
IIIS 2018 Spring: ATCS - Selected Topics in Optimization
Lecture date: May 7, 2018
Instructor: Jian Li Scribe: Dingli Yu

1 Attention

Continue from the last lecture, we introduce some important implementation of attentions. This
section is based on Prof. Li’s lecture slides Attentions II [3].

Instead of using RNN to do sequence to sequence learning, Gehring et al. [1] propose an
architecture based on CNN and attention model. Figure 1 gives the structure of their model. They
use multi-step attention in their framework, which allows the decoder immediate access to the
attention history of the k − 1 previous time steps (k is the number of layers). Under their model,
it is easier to relate words by corresponding distance.

Figure 1: Structure of convolutional seq2seq.

Jumping out of sequence to sequence model, Vaswani et al.’s paper “attention is all you need”
[7] uses a multi-head self-attention mechanism to solve problems in NLP. The key value attention

http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/DL7-attentions2.pptx

is used, that is,

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V,

where Q is a set of queries with dimension dk, K is a set of keys with dimension dk as well, and V
is a set of values with dimension dv. (The dot product of Q and K gives how close the queries and
keys are.) Besides of that, they also use multi-head attention, which is defined as

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)WO,

where
headi = Attention(QWQ

i ,KW
K
i , V W

V
i).

Their network architecture, Transformer, is shown in Figure 2. In the Encoder side(left hand side
of the figure), they use the same Q,K, V as the input of multi-head attention. This self-attention
strategy helps coreference resolution. For example, comparing the sentence “the animal didn’t
cross the street because it was too tired” with “the animal didn’t cross the street because it was
too wide”, “it” refers to different things (“animal” or “street”) based on the last words (“tired” or
“wide”). It is worth noting that the Add and Norm layer is very important for network training
and convergence. It basically implements skip connection and layer normalization. On the other
hand, when the network decodes, it uses Q and K from the encoder network, and uses masked
multi-head attention for the first attention layer. Since one should not know any future information
in decoder phase, they set all unknown queries and keys to −∞ in masked multi-head attention.

2 Normalization

As we mentioned in last section, normalization helps neural network to converge. Particularly,
CNN starts to converge after Batch Normalization (BN). This section is based on Prof. Li’s lecture
slides Deep Learning, Normalization [4].

BN normalizes each mini-batch of data. Essentially, it transforms x(k) to

x̂(k) =
x(k) − E[x(k)]√

Var(x(k))
.

One may ask why BN useful? In statistical learning, we assume the training distribution should
be the same as the test distribution. However, if we regards each layer in networks as a learning
problem, then the training distribution may not be the same as testing distribution, because any
changes in previous layers cause and amplify the change of input distribution. People refer this
phenomenon as internal covariance shift, and believe that BN can reduce this effect[2].

Since BN usually requires larger mini-batch size, it is not easy to be applied to RNN. It may
be possible, but no conclusion has been made until now.

Besides BN, people also do layer normalization, which is a summation over (C,H,W) in CNN.
Moreover, we can take any summation in any groups, which is called group normalization.

3 Transfer Learning and Multi-task Learning

This section is based on Prof. Li’s lecture slides Transfer Learning, Multi-task Learning [5].

http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/DL9-normalization.pdf
http://iiis.tsinghua.edu.cn/~jianli/courses/ATCS2018spring/DL10-multi-task%20learning.pdf

Figure 2: Transformer.

In a standard machine learning framework, data must be properly chosen. But what should we
do if we want to apply a classifier to a new or shifting domain? It would be too expensive to retrain
the model. People are trying to use existing classifier as a starting point to make a shortcut, which
is called transfer learning.

There are two types of differences between the two problem. One is domain differences, that is,
the data set may be different or of different distribution. Another is task differences, that is, the
labeling set may be different or of different distribution. For different data distribution, Adaboost
naturally fits transfer learning since it reduces effect of “bad” instances and encourages effect of
“good” instances in each iteration.

Multi-task learning uses similar idea as transfer learning. When learning a hard task with
insufficient data, we can use some auxiliary task to help training. Auxiliary task are typically
homogeneous tasks, and can provide additional supervised information and additional structural
knowledge if we train these two tasks jointly.

For example, in travel time estimation, we are given path, start time, driver, and we need to
predict the travel time. However, the given data is actually a sequence of GPS points. Therefore,
in stead of only estimating the entire path, we can estimating some local paths as an auxiliary task.
In this way, the number of training samples are increased, and the structure is better understood.

4 Generalization

Along the path to understand machine learning, two major issues remain unknown — generalization
and optimization, especially in deep learning. For optimization, researchers wonder how to calculate
the optimal parameters. As far as we know, computing global minimum is impossible in neural
networks, which leaves us a new problem of finding local minimum in the non-convex setting. One
may think gradient descent is enough for finding local minimal. However, points with zero gradient
are not necessarily local minimums, but can also be saddle points.

In this lecture, we mainly discuss generalization, which refers to the problem of avoiding “over-
fitting”. We hope the model we get from training can reach similar performance in other data
samples. Therefore, in machine learning, especially in training deep neural networks, we want to
find local minimum that (i) has similar loss as global minimum and (ii) generalize well.

4.1 Notations

Consider a machine learning problem with data set D, for a training sample S = {z1, . . . , zn} where
each zi is independent and identically draw from D, we define the empirical risk or the empirical
loss of a model with parameter w to be

RS [w] ,
1

n

n∑
i=1

f(w, zi).

Empirical loss is what we often optimize in training, but what we really care about is the population
loss,

R[w] = E
z∼D

[f(w, z)].

Here we take expectation on z ∼ D, which is often called the test sample.
Typically, after running a randomized training algorithm A, the empirical loss would be smaller

than the population loss, and we define the generalization gap or the generalization error to be the
expected difference, i.e.,

εgen =

∣∣∣∣ E
S,A

[R[A(S)]−RS [A(S)]]

∣∣∣∣ ,
where the expectation is taken on S

i.i.d.∼ D and randomness of algorithm A, while A(S) is the
model learned by A on S.

From the definition, one can see that as long as RS [A(S)] is small and εgen is small, R[A(S)]
should be small.

4.2 Algorithmic stability

Many students may have learned Vapnik uniform convergence bound (a.k.a. VC theory) as one
of the most important generalization bounds. Unfortunately, it does not work for deep learning.
For VC and other complexity theory, the size of the training set should be the same order of the
number of parameters, while for deep learning, the number of parameters are often much much
larger than the size of training data.

Here, we offer a highly different approach to guarantee generalization — via algorithmic stability.
We will define uniform stability of an algorithm below, and then prove the uniform stability of an

https://en.wikipedia.org/wiki/Saddle_point

algorithm implies its generalization gap. In the next lecture, we will prove the uniform stability of
SGD, and thus automatically gives its generalization bound. Other optimization algorithms may
not have this properties and fail to generalize well. For example, Adam has been proved failing to
converge in some circumstances by one of three ICLR’18 best papers [6].

Definition 1 (Uniform stability) A random algorithm A is ε-uniform stable if and only if for
all S and S′ (such that S and S′ differ in only one sample),

sup
z

E
A

[|f(A(S), z)− f(A(S′), z)|] ≤ ε.

The definition basically says that if an algorithm has good uniform stability, then the loss for any
sample z should not change too much if we change only one training sample.

Theorem 2 Suppose an algorithm A is ε-uniform stable, then

εgen =

∣∣∣∣ E
S,A

[R[A(S)]−RS [A(S)]]

∣∣∣∣ ≤ ε.
Proof: Let S = {z1, . . . , zn}, S′ = {z′1, . . . , z′n}, and zi, z

′
i
i.i.d.∼ D for all i ∈ {1, . . . , n}.

Let S(i) = {z1, . . . , zi−1, z′i, zi+1, . . . , zn}, then

E
S
i.i.d.∼ D

E
A

[RS(A(S))] = E
S
E
A

[
1

n

n∑
i=1

f(A(S), zi)

]

=
1

n

n∑
i=1

E
S
E
A

[f(A(S), zi)]

=
1

n

n∑
i=1

E
S

E
z′i∼D

E
A

[
f
(
A
(
S(i)

)
, z′i

)]
= E

S
E
S′
E
A

[
1

n

n∑
i=1

f
(
A
(
S(i)

)
, z′i

)]

≤ E
S
E
S′
E
A

[
1

n

n∑
i=1

f(A(S), z′i)

]
+ ε

= E
S
E
A

(
E

z∼D
[f(A(S), z)]

)
+ ε

= E
S,A

[R(A(S))] + ε,

where the inequality is by the uniform stability. 2

References

[1] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolu-
tional sequence to sequence learning.CoRR, abs/1705.03122, 2017.

[2] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network trainingby
reducing internal covariate shift.arXiv preprint arXiv:1502.03167, 2015.

[3] Jian Li. Attentions II. ATCS: Learning and Optimization - theory and practice, 2018 Spring.

[4] Jian Li. Deep Learning, Normalization. ATCS: Learning and Optimization - theory and prac-
tice, 2018 Spring.

[5] Jian Li. Transfer Learning, Multi-task Learning. ATCS: Learning and Optimization - theory
and practice, 2018 Spring.

[6] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
International Conference on Learning Representations, 2018.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. InAdvances in Neural Informa-
tion Processing Systems, pages 6000–6010, 2017.

	Attention
	Normalization
	Transfer Learning and Multi-task Learning
	Generalization
	Notations
	Algorithmic stability

