) ’

make investment following by




Performance of Universal Portfolio
Here the target is the best CRP strategy. We have following result:
Theorem3. Denote the total wealth of Universal Portfolio at the end of T-th day is Syp(T, z1.7),
then for any b* € A, and x1.7,
Sup(T,z1.7) e!
Sr(b*,x1.p) — (T +1)n1

Proof. Note that

Sup(t,ziy)  Ja, b2y Sy 1 (b, 21:4-1)dpu(b) ~Ja, Se(b,21:0)du(d)
Sup(t —1,21:0-1) Ja, St=1(b,z14-1)du(b) Ja, St=1(b, z1:4-1)du(d)

by induction and Sy p(0) = 1, we have

Sup(t,erd) = /A Sy(b, 21.0)du(b)

consider the region B(b*,a) = (1 — a)b* + al, = {b|b = (1 — @)b* + az,z € A,}. It’s clear that
if by > by, then Si(b1,x1:4) > Si(ba, 1) if we expand the definition of S into R, thus for any
be B(b*,a), Si(b,z1.4) > (1 —a)tSy(b*,x14). In the other side, it’s easy to get u(B(b*,a)) = a1,
so we have

Sup(T,z1.1) = / St (b, z1.7)du(b) > (1 — a)l ™ LS (b, x1.7)
Ap

by setting o = %H, the conclusion follows.
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