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1 Introduction

In this lecture, we introduce an effective word embedding method, skip-gram with negative-sampling
(SGNS), and prove that it is implicitly factorizing a word-context matrix[1], whose elements are
the pointwise mutual information(PMI) of the respective word and context pairs.

2 Skip-Gram with Negative Sampling

The skip-gram model assumes a corpus of words w ∈ Vw and their contexts c ∈ Vc, where Vw and Vc
are the word and context vocabularies. The collection of word-context pairs are denoted as D, and
#(w, c) is the number of times the word-context pair (w, c) appears in D. #(w) =

∑
c′∈Vc

#(w, c′)
and #(c) =

∑
w′∈Vw

#(w′, c) are the number of times w and c occurred in D, respectively. w ∈ Vw
is associated with a vector ~w ∈ Rd and similarly c ∈ Vc is represented as vector ~c ∈ Rd. We refer to
the vectors ~w as rows in a |Vw| × d matrix W , and to the vectors ~c as roes in a |Vc| × d matrix C.
As for a word-context pair (w, c), the probability distribution that (w, c) came from the data is
modeled as:

P (D = 1|w, c) = δ(~w · ~c) =
1

1 + e−~w·~c

The objective of negative sampling is to maximize P (D = 1|w, c) for observed (w, c) pairs while
maximize P (D = 0|w, c) = 1 − P (D = 1|w, c) for randomly selecting a context for a given word.
Then the objective function of SGNS is:

J =
∑
w∈Vw

∑
c∈Vc

#(w, c) log(δ(~w,~c)) + kECN∼PD
[log(δ(−~w, ~cN ))]) (1)

Where k is the number of “negative” samples and cN is the sampled context, and we assume PD

is the uniform distribution PD(c) = #(c)
|D| .

3 Word Embedding as Matrix Factorization

Let M = W · CT , then SGNS can be described as factorizing the implicit matrix M of |Vw| × |Vc|
dimensions into two low-rank matrices. A matrix entry Mij is associated to the dot product
Wi · Cj = ~wi · ~cj . Thus SGNS is factorizing a matrix in which each row corresponds to a word
w ∈ Vw, each column corresponds to a context c ∈ Vc, and each cell contains a quality f(w, c)
reflecting the strength of association between the corresponding (w, c) pair. We can prove that
f(w, c) is the PMI of (w, c) with adding a global constant.



Proof:
Rewriting the equation 1:

J =
∑
w∈Vw

∑
c∈Vc

#(w, c) log(δ(~w,~c)) + kECN∼PD
[log(δ(−~w, ~cN ))])

=
∑
w∈Vw

∑
c∈Vc

#(w, c) log(δ(~w,~c)) +
∑
w

#(w)[kECN∼PD
[log(δ(−~w, ~cN ))]]

=
∑
w∈Vw

∑
c∈Vc

#(w, c) log(δ(~w,~c)) +
∑
w

#(w)k
∑

cN∈Vc

#(cN )

|D|
log(δ(−~w, ~cN ))

(2)

Denote J(w, c) as the single objective for (w, c), i.e.J =
∑

w,c J(w, c), then:

J(w, c) = #(w, c) log(δ(~w,~c)) + k#(w)
#(cN )

|D|
log(δ(−~w, ~cN )) (3)

We define x = ~w · ~c. For optimizing the objective, we compute the partial derivative with respect
to x:

∂J(w, c)

∂x
= #(w, c)δ(−x)− k#(w)#(c)

|D|
δ(x) (4)

Let ∂J(w,c)
∂x = 0:

#(w, c)δ(−x)− k#(w)#(c)

|D|
δ(x) = 0 (5)

⇒ |D|#(w, c)(1 + e−x)− k#(w)#(c)(1 + ex) = 0 (6)

⇒ e2x − (
|D|#(w, c)

k#(w)#(c)
− 1)ex − |D|#(w, c)

k#(w)#(c)
= 0 (7)

Let y = ex, then we can solve y from the quadratic equation of it, which has two equations,
y = −1(invalid) and :

y =
D#(w, c)

k#(w)#(c)
(8)

Then

~w · ~c = log(y) = log(
|D|#(w, c)

#(w)#(c)
)− log(k)

The expression log( |D|#(w,c)
#(w)#(c) ) is the pointwise mutual information of (w, c). Thus we can prove the

matrix M is factorizing:

MSGNS
ij = Wi · Cj = ~wi · ~cj = PMI(wi, cj)− log k (9)
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