
IIIS 2018 Spring: ATCS - Learning and Optimization - theory and practice
Lecture date: Mar 12, 2018
Instructor: Jian Li Scribe: Yu Shi

1 Introduction

In this lecture, we first introduce the Universal Portfolios by Thomas Cover, which is an online
algorithm providing good allocation of wealth in a market. Then, we show that an online learning
algorithm can be used in supervised learning with the generalization error bounded by the regret.
This technique is known as Online to Batch Conversion. Then, we give a brief introduction to
Fenchel conjugate. Finally, we introduce some concepts which will be used in Online Mirror Descent
for next lecture.

2 Thomas Cover’s Universal Portfolios

We want a weighted combination of stocks with promising return. A combination of stocks is
known as portfolio. More generally, a portfolio is an allocation of wealth among various financial
assets, such as stocks and bonds. The Universal Portfolio algorithm learns a good portfolio every
day. Such portfolios approximate the return of optimal fixed portfolio in the long term. Formally,
with m stocks, let xi = (xi,1, ..., xi,m)T ∈ Rm be the vector of stock return in day i. Note that
on day i when we decide our portfolio, we only know the price of previous days, instead of xi.
Here xi,j is the return of stock j in day i, i.e. xi,j = price of stock j on day i

price of stock j on day i−1 . On each day i,

we use a vector bi = (bi,1, ..., bi,m)T ∈ ∆m to represent the portfolio. Here ∆m is the simplex
{b ∈ Rm|

∑m
j=1 bj = 1}. On day i we allocate bi,j of our current total wealth to stock j. Thus our

return on day i is bTi xi, compared with day i−1. The total return after n days is Tn =
∏n
i=1 bTi xi.

With Universal Portfolios, we can approximate the return of optimal Constant Rebalancing
Portfolio (CRP). A Constant Rebalancing Portfolio is a fixed wealth allocation throughout all
days. Given a fixed wealth allocation b ∈ ∆m, the return of CRP on day n is Sn(b) =

∏n
i=1 bTxi.

With Universal Portfolio algorithm, we can achieve

Tn
Sn(b∗)

≥ 1

(n+ 1)m−1
(1)

Here b∗ is the optimal CRP. Considering the average return per day, we have(
Tn

Sn(b∗)

) 1
n

≥ 1

(n+ 1)
m−1
n

(2)

As n→∞, the right hand side approach 1. Thus we get an average daily return comparable with
optimal CRP.

2.1 The Algorithm

On each day, the portfolio of Universal Portfolio algorithm is a weighted sum of all portfolios in
∆m. The weight for each b ∈ ∆m is its return on previous day. Formally, on day i, the portfolio is

b̂i =

∫
∆m

Si−1(b) · b du(b)∫
∆m

Si−1(b) du(b)

(3)

Here u(b) is the CDF of uniform distribution on ∆m.

2.2 Guarantee of Universal Portfolio

Theorem 1: Let b∗ be the CRP that produce best total return by day n. With the universal

portfolios in (3), Tn =
∏n
i=1 b̂i

T
xi. We have

Tn
Sn(b∗)

≥ e−1

(n+ 1)m−1
(4)

For the sake of simplicity, we only prove the bound with constant e−1 here. For proof of the better
bound in (1), please refer to [1].
Proof : Follow the definitions, it is easy to show that Tn = Eb∈∆m [Sn(b)]. Here b ∈ ∆m follows
the uniform distribution. Let ∆m

α = {(1 − α)b∗ + αz : z ∈ ∆m}, then ∆m
α is a subregion in ∆m.

∀b ∈ ∆m
α we have

Sn(b) =
n∏
i=1

bTxi =
n∏
i=1

[
(1− α)b∗Txi + αzTxi

]
≥

n∏
i=1

[
(1− α)b∗Txi

]
= (1− α)nSn(b∗)

Note that ∫
b∈∆m

α

du(b) =

∫
z∈∆m

du(αz) = αm−1

∫
z∈∆m

du(z) = αm−1

(∫
b∈∆m

α

du(b) = Volumn of ∆m
α = αm−1

)
Thus

Tn = E
b∈∆m

[Sn(b)] =

∫
b∈∆m

Sn(b) du(z) ≥
∫
b∈∆m

α

Sn(b) du(b)

=

∫
b∈∆m

α

Sn(b) du(b) ≥
∫
b∈∆m

α

(1− α)nSn(b∗) du(b)

= (1− α)nSn(b∗)

∫
b∈∆m

α

du(b)

= (1− α)nαm−1Sn(b∗)

Let α = 1
n+1 ,

Tn ≥ (
n

n+ 1
)n

1

(n+ 1)m−1
Sn(b∗) ≥ e−1

(n+ 1)m−1
Sn(b∗)

3 Application of Online Learning to Supervised Learning

Given a set of training data T = {(x1, y1), ..., (xm, ym)}, where each (xi, yi) is sampled from some
distribution D. We want to learn a model with parameters θ to minimize the loss

∑m
i=1 l(θ; (xi, yi)).

This is the standard setting in supervised learning. However, if we see the data points in T as a se-
quence, we can convert it to an online learning problem. At step k, we have (x1, y1), ..., (xk−1, yk−1),
and want to learn parameters θk to predict the label of xk. The regret of this online learning problem
at step T is

regT =
T∑
i=1

l(θi; (xi, yi))− inf
θ

T∑
i=1

l(θ; (xi, yi)).

We call
∑m

i=1 l(θ; (xi, yi)) the empirical risk, which is the loss evaluated on training data. Since we
want to use the model for prediction, we care more about the performance on unseen data points
from distribution D, which is the population risk : E(x,y)∼D [l(θ; (x, y))]. Usually there will be a gap
between empirical risk and population risk, due to overfitting on the training data. This gap is
called generalization error : E

(x,y)∼D
[l(θ; (x, y))]− 1

m

m∑
i=1

l(θ; (xi, yi))

 .
In this section, we’ll show that with a good online learning algorithm we can always get a small

population risk, which is bounded by the regret of the algorithm. Before that, we need to introduce
Martingale and its properties.

3.1 Martingale

Definition 1 (Martingale): A sequence of random variables X1, ..., Xm is called Martingale if it
satisfies:

1. E [|Xi|] <∞

2. E [Xi|X1, ..., Xi−1] = Xi−1

for any i ∈ [m]. More generally, we should define the second expectation with filtration[2]. Fil-
tration can be interpreted as all historical information. We use Fi to represent the filtration that
contains all information needed to measure Xi. Thus we can think Fi as the history of the first
i steps. Then the second equation becomes E [Xi|Fi−1] = Xi−1. From now on, we will use Fi to
represent the filtration.

Definition 2 (Martingale Difference): A sequence of random variables Z1, ..., Zm is called Martin-
gale Difference if it satisfies:

1. E [|Zi|] <∞

2. E [Zi|Fi−1] = 0

for any i ∈ [m].

We have two straightforward conclusions for Martingale and Martingale Difference:

1. If sequence X1, ..., Xm is Martingale, then Z1, ..., Zm is Martingale Difference, where Zi =
Xi −Xi−1.

2. If Z1, ..., Zm is Martingale Difference, then E [Zi] = 0, ∀i ∈ [m].

3.2 Online to Batch

In this section, we show that with a good online learning algorithm, we can always get small
population risk for a supervised learning task. This application of online learning to supervised
learning is also known as Online to Batch conversion. We use L(θ) to represent the population risk
of parameter θ. Let θ∗ = argminθL(θ), which is the optimal parameter. Recall that, with an online
learning algorithm, we learn parameter θi at step i with {(x1, y1), ..., (xi−1, yi−1)}. ∀i ∈ [m], let

Zi = [l(θi; (xi, yi))− L(θi)]− [l(θ∗; (xi, yi))− L(θ∗)] .

Lemma 1: Sequence Z1, ..., Zm is Martingale Difference.
Proof :

E(xi,yi)∼D [Zi|Fi−1] = E(xi,yi)∼D [l(θi; (xi, yi))− L(θi)|Fi−1]− E(xi,yi)∼D [l(θ∗; (xi, yi))− L(θ∗)|Fi−1]

= [L(θi)− L(θi)]− [L(θ∗)− L(θ∗)] = 0

Lemma 2:
∑m

i=1 L(θi) ≤ mL(θ∗) + regm −
∑m

i=1 Zi
Proof :

m∑
i=1

(L(θi)− L(θ∗)) =
m∑
i=1

(l(θi; (xi, yi))− l(θ∗; (xi, yi))− Zi)

=
m∑
i=1

l(θi; (xi, yi))−
m∑
i=1

l(θ∗; (xi, yi))−
m∑
i=1

Zi

≤
m∑
i=1

l(θi; (xi, yi))− inf
θ

m∑
i=1

l(θ; (xi, yi))−
m∑
k=1

Zi

= regm −
m∑
i=1

Zi

Thus
∑m

i=1 L(θi) ≤ mL(θ∗) + regm −
∑m

i=1 Zi.

Theorem 2 (Online to Batch): Let θ1, ..., θm be the outputs of the online learning algorithm. Then

E

[
1

m

m∑
i=1

L(θi)

]
≤ L(θ∗) +

1

m
E [regm] . (5)

When L is convex, we have

E

[
L

(
1

m

m∑
i=1

θi

)]
≤ L(θ∗) +

1

m
E [regm] . (6)

Proof : Since Z1, ..., Zm is Martingale Difference, we have E [Zi] = 0, ∀i ∈ [m]. Take expectation
on both sides of Lemma 2, we get (5). With the convexity of L,

E

[
L

(
1

m

m∑
i=1

θi

)]
≤ E

[
1

m

m∑
i=1

L(θi)

]
.

Thus (6) follows from (5).

4 Dual Norm and Fenchel Conjugate

In this section, we provide some preliminary knowledge for Online Mirror Descent, including dual
norm and Fenchel Conjugate.

4.1 Dual Norm

In a vector space X , a norm is a function mapping from X to R. A norm in X measures the length
of vectors in X . For a formal definition of norm, you can refer to [?]. For example, in vector space
Rn, we have 2-norm: ‖x‖2 =

√
xTx, 1-norm: ‖x‖1 =

∑n
i=1 |xi|, and ∞-norm ‖x‖∞ = maxi |xi|,

∀x = (x1, ..., xn) ∈ Rn.
Given a norm ‖ · ‖ in vector space Rn, we can define its dual norm ‖ · ‖∗

‖x‖∗ = sup
‖y‖≤1

xTy.

For example, it is easy to verity that the dual norm of ‖ · ‖1 in Rn is ‖ · ‖∞. With 1 < p <∞, we

can define p-norm: ‖x‖p = (
∑n

i=1 |xi|p)
1
p . If 1 < q <∞ and 1

p + 1
q = 1, then ‖ · ‖q is the dual norm

of ‖ · ‖p, and vice versa.

4.2 Fenchel Conjugate

Given a function defined in Rn, we define its Fenchel Conjugate function.
Definition 3 (Fenchel Conjugate/Dual): Let h : Rn → R ∪ {+∞}, its conjugate(dual) function is
h∗ : Rn → R ∪ {+∞},

h∗(θ) = sup
x∈Rn
{θTx− h(x)}.

(For functions not defined in the whole Rn space, we can define its value as +∞ out of the domain
of definition, and extend the domain of definition to Rn.)

We have three important observations about conjugate functions:

1. Conjugate function is always convex. Note that for any function h and a fixed x ∈ Rn,
θTx− h(x) is a linear of θ. Thus the conjugate function is a point-wise supremum over a set
of linear functions, which is convex.

2. Conjugate function encodes all the gradients, or tangent planes of the original function.
Consider the piecewise linear function h(x) and its dual function h∗(θ),

1 2 3

1

2

3

4

x

h(x)

1 2

1

2

3

θ

h∗(θ)

Figure 1: Conjugate Function Encodes the Tangent Planes

h(x) =

1, 0 ≤ x ≤ 1

x, 1 < x ≤ 2

2x− 2, 2 < x ≤ 3

+∞, otherwise

h∗(θ) =

− 1, x ≤ 0

x− 1, 0 < x ≤ 1

2x− 2, 1 < x ≤ 2

3x− 4, x > 2

In Figure 1, both h∗ and h are piece-wise linear functions. The plot of h∗ is segmented at
θ = 0, 1, 2. And the gradients of h in three segments are 0, 1 and 2, respectively. Thus,
each position where gradients of h∗ changes, corresponds to a gradient value of h. Also, the
gradients of h∗ are encoded by h. The plot of h is segmented at x = 0, 1, 2, 3. And the
gradients of h∗ in four segments are 0, 1, 2 and 3, respectively. The encoding relationship is
indicated by the colors of dots and line segments in Figure 1.

3. Suppose h is defined and derivable in Rn. Fix θ1 ∈ Rn, let x1 = argmax{xT θ1− h(x)}. Then
we have

θ1 = ∇h(x1), x1 = ∇h∗(θ1)

This is a relatively formal description of the encoding illustrated in Figure 1. In underivable
cases like Figure 1, we replace the gradients with subgradients[4]. Let ∂h(x1) be the subgra-
dients of h at x1 and ∂h∗(θ1) be the subgradients of h∗ at θ, then we have θ1 ∈ ∂h(x1) and
x1 ∈ ∂h∗(θ1).

Since x1 = argmax{xT θ1 − h(x)}, x1 is a stationary point of xT θ1 − h(x). Thus

∇x

(
xT θ1 − h(x)

)
|x=x1 = θ1 −∇h(x1) = 0

So θ1 = ∇h(x1). By definition of h∗, h∗(θ1) = xT1 θ1 − h(x1). ∀θ2 ∈ Rn, we have h∗(θ2) ≥
xT1 θ2− h(x1). Thus xT1 θ1− h∗(θ1) = h(x1) ≥ xT1 θ2− h∗(θ2). So θ1 is a maximum point (thus
a stationary point) of function f(θ) = xT1 θ − h∗(θ). Thus ∇f(θ1) = x1 − ∇h∗(θ1) = 0. So
x1 = ∇h∗(θ1). (We assume both h and h∗ are derivable here. But we can generalize the idea
to underivable case using subgradient.)

−1 1.5

−1

1.25

h(x) = x2 − 2x+ 2

y = x

y = x− 1
4

x

h(x)

−1 1 2

0.25

1.5

h(θ) = θ2

4 − θ + 1

y = 3
2x

y = 3
2x−

5
4

θ

h∗(θ)

Figure 2: θ1 = ∇h(x1) and x1 = ∇h∗(θ1)

Let h(x) = x2 − 2x + 2, thus h∗(θ) = maxx(θx − x2 + 2x − 2) = θ2

4 + θ − 1. We plot h and
h∗ in Figure 2. Let θ1 = 1, let x1 = argmaxx{θ1x − h(x)} = argmaxx{−x2 + 3x − 2} = 3

2 .

h∗′(θ) = θ
2 + 1, h′(x) = 2x− 2. Thus h′(x1) = 1 = θ1, and h∗′(θ1) = 3

2 = x1.

Some examples of Fenchel conjugate functions:

(1) f(x) = ax− b, f∗(θ) =

{
b, θ = a

+∞, θ 6= a

(2) f(x) = |x|, f∗(θ) =

{
0, −1 < θ < 1

+∞, |x| ≥ 1

5 Some Concepts

Definition 4 (L-Lipschitz): Given a norm ‖ · ‖ and L > 0, a function f : X → R is called
L-Lipschitz if ‖∇f(x)‖∗ ≤ L,∀x ∈ X . L-Lipschitz depicts the continuity of f .
Definition 5 (β-Smooth): Given a norm ‖ · ‖ and β > 0, a function f : X → R is called β-smooth
if ‖∇f(x)−∇f(y)‖∗ ≤ β‖x− y‖,∀x, y ∈ X . β-smooth depicts the smoothness of f .
Definition 6 (Strongly Convex): Given α > 0, a function f is called α-strongly convex if

f(x)− f(y) ≤ 〈∇f(x), x− y〉 − α

2
‖x− y‖2, ∀x, y.

Definition 7 (Bregman Divergence): Given a function f (typically a strongly convex function),
the Bregman Divergence Df of f is defined as

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉, ∀x, y.

References

[1] Blum, Avrim, and Adam Kalai. ”Universal portfolios with and without transaction costs.”
Machine Learning 35.3 (1999): 193-205.

[2] Wikipedia contributors. Martingale (probability theory) wikipedia, the free encyclopedia,
2018. [Online; accessed 18-March-2018].

[3] Wikipedia contributors. Norm (mathematics) wikipedia, the free encyclopedia, 2018. [Online;
accessed 18-March-2018].

[4] Wikipedia contributors. Subderivative wikipedia, the free encyclopedia, 2018. [Online; ac-
cessed 19-March-2018].

	Introduction
	Thomas Cover's Universal Portfolios
	The Algorithm
	Guarantee of Universal Portfolio

	Application of Online Learning to Supervised Learning
	Martingale
	Online to Batch

	Dual Norm and Fenchel Conjugate
	Dual Norm
	Fenchel Conjugate

	Some Concepts

