
IIIS 2018 Spring: ATCS - Selected Topics in Optimization
Lecture date: March 19, 2018
Instructor: Jian Li Scribe: Niu Hui

1 Online Mirror Descent

In the last lecture we have covered the knowledge of dual norm and Fenchel conjugate. In this post
we are interested in minimizing a convex function f over a compact convex set X ⊆ Rn with some
assumption of f .

1.1 Mirror Map

Definition 1 (Mirror Map) With domain D, a mirror map is a function F : D → R+ satisfying:

1© Strongly convex (w.r.t. ‖ · ‖)
α-strongly convex:

f(y) ≥ f(x) +∇f(x)T · (y − x) +
α

2
‖ x− y ‖2

2© ∇F (D) =: {∇F (x|x ∈ D)} = Rn

3© limx→∂D ‖ ∇F (D) ‖→ ∞

Note that the second condition requires the gradient space is the whole space. The third
condition means the gradients of the points near the margin of D are close to ∞.

Figure 1: Map the original space to the mirror gradient space

Example 1.1 For ‖ · ‖2, if F (x) = 1
2x

2, we project x→ ∇F (x) = x, the Bregman divergence is

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉 =
1

2
‖ x− y ‖2

.



Example 1.2 (neg-entropy function) If F (x) =
∑

i xi log xi (neg-entropy function), F (x) is
1-strongly convex w.r.t. ‖ · ‖1. We have

∇F (x) =

 logx1 + 1

......

logxn + 1


and the Bregman divergence of F is

DF (x, y) =

n∑
i=1

xi log
xi
yi
−

n∑
i=1

(xi − yi).

The first part
∑n

i=1 xi log xi
yi

is KL-divergence. Note that if x and y are from the same distribution,
the KL-divergence are shrink to 0.

Check by yourself: The calculation of the Bregman divergence in example 1.2 is as following

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉

=
∑
i

xi log xi −
∑
i

yi log yi −
∑
i

(xi − yi)(log yi + 1)

=
n∑
i=1

xi log
xi
yi

+
∑
i

(xi − yi).

To build and illustrate the algorithm of Online Mirror Descent (OMD), now we give some
lemmas at first.

Recall: The Fenchel dual/conjugate of F is

F ?(θ) = sup
x∈D

(〈x, θ〉 − F (x)).

The Bregman divergence of F is

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉

.

Lemma 2 If F is a mirror map (Legendre function), and F ? is the Fenchel conjugate of F.

1© F ?? = F

2© ∇(F ?) = (∇F )−1

3© DF (x, y) = DF ?

(
∇F (x),∇F (y)

)



Figure 2: The Fenchel Conjugate

Proof of Lemma 2- 2©. In homework 2 we will prove

∇F ?(θ) = arg max
x

(〈x, θ〉) =: x0.

See the Figure 2, we know
∇F (x0) = θ.

So we have
(∇F )−1(θ) = x0.

Then we proved the lemma 2- 2©. 2

Lemma 3 (Generalized Triangle Equality) Let Df denote the Bregman divergence of f.(
∇f(z)−∇f(x)

)T
· (x− y) = Df (x, y) +Df (z, x)−Df (z, y)

Proof: The right part is

Df (x, y) +Df (z, x)−Df (z, y) = + f(x)− f(y)−∇f(x)T (x− y)

+ f(z)− f(x)−∇f(z)T (z − x)

− f(z) + f(y) +∇f(z)T (z − y)

=
(
∇f(z)−∇f(x)

)T
· (x− y)

2

1.2 Online Mirror Descent Algorithm (OMD)

Now we introduce the Online Mirror Descent (OMD) algorithm, see algorithm 1 for details.
To illustrate OMD (see Figure), we can imagine the algorithm first project xt to the point

∇F (xt) in mirror gradient space. Then move a step in the direction of −η∇ft(xt). Then we want



Algorithm 1: Online Mirror Descent (OMD)

1 for t = 1, ..., T do
2 1© play xt, nature plays ft(incur a loss func ft(xt));
3 2© Wt+1 ← ∇F ?

(
∇F (xt)− η∇ft(xt)

)
;

4 3© xt+1 ← arg miny∈DDF (y,Wt+1);

to project this point back to the original space. Hence, we use the inverse function (∇F )−1 = ∇F ?.
However, the inverse function may not drop in the original space. Thus we need to get it back.
That is the last step of the algorithm.

Example 1.3 (Projected GD) If we use F (x) = 1
2x

2 in projected gradient descent, it is the Mirror
Descent algorithm.

Recall: Last time we discussed the universal portfolio. For the simplex, n-experts problem, the
regret bound of project GD is

regT ≤ D ·max ‖ ∇f ‖
√
T ≤

√
nT .

However the regret bound of Multiplicative Weight (MW) is

regT ≤
√
T lnn.

Now we show when using different mirror maps F , the regret bound of projected GD may be
as good as the MW algorithm.

Theorem 4 Let

η =

√
2 supx∈D F (x)

T ·B2
,

B = sup
t,x
‖ ∇ft(x) ‖? .

The regret bound of OMD is

RegT ≤
√

2B2 supx∈D F (x)

T
.

Proof: Without loss of generality, ft(x) = 〈∇t, xt〉 is a linear function.

LHSt = 〈∇t, xt〉 − 〈∇t, x?〉
= 〈∇t, xt −Wt+1 +Wt+1 − x?〉

= 〈∇t, xt −Wt+1〉+
1

η

〈
(∇F (xt)−∇F (WT+1)),Wt+1 − x?

〉



To understand the last line of the formula, we apply the algorithm 1- 2© and obtain

ALGO1− 2© :Wt+1 ← ∇(F ?)(∇F (xt)− η∇t)
⇓
∇F (Wt+1)← ∇F (x+ t)− η∇t
⇓

∇t =
1

η

(
∇F (xt)−∇F (WT+1)

)
Applying the lemma 3 (Generalized triangle equation) and the fact 〈a, b〉 ≤‖ a ‖? · ‖ b ‖≤

η
2 ‖ a ‖

2
? + 1

2η ‖ b ‖
2, we obtain

LHSt = 〈∇t, xt −Wt+1〉+
1

η

(
DF (x?, xt)−DF (x?,Wt+1)−DF (xt, ,Wt+1)

)
≤ η

2
‖ ∇t ‖2? +

η

2
‖ xt −Wt+1 ‖2 +

1

η

(
DF (x?, xt)−DF (x?,Wt+1)−DF (xt, ,Wt+1)

)
≤ η

2
‖ ∇t ‖2? +

1

η

(
DF (x?, xt)−DF (x?,Wt+1)

)

Note that the algorithm 1- 3©, we obtain

RegT =
∑
t

LHSt

≤ η

2

T∑
t=1

‖ ∇t ‖2? +
1

η

T∑
t=1

(
DF (x?, xt)−DF (x?,Wt+1)

)
≤ η

2

T∑
t=1

‖ ∇t ‖2? +
1

η

T∑
t=1

(
DF (x?, xt)−DF (x?, xt+1)

)
≤ η

2
T ·B2 +

1

η

(
DF (x?, x1)−DF (x?, xT )

)
≤ η

2
T ·B2 +

1

η

(
F (x?)− F (x1)

)
≤ η

2
T ·B2 +

1

η
sup
x∈D

F (x)

The last 2nd line of the above proof is because of lemma 2- 3©. If we choose η =

√
2 supx∈D F (x)

T ·B2 ,
we then prove the theorem.

2

If we use neg-entropy function here we will obtain the same regret bound (O(T lnn)) in projected
GD as the MW algorithm does.

1.3 The Equivalence of FTRL and OMD

In this subsection we first introduce the FTRL algorithm which develops regularization algorithms
for attaining low regret. [2] In line with the Follow the Leader algorithm, we give the name Follow
the Regularized Leader to the following family of algorithms 2.



Algorithm 2: Follow the Regularized Leader (FTRL)

1 Given η > 0 , previous loss function ft(x) and Mirror map F ;
2 for t = 1, ..., T do

3 xt+1 ← arg minx
(
η
∑t

s=1 fs(x) + F (x)
)
;

Now we will show the equivalence of FTRL and OMD covered in class.

Proof of Equivalence of FTRL and OMD. Another interpretation of Online Mirror Descent
is as following. Note that ∇F (Wt+1) = ∇F (xt)− η∇t, we obtain

xt+1 = arg min
y∈D

DF (y,Wt+1)

= arg min
y∈D

((
F (y)− F (Wt+1)

)
−
〈
∇F (Wt+1), y −Wt+1

〉)
= arg min

y∈D

(
F (y)−

〈
∇F (Wt+1), y −Wt+1

〉)
= arg min

y∈D

(
+ η〈∇t, y〉+ F (y)−

〈
∇F (xt), y − xt

〉
− F (xt)

)
= arg min

y∈D

(
+ η〈∇t, y〉+DF (y, xt)

)

2

Here we can view F as a regularizer which means we do not want to go too far.

2 Multi-armed Bandit Problem

Reinforcement learning policies face the exploration versus exploitation dilemma, i.e. the search for
a balance between exploring the environment to find profitable actions while taking the empirically
best action as often as possible. A popular measure of a policy’s success in addressing this dilemma
is the regret, that is the loss due to the fact that the globally optimal policy is not followed all the
times. One of the simplest examples of the exploration/exploitation dilemma is the multi-armed
bandit problem.[1]

2.1 Introduction

In its most basic formulation, a K -armed bandit problem is defined by random variables Xi,n for
1 ≤ i ≤ K and n ≥ 1, where each i is the index of a gambling machine (i.e., the arm of a bandit).
Successive plays of machine i yield rewards Xi,1, Xi,2, ... which are independent and identically
distributed according to an unknown law with unknown expectation µi. Independence also holds for
rewards across machines; i.e., Xi,s and Xj,t are independent (and usually not identically distributed)
for each 1 ≤ i < j ≤ K and each s, t ≥ 1.

A policy, or allocation strategy, A is an algorithm that chooses the next machine to play based
on the sequence of past plays and obtained rewards. Let Ti(n) be the number of times machine i



has been played by A during the first n plays. Then the regret of A after T plays is defined by

RegT = µ? · T −
K∑
j=1

µj · E[Tj(T )],

where µ? = maxi E[xi] = maxi µi.

2.2 Upper Confidence Bound (UCB) for N-armed Bandit Problem

Before discussing the Upper Confidence Bound (UCB) of multi-armed bandit problem, we first
introduce the Chernoff bound, a not tight but useful bound.

Theorem 5 (Chrnoff bound) For X1, ...Xn ∈ [0, 1], let X =
∑

iXi, µ =
∑

i E[Xi]. There exists{
Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

When µ is large and δ is small, the probability is small.

Algorithm 3: UCB

1 Initially paly each machine once. for t = 1, 2, ..., T do
2 nj ← times machine j is played before t;

3 play machine j which maxmizes UCB: Xj +
√

2 ln t
nj

;

Next time we will show the regret bound of UCB is

RegT ≤ O

( ∑
i:µi<µ?

lnT

∆i

)
+O

(
K∑
j=1

∆j

)
,

where ∆i is the gap of machine i, ∆i = µ? − µi. The last term is a constant w.r.t T.
Here is something useful about UCB in next class: Let Ct.s =

√
2 ln t/w, then we have the fact

that {
Pr[X?

s ≤ µ? − Ct,s] ≤ t−4

Pr[Xi,s ≥ µi + Ct,s] ≤ t−4

References

[1] Auer P, Cesa-Bianchi N, Fischer P. Finite-time Analysis of the Multiarmed Bandit Problem[J].
Machine Learning, 2002, 47(2-3):235-256.

[2] www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf

www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf

	Online Mirror Descent
	Mirror Map
	Online Mirror Descent Algorithm (OMD)
	The Equivalence of FTRL and OMD

	Multi-armed Bandit Problem
	Introduction
	Upper Confidence Bound (UCB) for N-armed Bandit Problem 


