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1 Introduction

In this lecture, we introduce an effective word embedding method, skip-gram with negative-sampling
(SGNS), and prove that it is implicitly factorizing a word-context matrix[l], whose elements are
the pointwise mutual information(PMI) of the respective word and context pairs.

2 Skip-Gram with Negative Sampling

The skip-gram model assumes a corpus of words w € V,, and their contexts ¢ € V., where V,, and V,
are the word and context vocabularies. The collection of word-context pairs are denoted as D, and
#(w, c) is the number of times the word-context pair (w,c) appears in D. #(w) = Y. cy. #(w, )
and #(c) = > ey, #(w', ¢) are the number of times w and ¢ occurred in D, respectively. w € Vi,
is associated with a vector 1 € R? and similarly ¢ € V. is represented as vector ¢ € R%. We refer to
the vectors @ as rows in a |V,,| X d matrix W, and to the vectors ¢ as roes in a |V| x d matrix C.
As for a word-context pair (w,c), the probability distribution that (w,c) came from the data is

modeled as: )

1+ewe
The objective of negative sampling is to maximize P(D = 1|w,c) for observed (w,c) pairs while

maximize P(D = 0|lw,c) =1 — P(D = 1|w,c) for randomly selecting a context for a given word.
Then the objective function of SGNS is:

J= Y > #(w,e)log(5(w, &) + kEcy~pp log(5(—, ¢))]) (1)
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P(D =1lw,c) =§(wW-¢) =

Where k is the number of “negative” samples and ¢y is the sampled context, and we assume Pp

is the uniform distribution Pp(c) = % .

3 Word Embedding as Matrix Factorization

Let M = W - CT, then SGNS can be described as factorizing the implicit matrix M of |V,| x |V¢|
dimensions into two low-rank matrices. A matrix entry M;; is associated to the dot product
W; - C; = w; - ¢;. Thus SGNS is factorizing a matrix in which each row corresponds to a word
w € V,, each column corresponds to a context ¢ € V., and each cell contains a quality f(w,c)
reflecting the strength of association between the corresponding (w,c) pair. We can prove that
f(w,c) is the PMI of (w, ¢) with adding a global constant.



Proof:
Rewriting the equation

J= 3 > #(w,0)log(8(w, ) + kEcynpp log(8(—, ¢))])
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= > > #w,0)log(8(5,8) + Y #(w) FEcynpp [log(6(—, ¢k))]] 2)
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= ¥ 3 #w0loglo(3) + 3wk 3 FE log(a-.x)

weVy ceVe w cNeVe ‘

Denote J(w, c) as the single objective for (w,c), i.e.J = Zw’c J(w, ¢), then:

#(cn)

J(w, ¢) = #(w, ¢)log(6(w, €)) + k#(w) |D|

log(6(—, civ)) 3)

We define x = o - ¢. For optimizing the objective, we compute the partial derivative with respect
to x:

0J(w,c) #(w)#(c)
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Let LJS;’C) =0:
S (w, ¢)0(—x) — kW&(@ 0 (5)
= [D|#(w,c)(1+ e ") — k#(w)#(c)(1 +e*) =0 (6)
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Let y = €%, then we can solve y from the quadratic equation of it, which has two equations,
y = —1(invalid) and :
D#(w, c)
Y= T~
k#(w)#(c)

D] (w, ¢)
#(w)#(c)
|D|#(w,c)

The expression log( () #(C)) is the pointwise mutual information of (w, ¢). Thus we can prove the
matrix M is factorizing:

(8)
Then

W - ¢ = log(y) = log( ) — log(k)

MZENS =W, - Cj = ;- & = PMI(w;, c;) — logk (9)
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